
Integration of Lower Bound Estimates in Pseudo-Boolean

Optimization

Vasco M. Manquinho and João Marques-Silva
IST/INESC-ID, Technical University of Lisbon, Portugal

{vmm,jpms}@sat.inesc-id.pt

Abstract

Linear Pseudo-Boolean Optimization (PBO) has
found applications in several areas, ranging from Ar-
tificial Intelligence to Electronic Design Automation.
Due to important advances in Boolean Satisfiabil-
ity (SAT), new algorithms for PBO have emerged, which
are effective on highly constrained instances. How-
ever, those algorithms fail in dealing properly with the
objective function of PBO. This paper proposes an al-
gorithm that uses lower bound estimation methods
for pruning the search tree in integration with tech-
niques from SAT algorithms. Moreover, the paper shows
that the utilization of lower bound estimates can dramat-
ically improve the overall performance of PBO solvers
for specific classes of instances. In addition, the paper de-
scribes how to apply non-chronological backtracking in
the presence of conflicts that result from the bound-
ing process, using different lower bound estimation
methods.

1. Introduction

Recent advances in Boolean Satisfiability (SAT)
have resulted in new and effective algorithms for solv-
ing the Linear Pseudo-Boolean Optimization prob-
lem [2, 4, 7]. These algorithms perform a linear search
on the possible values of the cost function, starting
from the highest, at each step requiring the next com-
puted solution to have a cost lower than the previ-
ous one. If the resulting instance is not satisfiable,
then the optimal value is given by the last computed
solution. By incorporating important features from
SAT solvers like non-chronological backtracking in the
search tree, conflict-based learning mechanisms and
lazy data structures, these solvers have been able to
solve with success several classes of highly constrained
pseudo-boolean instances. However, they fail in deal-
ing with the information provided by the cost func-

tion. In order to prune the search due to the value of
the cost function we propose the use of methods to es-
timate a lower bound on the value of the cost func-
tion. Whenever the lower bound estimation is higher
or equal to the best solution found so far, we are able
to prune the search tree. Moreover, we also establish
conditions for backtracking non-chronologically in the
search tree when the search backtracks due to the lower
bound estimate.

In this paper we start by describing different lower
bound estimation methods for the pseudo-boolean op-
timization problem, focusing on linear-programming
relaxation and Lagrangian relaxation. In section 4 we
describe how to obtain explanations on bound-conflict
situations that allow backtracking non-chronologically
when the search is bound due to the lower bound esti-
mate. We also address how the results from the lower
bound methods can be used to guide the search. Fi-
nally, we present some experimental results and the
paper concludes in section 7.

2. Preliminaries

In a propositional formula, a literal lj denotes either
a variable xj or its complement x̄j . If a literal lj = xj

and xj is assigned value 1 or lj = x̄j and xj is assigned
value 0, then the literal is said to be true. Otherwise,
the literal is said to be false.

An instance P of a Linear Pseudo-Boolean Opti-
mization problem can be defined as follows,

minimize
n∑

j=1

cj · xj

subject to
n∑

j=1

aij lj ≥ bi,

xj ∈ {0, 1},
aij , bi ∈ N+

0 , i ∈ {1..m}

(1)

where cj is a non-negative integer cost associated with
variable xj , 1 ≤ j ≤ n and aij denote the coefficients



of the literals lj in the set of m linear constraints. Ev-
ery pseudo-boolean formulation can be rewritten such
that all coefficients aij and right-hand side bi be non-
negative.

In a given constraint, if all aij coefficients have the
same value k, then it is called a cardinality constraint,
since it only requires that dbi/ke literals be true. A
pseudo-boolean constraint where any literal set to true
is enough to satisfy the constraint, can be interpreted
as a propositional clause. This occurs when the value
of all aij coefficients are greater than or equal to bi.

If every constraint can be interpreted as a proposi-
tional clause then P is an instance of the binate covering
problem (BCP). Covering formulations have been the
subject of thorough research work that can be found
in [5, 11, 17].

Notice that a linear pseudo-boolean optimization
problem can also be viewed as a special case of linear
integer programming problem. The linear integer pro-
gramming formulation for the constraints can be ob-
tained if we replace literals x̄j by 1 − xj . In section 3
we will use this latter formulation.

3. Pseudo-Boolean Optimization Algo-

rithms

In [3], P. Barth first proposed an approach based
on Boolean Satisfiability (SAT) techniques for solving
Pseudo-Boolean Optimization (PBO). This approach
consists of performing a linear search on the possi-
ble values of the cost function, starting from the high-
est, at each step requiring the next computed solution
to have a cost lower than the previous one. If the re-
sulting instance is not satisfiable, then the solution is
given by the last recorded solution. The generaliza-
tion of recent advances in SAT resulted in new suc-
cessful algorithms [2, 4, 7] for several sets of PBO in-
stances, namely the incorporation of non-chronological
backtracking in the search tree, conflict-based learning
mechanisms and lazy data structures have been applied
with success. The SAT-based approach focuses primar-
ily on finding solutions for the problem constraints.
Therefore, for highly constrained problems these tech-
niques are very effective. However, these algorithms
find it difficult to deal with the information from the
cost function.

Unlike the SAT-based approach, branch-and-bound
algorithms [6, 9] have proved to be very effective when
the instances to be solved are not highly constrained
since they are able to prune the search tree earlier due
to estimate of the value of the cost function. In branch-
and-bound algorithms upper bounds on the value of the
cost function are identified for each solution to the con-

straints, and lower bounds on the value of the cost func-
tion are estimated considering the current set of vari-
able assignments. For a given instance P of a pseudo-
boolean optimization problem, let P.upper denote the
upper bound on the value of the cost function. The
search is pruned whenever the lower bound estima-
tion is higher than or equal to P.upper. In this case it
is guaranteed that a better solution cannot be found
with the current variable assignments and therefore
the search can be pruned. The algorithms described
in [5, 9, 11, 17] for the binate covering problem follow
this approach as well as several general integer pro-
gramming solvers.

For several instances, specially for low constrained
instances, the tightness of the lower bounding proce-
dure is crucial for the algorithm’s efficiency, because
with higher estimates of the lower bound, the search
can be pruned earlier. Several procedures can be used
for lower bound estimation, namely the approxima-
tion of a maximum independent set of constraints
(MIS) [6, 11], linear-programming relaxations [9] or La-
grangian relaxations [14].

3.1. Linear Programming Relaxations

Although the approximation of a maximum inde-
pendent set of constraints (MIS) is the most widely
used lower bound procedure for the binate covering
problem (a particular case of PBO) [5, 17], linear pro-
gramming relaxation (LPR) has also been used with
success [9] . It is also often the case that the linear pro-
gramming relaxation bound is higher than the one ob-
tained with the MIS approach. Nevertheless, linear pro-
gramming relaxations have long been used as a lower
bound estimation procedure in branch-and-bound algo-
rithms for solving integer programming problems [13].

The general formulation of the LPR for a pseudo-
boolean problem is obtained from (1) as follows:

minimize zlpr = cx
subject to Ax ≥ b

x ≥ 0
(2)

where vector c defines the non-negative integer cost as-
sociated with every decision variable in vector x. En-
tries of matrix A defines the constraint coefficients and
vector b the right-hand side of every constraint. For
simplicity the constraints x ≤ 1 are not included. The
solution of (1) is referred to as z∗cp, whereas the solu-
tion of (2) is referred to as z∗lpr.

It is well-known that the solution z∗lpr of (2) is a
lower bound on the solution z∗cp of (1) [13]. Basically,
any solution of (1) is also a feasible solution of (2),
but the converse is not true. Moreover, for a given so-
lution of (2) where x ∈ {0, 1}n, we necessarily have



z∗cp = z∗lpr. Hence, the result follows. Furthermore, dif-
ferent linear programming algorithms can be used for
solving (2), some of which with guaranteed worst-case
polynomial run time [13].

3.2. Lagrangian Relaxations

Lagrangian relaxation (LGR) is a widely used
method for computing bounds on the optimal value of
the cost function from network optimization to non-
linear programming [14, 15]. It also known that
in some instances, the bound provided by the La-
grangian relaxation method is tighter than the one ob-
tained by the linear programming relaxation [14].
Therefore, Lagrangian relaxation can be used to pro-
vide a quick and tight lower bound on the value of the
cost function for pseudo-boolean optimization prob-
lems.

While in linear programming relaxations we are able
to find a lower bound estimate by solving the problem
constraints and relaxing the possible variable values,
in Lagrangian relaxations we relax the problem con-
straints and incorporate them in the objective func-
tion with associated Lagrangian multipliers.

Given a generic linear optimization problem formu-
lated as:

minimize z∗ = cx
subject to Ax = b

x ∈ X
(3)

we can define the Lagrangian function L(µ) as:

L(µ) = min{cx + µ(Ax − b) : x ∈ X} (4)

where vector µ defines the Lagrangian multiplier asso-
ciated with each constraint. The Lagrangian Bound-
ing Principle [14] states that for any vector µ of the
Lagrangian multipliers, the value of L(µ) is a lower
bound on the optimal solution of the original optimiza-
tion problem.

In (3) all constraints are formulated as equalities,
while in the pseudo-boolean optimization problem (1)
we have inequality constraints. Therefore, in that case
the Lagrangian relaxation problem is formulated as:

L∗ = max{L(µ) : µ ≥ 0} (5)

where L∗ is the optimum value of the Lagrangian re-
laxation. The most tight lower bound estimate we can
obtain using this method is given by dL∗e.

Before trying to solve the Lagrangian relaxation
problem in order to obtain L∗, we must determine the
value of L(µ) for a given value of µ. Notice that by ex-

panding (4) we have:

L(µ) = min{
n∑

j=1

cjxj +
m∑

i=1

µi((
n∑

j=1

aijxj) − bi)}

L(µ) = min{
n∑

j=1

cjxj +
m∑

i=1

µi(
n∑

j=1

aijxj) −
m∑

i=1

µibi}

L(µ) = min{
n∑

j=1

(cj +
m∑

i=1

µiaij)xj) −
m∑

i=1

µibi}

L(µ) = min{
n∑

j=1

αjxj −
m∑

i=1

µibi} where

αj = (cj +
m∑

i=1

µiaij)

(6)

In order to obtain the value of L(µ), for a given µ,
we must determine the value of the decision variables
xj to be able to minimize the expression. Therefore, we
must have xj = 0 whenever αj ≥ 0 and xj = 1 when
αj < 0.

Literature from nonlinear programming [15] and
network optimization [14] provide methods to solve (5),
namely gradient methods to approximate the value of
L∗. Let µk be the value of the Lagrangian multipliers at
iteration k. µ0 can be any choice of the values of the La-
grangian multipliers (0 was our arbitrarily option). In
the next iterations, the value of the Lagrangian multi-
pliers is updated according to:

µk+1 = max{0, µk + θk(Axk − b)} (7)

where θk is the gradient step at iteration k. Remember
that since we are dealing with inequality constraints,
the values of the Lagrangian multipliers cannot be neg-
ative. Several heuristics can be used in order to define
the value of θk at each iteration such that it guaran-
tees the convergence of the algorithm. One widely used
heuristic [14] is defined as follows:

θk+1 =
λk[UB − L(µk)]

‖(Axk − b)‖2
(8)

where UB is an upper bound on the optimal value of
the pseudo-boolean problem and λk is a value chosen
between 0 and 2. Usually we have that λ0 = 2. If in a
given number of iterations the best value for the La-
grangian function does not improve, then the value of
λ is reduced by a factor of 2.

Notice that at a given iteration k, if the assignments
made to the decision variables in xk satisfy all prob-
lem constraints and P.upper > L(µk), then the upper
bound is updated. However, we can only bound the
search when the optimum value of the Lagrangian re-
laxation L∗ is higher than or equal to the upper bound



P.upper. This situation occurs when the assignments to
decision variables in xk satisfy all problem constraints
and µk(Axk − b) = 0 and L(µk) denotes the optimum
value of the Lagrangian relaxation L∗. Therefore, the
gradient method is stopped, the upper bound is up-
dated if P.upper > L∗ and we bound the search.

In most cases, the convergence of the gradi-
ent method can be quite slow. If we are unable to
improve on the best value for the Lagrangian func-
tion in a given number of iterations or if a limit num-
ber of iterations is reached, we stop the Lagrangian
function computation and continue the search. An-
other stopping criteria is when the value of dL(µk)e
is higher than or equal to the value of the best solu-
tion of the original problem we found so far. In this
case we have a bound conflict, the Lagrangian func-
tion computation is stopped and we bound the
search.

4. Bound-based Conflicts

In [11] is proposed a framework to backtrack non-
chronologically due to the lower bound estimate on the
value of the cost function. In this section we review the
main ideas about pruning the search tree based on the
estimated value of the cost function and describe the
conditions when using linear-programming relaxation
or Lagrangian relaxation as a lower bound estimation
procedure.

4.1. Backtracking on Bound-based Con-

flicts

A bound conflict in an instance of the pseudo-
boolean optimization problem (PBO) P arises when
the lower bound is equal to or higher than the upper
bound. This condition can be written as

P.path + P.lower ≥ P.upper (9)

where P.path is the cost of the assignments already
made, P.lower is a lower bound estimate on the cost of
satisfying the constraints not yet satisfied (as given for
example using Lagrangian relaxation), and P.upper is
the best solution found so far.

In this situation, our approach is to identify a set
of assignments responsible for the bound conflict and
build a new propositional clause ωbc such that it pre-
vents those assignments of being repeated during the
search process. When ωbc is added, a conflict analysis
procedure must be carried out to determine to which
level of the search tree to backtrack to.

A straightforward approach to build ωbc would be to
consider the decision variable assignments from all lev-

els of the search tree, but in that case the resulting
backtrack would necessarily be chronological. In [11]
it was already shown that the assignments responsi-
ble for the bound conflict might not be associated with
all levels of the search tree.

From (9), we can readily conclude that P.path and
P.lower are the unique components involved in each
bound conflict. Therefore, we will analyze both the
P.path and P.lower components in order to establish
the assignments responsible for a given bound conflict.
Our goal is to define two sets of literals ωpp and ωpl

containing the explanation for P.path and P.lower, re-
spectively. Our bound conflict clause ωbc is defined by
the set union of the literals in ωpp and ωpl.

We start by studying P.path. Clearly, the variable as-
signments that cause the value of P.path to grow are
solely those assignments with a value of 1. Hence, we
can define ωcp such that each variable in ωcp has posi-
tive cost and is assigned value 1:

ωpp = {l = x̄j : Cost(xj) > 0 ∧ xj = 1} (10)

which basically states that in order to decrease the
value of the cost function (i.e.P.path) at least one vari-
able that is assigned value 1 has instead to be assigned
value 0.

We now consider P.lower. Since different lower
bound estimation procedures can be used, we will de-
scribe in the remainder of this section how to identify
an explanation for the bound conflict when using ei-
ther linear-programming relaxation or Lagrangian
relaxation.

4.2. Lower Bound Conflicts from Linear-

Programming Relaxation

When using linear-programming relaxations as a
lower bound estimation procedure, the value of P.lower
is obtained according to the formulation described in
section 3.1. In order to determine the set of assign-
ments we can deem responsible for P.lower, we must
define S as the set of constraints with slack1 variables
assigned value 0 in the linear program solution. These
are the constraints which actually limit the value of
P.lower. If the literals that assume value 0 in these
constraints were to have a different value, some con-
straints might be satisfied and the value of P.lower
would be lower. Therefore, we can consider the assign-
ments to those literals as the responsible for P.lower
and define ωpl as:

ωpl = {l : l = 0 ∧ l ∈ ωi ∧ ωi ∈ S} (11)

1 See [10] for a definition of slack and artificial variables.



Clearly, ωpl does not necessarily depend on all decision
levels in the search tree. Hence, non-chronological back-
tracking might result from the conflict analysis proce-
dure.

4.3. Lower Bound Conflicts from La-

grangian Relaxation

In order to determine ωpl using the Lagrangian
relaxation lower bound estimation procedure as de-
scribed in section 3.2, we can follow a similar approach
to the one described for linear-programming relaxation.
Let S be the set of constraints used in obtaining the
value of P.lower whose Lagrangian multiplier is differ-
ent from 0. We can clearly notice from (6) that the con-
straints with Lagrangian multiplier equal to 0 are irrel-
evant for computing P.lower. In this case, ωpl can be
determined as formulated in (11).

Another approach to determine ωpl is to consider
the value of αj for each assigned variable from S. If
a given variable xj is assigned value 0 and αj > 0,
then by changing its value to 1 we would increase the
value of P.lower. Or if variable xj is assigned value
1 and αj < 0, if we were to change the value of xj ,
P.lower would raise. Hence, these assignments cannot
be deemed responsible for the value of P.lower and
should not be considered in ωpl.

5. Heuristics

Almost all current SAT solvers use the VSIDS [12]
heuristic of variation thereof since it is commonly ac-
cepted that the variable decision assignment should
be quick while most effort should be spent on
boolean constraint propagation and efficient con-
flict analysis strategies for backtracking. Therefore,
the VSIDS heuristic is based on a very simple con-
cept. For each literal there is a counter and when-
ever a new conflict-induced clause is added, the
counters of the literals in the new clause are incre-
mented. The decision variable assignment selection
simply chooses the assignment that satisfy the lit-
eral with the highest counter value. New SAT-based
pseudo-boolean solvers [2, 4, 7] also follow this ap-
proach.

However, one should note that the lower bound
methods described in section 3 already provide a possi-
ble guide to satisfy the problem constraints while min-
imizing the value of the cost function. We propose to
take advantage of the computation effort already spent
in the lower bound estimation for a more informed de-
cision variable assignment selection without an addi-
tional overhead to the process. Our proposal is to se-

no explanations

Benchmark Sol. CPU #Dec. #NCB
9symml 4517 ub 4875 130213 1
C17 260 0.00 0 0
C432 4822 ub 4860 157299 5
b1 128 0.00 0 0
c8 1194 0.91 252 0
cc 1567 0.08 97 0
cm42a 694 0.04 9 0
cmb 1053 25.98 3806 0
mux 872 0.06 0 0
my adder 4561 8.12 1384 2

Table 1. Using Lagrangian relaxation

lect the variable assignment that satisfies the literal
with the highest counter value, but only considering
the assignments made in finding the best lower bound
estimated value.

6. Experimental Results

In this section we present empirical results for the
techniques described in the paper using our pseudo-
boolean optimizer (bsolo) which incorporates classi-
cal branch-and-bound techniques described in the pa-
per and SAT-based techniques, namely boolean con-
straint propagation, non-chronological backtracking in
the search tree and conflict-based learning mechanisms.

The CPU times presented are from a AMD Athlon
processor at 1.9GHz with 1GB of physical memory. The
time limit for each instance was set to one hour. If the
time limit was reached, we provide an indication of
which was the best upper bound value found when the
search was stopped.

In order to empirically test the lower bound proce-
dures described in the paper, we ran our solver in a
benchmark set from a problem of synthesis for mixed
PTL/CMOS circuits from [18]. Although, these bench-
marks are mainly instances from the binate covering
problem they provide a good insight on the efficiency
of these techniques. We also present results using the
routing benchmarks from [1] with the objective of try-
ing to minimize the number of variables assigned value
1.

Our solver was configured to use the constraint
strengthening technique described in [7] and widely
used in mixed integer programming [16]. The probing
used in the constraint strengthening is also used to de-
tect necessary assignments during preprocessing. We
also used simplification techniques described in [8, 17]
in the synthesis benchmark set.



using explanations

Benchmark Sol. CPU #Dec. #NCB
9symml 4517 ub 4720 194706 32671
C17 260 0.00 0 0
C432 4822 1174.40 130874 15222
b1 128 0.00 0 0
c8 1194 1.58 309 39
cc 1567 0.39 357 28
cm42a 694 0.04 9 0
cmb 1053 12.16 2247 401
mux 872 0.06 0 0
my adder 4561 7.57 1307 100

Table 2. Using Lagrangian relaxation

LP-relax. LGR-relax.

Bench. CPU #Dec. CPU #Dec.
9symml ub 4517 330133 347.13 6921
C17 0.00 0 0.00 0
C432 ub 4895 487461 279.25 3462
b1 0.00 0 0.00 0
c8 0.49 100 0.19 14
cc 0.13 51 0.09 49
cm42a 0.11 44 0.06 17
cmb 34.70 3904 0.43 21
mux 0.00 0 0.00 0
my adder 591.24 60814 0.77 54

Table 3. Heuristic proposed in section 5

In Tables 1 and 2 we present our results for our
pseudo-boolean solver using VSIDS heuristic and La-
grangian relaxation as the lower bound method. In this
table we provide the CPU time in seconds, the num-
ber of decisions and the number of non-chronological
backtracks observed during the search, and evaluate
the use of explanations described in section 4.3 when
bound conflicts occur. Notice that there is a significant
reduction of the search space and time spent in solv-
ing these instances.

In Table 3 we can see the results for this bench-
mark set when using the heuristic proposed in section 5.
Linear-programming relaxation provides good results,
but Lagrangian relaxation is able to solve all instances
with dramatically better CPU times.

In comparison with the SAT-based linear search al-
gorithms [2, 3, 4, 7], our approach is able to perform
much better due to the lower bounding procedures in-
corporated in our algorithm. All other algorithms find
it very difficult to deal with the information from the
cost function and are able to solve just the more easy
problem instances, as we can see in table 4. In most in-

PBS galena bsolo

Benchmark Sol. CPU CPU CPU
9symml 4517 ub 6453 ub 6986 347.13
C17 260 0.00 0.01 0.00
C432 4822 ub 6577 ub 8070 279.25
b1 128 0.00 0.00 0.00
c8 1194 ub 1542 ub 1528 0.19
cc 1567 ub 1692 ub 1786 0.09
cm42a 694 ub 754 ub 696 0.06
cmb 1053 ub 1490 ub 1476 0.43
mux 872 ub 1321 ub 1333 0.00
my adder 4561 ub 6271 ub 5548 0.77

Table 4. Comparison with SAT-based algorithms

PBS galena1 galena2

Benchmark Sol. CPU CPU CPU
grout-4.3.1 62 ub 64 ub 62 2.85
grout-4.3.2 64 ub 66 594.37 19.42
grout-4.3.3 62 ub 66 ub 62 4.11
grout-4.3.4 60 ub 62 ub 60 6.51
grout-4.3.5 60 ub 64 1373.29 6.02
grout-4.3.6 66 617.61 58.93 8.26
grout-4.3.7 64 1334.94 50.23 0.86
grout-4.3.8 36 ub 44 ub 42 17.90
grout-4.3.9 68 1227.29 150.03 2.24
grout-4.3.10 70 36.16 41.09 0.36

Table 5. Comparison in routing benchmarks

stances galena [4] was unable to finish due to memory
constraints after several minutes running while PBS [2]
was unable to solve these instances due to time limits.

Finally, we present the results for the routing bench-
marks. galena1 means that the selected learning scheme
was the generation of a propositional clause (like PBS
and bsolo) while in galena2 the selected learning scheme
was the generation of a cardinality constraint (default
option of the solver). We also present two columns
regarding bsolo. In bsolo1 linear-programming relax-
ations are used while in bsolo2 we used Lagrangian re-
laxations.

We can see that for these instances linear-
programming relaxation performed better than La-
grangian relaxation. A more detailed analysis revealed
that Lagrangian relaxation needs more iterations in or-
der to produce a tighter lower bound estimation than
for the synthesis benchmark set. One should also no-
tice the very effective behavior of galena when learning
cardinality constraints from the conflict analysis pro-
cedure, enabling galena to solve all instances in



bsolo1 bsolo2

Benchmark Sol. CPU CPU
grout-4.3.1 62 0.27 ub 64
grout-4.3.2 64 1139.80 ub 64
grout-4.3.3 62 ub 66 ub 66
grout-4.3.4 60 1942.10 ub 60
grout-4.3.5 60 77.86 2316.90
grout-4.3.6 66 2183.30 832.94
grout-4.3.7 64 99.60 2777.80
grout-4.3.8 36 5.23 37.23
grout-4.3.9 68 412.03 204.32
grout-4.3.10 70 0.40 5.42

Table 6. Comparison in routing benchmarks

this benchmark set. These results motivate inte-
grating cardinality constraints learning in bsolo and
the development of techniques for fine-tuning La-
grangian relaxation lower bounding, and for dynam-
ically switching between the two lower bound tech-
niques.

7. Conclusions

The paper proposes the integration of lower bound
estimation procedures with SAT-based techniques for
linear pseudo-boolean optimization. We focus mainly
in two lower bound methods: linear-programming re-
laxation and Lagrangian relaxation. We describe a pro-
cedure to enable non-chronological backtracking in the
search tree when bound conflicts occur. In addition,
we also propose the use of information from the lower
bound procedure in order to have a more informed
heuristic for decision assignment without overhead in
the process.

Preliminary results show that for specific classes of
instances the integration of lower bound estimation
procedures offer a dramatic improvement with respect
to linear pseudo-boolean solvers. Results also show that
linear search SAT-based algorithms find it very difficult
to solve instances when the range of the cost value of
feasible solutions is large. When that occurs, the algo-
rithm needs a lower bound estimation procedure that
provides a tight bound.

Future research work will include improvements on
the integration of the lower bound estimation proce-
dures as well as the development of different conflict-
based learning schemes and improve on the implemen-
tation of the data structures.

References

[1] F. Aloul, A. Ramani, I. Markov, and K. Sakallah.
Generic ILP versus specialized 0-1 ILP: An update.
In IEEE/ACM International Conference on Computer
Aided Design, pages pp. 450–457, November 2002.

[2] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS:
A Backtrack-Search Pseudo-Boolean Solver. In Sym-
posium on the Theory and Applications of Satisfiability
Testing (SAT), pages pp. 346–353, 2002.

[3] P. Barth. A Davis-Putnam Enumeration Algorithm for
LinearPseudo-BooleanOptimization. TechnicalReport
MPI-I-95-2-003, Max Plank Institute for Computer Sci-
ence, 1995.

[4] D. Chai and A. Kuehlmann. A Fast Pseudo-Boolean
Constraint Solver. In Design Automation Conference,
2003.

[5] O. Coudert. On Solving Covering Problems. In Proceed-
ings of the ACM/IEEE Design Automation Conference,
pages 197–202, June 1996.

[6] O. Coudert and J. C. Madre. New Ideas for Solving Cov-
ering Problems. In Proceedings of the ACM/IEEE De-
sign Automation Conference, June 1995.

[7] H. Dixon and M. Ginsberg. Inference Methods for a
Pseudo-Boolean Satisfiability Solver. In National Con-
ference on Artificial Intelligence, 2002.

[8] J. Hooker. Logic-Based Methods for Optimization. In .
Jon Wiley & Sons, 1996.

[9] S. Liao and S. Devadas. Solving Covering Problems Us-
ing LPR-Based Lower Bounds. In Proceedings of the
ACM/IEEEDesignAutomationConference, pages117–
120, 1997.

[10] J. J. J. M. S. Bazaraa and H. D. Sherali. Linear Pro-
gramming and Network Flows. 2nd Ed., John Wiley &
Sons, 1989.

[11] V. Manquinho and J. Marques-Silva. Search pruning
techniques in sat-based branch-and-bound algorithms
for the binate covering problem. IEEE Transactions on
Computer-Aided Design, 2002.

[12] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an Efficient SAT Solver.
In Design Automation Conference, June 2001.

[13] G. L. Nemhauser and L. A. Wolsey. Integer and Combi-
natorial Optimization. John Wiley & Sons, 1988.

[14] T.M.R.Ahuja andJ.Orlin. Network Flows: Theory, Al-
gorithms, and Applications. Pearson Education, 1993.

[15] A. S. S. Nash. Linear and Nonlinear Programming. In .
McGraw-Hill, 1996.

[16] M.Savelsbergh. Preprocessingandprobing formixed in-
teger programming problems. ORSA Journal on Com-
puting, 6:445–454, 1994.

[17] T. Villa, T. Kam, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. Explicit and Implicit Algorithms for Binate
Covering Problems. IEEE Transactions on Computer
Aided Design, vol. 16(7):677–691, July 1997.

[18] Z. Zhu. Synthesis for mixed ptl/cmos circuit.
http://www-unix.ecs.umass.edu zzhu/.


