
On Propositional QBF Expansions and Q-Resolution

Mikoláš Janota and Joao Marques-Silva

1 IST/INESC-ID, Lisbon, Portugal
2 University College Dublin, Ireland

Abstract. Over the years, proof systems for propositional satisfiability (SAT)
have been extensively studied. Recently, proof systems for quantified Boolean
formulas (QBFs) have also been gaining attention. Q-resolution is a calculus en-
abling producing proofs from DPLL-based QBF solvers. While DPLL has be-
come a dominating technique for SAT, QBF has been tackled by other comple-
mentary and competitive approaches. One of these approaches is based on ex-
panding variables until the formula contains only one type of quantifier; upon
which a SAT solver is invoked. This approach motivates the theoretical analysis
carried out in this paper. We focus on a two phase proof system, which expands
the formula in the first phase and applies propositional resolution in the second.
Fragments of this proof system are defined and compared to Q-resolution.

This paper follows the line of research on proof systems for propositional and quan-
tified Boolean formulas (QBFs). This research is motivated by complexity theory and
more recently by the objective to develop and certify QBF solvers [11,18,8,14]. Proof
systems for QBF come in different styles and flavors. Krajı́ček and Pudlák propose a
Genzen-style calculus KP for QBF [18]. Büning et al. propose a refutation calculus
Q-resolution [8], an extension of propositional resolution. Giunchiglia et al. extend the
work of Büning et al. into term resolution for proofs of true formulas [14] . Certain
separation results were shown between KP and Q-resolution recently by Egly [12].

While many QBF solvers are based on the DPLL procedure [21,9,23,20,13], other
solvers tackle the given formula by expanding out quantifiers until a single quantifier
type is left. At that point, this formula is handed to a SAT solver [1,4,19,15]. Exper-
imental results show that expansion-based QBF solvers can outperform DPLL-based
solvers on a number of families of practical instances. Also, expansion can be used in
QBF preprocessing [6,5].

This practical importance of expansion motivates the study carried out in this paper.
We define a proof system ∀Exp+Res, which eliminates universal quantification from the
given false formula and then applies propositional resolution to refute the remainder.

We show that ∀Exp+Res can p-simulate tree Q-resolution refutations. Conversely,
we show that Q-resolution can p-simulate ∀Exp+Res refutations under certain restric-
tions on the propositional resolution part of the proofs.

1 Preliminaries

A literal is a Boolean variable or its negation. The literal complementary to a literal l is
denoted as l̄, i.e. x̄ = ¬x, ¬x = x. A clause is a disjunction of zero or more noncom-
plementary literals. A formula in conjunctive normal form (CNF) is a conjunction of

clauses. Whenever convenient, a clause is treated as a set of literals and a CNF formula
as a set of sets of literals. For a literal l = x or l = x̄, we write var(l) for x. For a
clause C, we write var(C) to denote {var(l) | l ∈ C} and for a CNF ψ, var(C) denotes
{l | l ∈ var(C), C ∈ ψ}

Substitutions are denoted as x1/ψ1, . . . , xn/ψn, with xi 6= xj for i 6= j. The set
of variables x1, . . . , xn is called the domain of the substitution. An application of a
substitution is denoted as φ[x1/ψ1, . . . , xn/ψn] meaning that variables xi are simulta-
neously substituted with corresponding ψi in φ. A substitution is called an assignment
iff each ψi is one of the constants 0, 1. An assignment is called total, or complete, for a
set of variables X if each x ∈ X is in the domain of the assignment. For substitutions
τ1 = x1/ψ1, . . . , xn/ψn and τ2 = y1/ξ1, . . . , ym/ξm with distinct domains we write
τ1 ∪ τ2 for the substitution x1/ψ1, . . . , xn/ψn, y1/ξ1, . . . , ym/ξm.

Quantified Boolean Formulas (QBFs) [7] are an extension of propositional logic
with quantifiers with the standard semantics that ∀x. Ψ is satisfied by the same truth as-
signments as Ψ [x/0]∧Ψ [x/1] and ∃x. Ψ as Ψ [x/0]∨Ψ [x/1]. Unless specified otherwise,
we assume that QBFs are in closed prenex form with a CNF matrix, i.e.Q1X1 . . .QkXk. φ,
where Xi are pairwise disjoint sets of variables; Qi ∈ {∃,∀} and Qi 6= Qi+1. The for-
mula φ is in CNF and is defined only on variables X1 ∪ . . .∪Xk. The propositional
part φ is called the matrix and the rest the prefix. If a variable x is in the set Xi, we say
that x is at level i and write lv(x) = i; we write lv(l) for lv(var(l)). A closed QBF is
false (resp. true), iff it is semantically equivalent to the constant 0 (resp. 1).

For a clause C, a universal literal l ∈ C is blocked by an existential literal k ∈ C
iff lv(l) < lv(k). ∀-reduction is the operation of removing from a clause C all universal
literals that are not blocked by some literal. For two ∀-reduced clauses x ∨ C1 and
x̄ ∨ C2, where x is an existential variable, a Q-resolvent [8] is obtained in two steps.
(1) Compute Cu = C1 ∪C2 r {x, x̄}. If Cu contains complementary literals, the Q −
resolvent is undefined. (2) ∀-reduce Cu. For a QBF P .φ, a A Q-resolution proof of a
clauseC is a sequence of clausesC1, . . . , Cn whereCn = C and anyCi in the sequence
is part of the given matrix φ or it is a Q-resolvent for some pair of the preceding clauses.
A Q-resolution proof is called a refutation iff C is the empty clause, denoted ⊥.

In this paper Q-resolution proofs treated as connected directed
acyclic graphs so that the each clause in the proof corresponds to
some node pn labeled with that clause. We assume that the input
clauses are already ∀-reduced. Q-resolution steps are depicted as on
the right. Note that ∀-reduction corresponds to a separate node. A
proof system P1 p-simulates a proof system P2 iff any proof in P2

of a formulaΦ can be translated into a proof inP1 ofΦ in polynomial
time (c.f. [11,22]).

p4 C

p3 Cu

p2

C1 ∨ x
p1

C2 ∨ x̄

2 Expansions

Modern SAT solvers can be easily used in a black box setting which suggests a straight-
forward approach to solving QBF by expanding variables until only one type of quan-
tifier is left; at that point a SAT solver can be invoked. Here we are assuming the main-
stream type of a SAT solver that accepts formula in CNF and produces resolution proofs
for unsatisfiable inputs.

2

Existential quantification can be expanded by the equivalence ∃x. Φ = Φ[x/0] ∨
Φ[x/1] and universal quantification by the equivalence ∀x. Φ = Φ[x/0]∧Φ[x/1]. These
equivalences reveal two main obstacles to developing a calculus using both expansion
and plain resolution (besides the exponential growth). The first obstacle is that the result
of an expansion is not in prenex form; this can be overcome by prenexing the expansion.
The second obstacle is that the result of expanding the existential quantifier does not
yield CNF. Hence, in this paper we focus only on expansion of the universal quantifier.
We show that this limitation still leads to a refutation complete calculus with many
interesting properties.

Expansion of universal quantifiers enables decreasing the number of quantifiers and
maintain prenex normal form at the cost of introducing fresh variables. For instance,
expanding ∃x∀y∃z. φ yields ∃x. (∃z. φ[y/0]) ∧ (∃z. φ[y/1]). To get back to prenex
form, we add two fresh copies of z, one for the sub-QBF where y = 0 and one for the
sub-QBF where y = 1, thus obtaining ∃xz0z1. φ[y/0, z/z0] ∧ φ[y/1, z/z1].

A significant drawback of expansion is that the formula grows in size exponentially.
This effect can be mitigated by observing that only partial expansions may be suffi-
cient to show unsatisfiability. For instance, for the formula ∀y∃x. (y ∨ x)∧ (y ∨ x̄) it is
sufficient to consider an expansion with y/0 to show the formula false. Another source
of rapid growth lies in the number of the formula’s quantification levels. Expanding y
in ∃x∀y∃z∀u∃w. φ yields ∃x. (∃z∀u∃w. φ[y/0])∧ (∃z∀u∃w. φ[y/1]). We could again
prenex all variables but since we are aiming at eventually expanding all universal vari-
ables, we can expand more carefully by prenexing only z: ∃xz0z1. ∀u∃w. φ[y/0, z/z0]∧
∀u∃w. φ[y/1, z/z1]. Such expansion gives us a finer control over the expansion process
(see [15, Sec. 3.1] for more detailed discussion). If for instance now we wish to expand
u as 1 in the first sub-formula and 0 in the second sub-formula we obtain the following:

∃xz0z1w01w10. φ[y/0, z/z0, u/1, w/w01] ∧ φ[y/1, z/z1, u/0, w/w10]

Consider a general QBF Φ = ∀U1 ∃ E2 . . . ∀U2N−1 ∃ E2N . φ (WLOG we start
with a universal quantifier to simplify notation). For succinctness reasons, from now on
Φ refers to this formula. An expansion consists of expanding variables U1 with some
values and introducing fresh variables for E2 variables yielding a sub-QBF for each con-
sidered assignment to the U1 variables. These sub-QBFs are recursively expanded in an
analogous fashion. Note that if we expanded from the highest quantification level (in-
nermost level), we would lose the structural information, which is enabling the above-
mentioned finer expansion steps. The following definitions formalize this process.

Definition 1 (∀-expansion tree). A ∀-expansion tree is a rooted tree T such that each
path p0

τ1→ p1 . . .
τN→ pN in T from the root p0 to some leaf pN has exactly N edges and

each edge pi−1
τi−→ pi is labeled with a total assignment τi to the variables U2i−1, for

i ∈ 1..N . Each path in T is uniquely determined by its labeling.

Convention Since paths from the root in an ∀-expansion tree are uniquely deter-
mined by the labeling of the edges, i.e. assignments, we treat paths and the union of the
appropriate assignments interchangeably.

Definition 2 (∀-expansion). Let T be a ∀-expansion tree. For a root-to-leaf path P in
T and a clause C, the following rules define ∀-expansion of C by P , ∀-expansion of φ

3

T

u2/1

u1/0

u2/0 u2/1

u1/1

(a) ∀-expansion tree

Ψ = ∀u1∃e1∀u2∃e2. ψ E (T , Ψ)

u1 ∨ e1 ∨ ū2 ∨ e2 e
u1/0
1 ∨ eu1/0,u2/1

2

u1 ∨ e1 ∨ ū2 ∨ ē2 e
u1/0
1 ∨ ēu1/0,u2/1

2

u1 ∨ ē1 ē
u1/0
1

ū1 ∨ ē1 ∨ ū2 ∨ ē2 ē
u1/1
1 ∨ ēu1/1,u2/1

2

ū1 ∨ ē1 ∨ ū2 ∨ e2 ē
u1/1
1 ∨ eu1/1,u2/1

2

ū1 ∨ e1 ∨ u2 ∨ ē2 e
u1/1
1 ∨ ēu1/1,u2/0

2

ū1 ∨ e1 ∨ u2 ∨ e2 e
u1/1
1 ∨ eu1/1,u2/0

2

(b) ∀-expansion

Fig. 1. Example expansion tree and its application

by P , and ∀-expansion of Φ by T . These expansions are denoted as E (P,C), E (P,ψ),
and E (T , Φ), respectively.

1. For each path Pk in T from the root, labeled by assignments τ1, . . . , τk, and an
existential variable x with lv(x) = 2k define a fresh variable xτ1,...,τk .

2. For each path P in T from the root to some leaf labeled by τ1, . . . , τN , and a clause
C ∈ φ define E (P,C) as C[τ1 ∪ . . . τN ∪ τR] where

τR = {x/xτ1,...,τk | 1 ≤ k ≤ N, x an existential variable s.t. lv(x) = 2k}

3. For each path P in T from the root to some leaf define E (P, φ) as a union of
E (P,C) for C ∈ φ.

4. Define E (T , Φ) as the union of all E (P, φ) for each root-to-leaf path P in T .

Example 1. Figure 1(a) shows an example of a ∀-expansion tree and Figure 1(b) shows
a ∀-expansion of some formula Ψ based on this tree. The expansion considers both
values of u1 but only the value 1 is considered for u2 when u1 = 0. The tree has 3 leafs
so the formula could potentially grow 3 times. But because the formula is very simple,
for each clause C there is only a single path P from the root to some leaf for which
E (P,C) 6= 1. Hence, the expansion has the same size as the original formula. Note
that there are as many copies of e2 as there are leafs in the expansion tree (eu1/0,u2/1

2 ,
e
u1/1,u2/0
2 , eu1/1,u2/1

2) but only two copies of e1 (eu1/0
1 ,eu1/1

1).

Definition 3 (∀Exp+Res). ∀Exp+Res refutation for Φ is a pair (T , π) where T is a
∀-expansion tree for Φ and π is a resolution refutation for E (T , Φ). A size of (T , π),
denoted |(T , π)|, is the sum of the numbers of nodes in T and π.

Note that for a ∀-expansion T the size of E (T , Φ) is bounded by the number of leafs
of T times the size of the matrix φ. Therefore a ∀Exp+Res refutation can be validated
in polynomial time.

Theorem 1. A formula Φ is false iff there exists a ∀Exp+Res refutation for Φ.

4

Proof. If Φ is false, consider T full capturing a full expansion of all of the quantifiers.
More precisely, each node pi of T full at depth i (with the root being at depth 0) has
2| U2i+1 | children, each corresponding to a total assignment to variables U2i+1. Since
this expansion mirrors semantics of QBF, E (T full, Φ) is false iff Φ is false.

Throughout the ∀-expansion process, (sub-)QBFs ∀U . Ψ are replaced with the con-
junctsΞ =

∧
τ∈ω Ψ [τ] for some ω, a set of total assignments to U . SinceΞ is equivalent

to ∀U . Ψ when ω is the set of all assignments, it is weaker if ω is a set of only some
total assignments, i.e. (∀U . Ψ)→ Ξ . Consequently Φ→ E (T , Φ) for any ∀-expansion
tree T . Therefore, if E (T , Φ) is false, then Φ is false. ut

3 Simulating Tree Q-resolution by ∀Exp+Res

Consider a tree Q-resolution refutation π of Φ. Our objective is to construct a ∀Exp+Res
refutation (T , π′) based on π. We should stress that DPLL-based solvers enable produc-
ing non-tree Q-resolution proofs due to learning [23]. Hence, this proof is not a proof
of the fact ∀Exp+Res can simulate DPLL-based solving in general.

We will construct T and π′ so that π′ will share its basic structure with π but with
universal variables removed and existential variables renamed (according to the def-
inition of E). We observe that if π consists of a single node ⊥, T and π′ are easily
constructed by setting T to the empty tree and setting π′. Therefore, from now on, we
assume that all leafs of π are labeled with nonempty clauses. For the sake of succinct-
ness, within this section, π always refers to the given Q-resolution proof that we wish
to translate to a ∀Exp+Res refutation.

We first observe that if two clauses x ∨ C1 and x̄ ∨ C2 are resolved in π, the
∀-expansion tree being constructed must ensure that x is substituted by the same fresh
variable x′ in both clauses so that the same resolution step can be carried out in π′

on variable x′. The literals x and x̄ can appear inside the Q-resolution tree π only if
they were introduced by some of its leafs. Consequently, the corresponding leafs of the
resolution tree π′ must contain the same copy of x. This observation motivates the con-
struction. In the first phase of the construction, we identify sets of leafs of π where a
certain existential variable must be substituted by the same fresh copy. In the second
phase we construct a ∀-expansion tree T that will respect the sets identified in the first
phase. The ∀-expansion tree T will provide us with the leafs of π′.

Consider a resolution step in π on some variable x corresponding to nodes p1 and p2
with the resolvent (parent) node r. LetC1,C2, andCr be the clauses labeling p1, p2, and
r, respectively. Hence, Cr = C1 ∪C2 r {x, x̄} (recall that ∀-reduction is modeled as a
separate step). Let D be the set of universal literals l ∈ C1 ∪C2 such that lv(l) < lv(x).
Let S be the set of leafs p of π such that there is a path from either p1 or p2 to p for
which all clauses on the path contain the variable x (including the clause labeling p).
Record the quadruple (r, x,D, S). In the following text we write Qπ to denote the set
of quadruples generated for each resolution step in π.

Consider any two leafs p1,p2 of π s.t. p1, p2 ∈ S for some (r, x,D, S) ∈ Qπ . Once
we ensure that x is replaced with the same fresh copy in the clauses labeling p1 and p2,
the plain resolution refutation π′ is easy to construct.

5

Proposition 1. Let T be a ∀-expansion tree of Φ and let M be a total mapping from
the leafs of π to paths of T . If the following conditions C 1– C 3 hold for T and M , then
there is a resolution refutation π′ of E (T , Φ) linear in size of π.

(C 1) If p is a leaf of π, then M(p) is a path from the root to some leaf in T .
(C 2) If p is a leaf of π, labeled by a clause C, and M(p) = P , then P assigns to 0

all universal literals of C.
(C 3) If leafs p1, p2 of π appear in the same S for some quadruple (r, x,D, S) ∈ Qπ ,

M(p1) = P1, and M(p2) = P2, then P1 and P2 assign the same value to all
universal variables with level l < lv(x).

Proof. We construct π′ from π in the leaf-to-root direction; during this construction we
mark each node of p′ in π′ as corresponding with some node p in π. The construction
follows the following rules Rl, Rr, Ru.

(Rl) For each leaf p in π labeled with C create a leaf p′ ∈ π′ labeled with
E (M(p), C); mark p and p′ as corresponding.

(Rr) Let r be a node, with children p1, p2 labeled C, C1, and C2, respectively,
where C = C1 ∪C2 r {x, x̄}. Further, consider the nodes p′1 and p′2 corresponding to
p1 and p2, respectively, and their respective labels C ′1 and C ′2. If there is a literal xP ∈
C ′1 ∪C ′2 for some P , create a node r′ in π′ and label it with C ′ = C ′1 ∪C ′2r{xP , x̄P }.
Mark r and r′ as corresponding.

(Ru) Let pu be node in π with a single child r labeled Cu and Cr, respectively,
where Cu is a result of ∀-reduction of Cr. If pr corresponds to p′r mark pu and p′r also
corresponding.

By induction on resolution depth, we show that the above construction results in a
valid resolution tree π′. Additionally we prove, that if p′ in π′, labeled with a clause
C ′, corresponds to some p in π, labeled with a clause C, then for any existential literal
l ∈ C, with var(l) = x there is one and only one literal l′ ∈ C ′ s.t. var(l′) = xP , for
some P , and, the literals l, l′ have the same polarity. Consequently, the root of π′ must
be labeled with the empty clause.

Rule Rl is well-defined due to conditions (C 1) and (C 2); it establishes the induc-
tion hypothesis due to definition of E . For rule Rr we first observe that there must be
a xP1 ∈ C ′1 ∪C ′2, for some P1, from the induction hypothesis because x ∈ C1 ∪C2.
WLOG let xP1 ∈ C ′1. From induction hypothesis we also have, x ∈ C1, x̄ ∈ C2, and
x̄P2 ∈ C ′2 for some P2. Since C ′1 and C ′2 were obtained by valid resolution steps, there
must be a path in π′ from some leaf p′l1 to p′1 where all clauses contain the literal xP1 ;
analogously there a is path in π′ from some leaf p′l2 to p′2 where all clauses contain
the literal x̄P2 . Both paths correspond to some paths from pl1 to p1 and pl2 to p2 in π.
Hence, pl1 , pl2 ∈ S for some (r, x,D, S) ∈ Qπ . Due to condition (C 3), the variable
x must be substituted with the same copy in the leafs and therefore also P1 = P2. Be-
cause xP1 ∈ C ′1 and x̄P1 ∈ C ′2, the resolution step on C ′1 and C ′2 is possible. It remains
to be shown that the resolution step does not introduce more than one copy of some
literal. Assume that there are literals yR1 and yR2 in C ′1 and C ′2, respectively, where
y 6= x. From induction hypothesis, y ∈ C1 and y ∈ C2. Consequently, there are some
leafs pl1 , pl2 of π s.t. y appears in all clauses on the paths from pl1 to p1 and from pl2 to
p2. Because π is a refutation proof, y gets eventually resolved away. Therefore there is
some (ry, y,Dy, Sy) ∈ Qπ for which pl1 , pl2 ∈ Sy and thereforeR1 = R2 from condi-

6

p4 ⊥
p3 u1 ∨ u2

p2

u1 ∨ e
p1

u2 ∨ ē

(a) Q-resolution

T
u1/0, u2/0

(b) ∀-expansion tree
p4 ⊥

p2

eu1/0,u2/0

p1

ēu1/0,u2/0

(c) plain resolution

Fig. 2. Examples

tion (C 3). Rule Ru preserves the induction hypothesis as universal reduction does not
modify the set of existential literals. ut

Example 2. Consider ∀u1u2∃e. (u1 ∨ e) ∧ (u2 ∨ ē) with the Q-resolution refutation in
Figure 2(a), which induces a single quadruple (p4, e, {u1, u2}, {p1, p2}). To obtain a
∀Exp+Res refutation, generate the single-branch tree T in Figure 2(b) and mapping
M with M(p1) = M(p2) = {u1/0, u2/0} yielding the ∀-expansion eu1/0,u2/0 ∧
ēu1/0,u2/0 with the corresponding resolution tree Figure 2(c). Observe that conditions
C 1– C 3 from Proposition 1 are fulfilled. Clauses participating in the Q-resolution step
are expanded so that e is replaced with the same copy. The universal literals u1, u2 are
assigned to 0 by the expansion. Consequently, this Q-resolution step can be reproduced
in a plain resolution refutation. Note that universal reduction steps are unnecessary in
the resolution refutation since expansions remove all universal literals.

3.1 Construction of T and M

Proposition 1 gives us conditions C 1– C 3 on a ∀-expansion tree T and a mappingM so
that any T and M satisfying these conditions enable us to construct the desired plain-
resolution refutation π′ for E (T , Φ). This subsection shows that such T and M can be
constructed for any given Q-resolution refutation π.

For a quadruple q = (r, x,D, S) ∈ Qπ we say that q is at level lv(x) and we say that
a leaf p of π is in q iff p ∈ S. Recall that the intuition behind a quadruple (r, x,D, S) ∈
Qπ is that the expanded counterparts of clauses labeling the leafs in S will contain the
same fresh copy of x. Further, the assignment used for the expansion must assign to 0
the universal literals in those clauses. This poses the following question: If some leaf p
of π is in two different quadruples q1, q2 ∈ Qπ , how do we ensure that the conditions
are not conflicting?

We say that (r, x,D, S), (r′, x′, D′, S′) ∈ Qπ are connected iff S ∩S′ 6= ∅. We say
that leafs p1, p2 of π share level k iff there exists a sequence (with possible repetitions)
of quadruples q1, . . . , qn ⊆ Qπ , s.t. p1 is in q1; p2 is in qn; each qi in the sequence has
a level l ≥ k; and each two adjacent quadruples are connected.

Observation 1 The relation “share level k” is an equivalence relation on the leafs of π.
All leafs of π share level 2 (recall that existential variables start at level 2). If two leafs
share level k, then they share a level l ≤ k.

Let us look more closely at quadruples that share some level k. Recall that the
given Φ formula has the prefix ∀U1 ∃ E2 . . . ∀U2N−1 ∃ E2N . Consider two connected

7

Algorithm 1: Expansion tree construction from Qπ
1 Function Build (k, StopLev, L)

in : StopLev..base-case level, k ≤ StopLev..current level, L..subset of leafs of π
out : a pair (T ′,M ′), where T ′ is an expansion tree for universal variables with

level ≥ k, M ′ is a mapping from leafs in L to root-to-leaf paths in T ′

2 begin
3 if k = StopLev then
4 T ′ ← create a tree with a single node, the root r
5 M ′ ← map all nodes in L to the empty path starting in r
6 return (T ′,M ′)

7 T ′ ← a tree with the root node r
8 M ′ ← empty mapping
9 Ξ ← partition nodes L by the “share level k + 1” relation

10 foreach ρ ∈ Ξ do
11 Qρ ← {q ∈ Qπ | there exists p ∈ ρ in q, q is at level > k}
12 Dρ ← {l | (p, e,D, S) ∈ Qρ, l ∈ D, lv(l) = k}
13 τρ ← {u/0 | u ∈ Dρ}∪ {u/1 | ū ∈ Dρ}∪ {u/0 | u, ū /∈ Dρ, lv(u) = k}
14 (T ρ,Mρ)← Build(k + 2,StopLev, ρ)
15 add T ρ to T ′, connect r to the root of T ρ with an edge labeled with τρ
16 if Mρ maps a leaf p ∈ L to τ , map p to τρ ∪ τ in M ′

17 return (T ′,M ′)

quadruples (r, x,D, S), (r′, x′, D′, S′) ∈ Qπ , both at some level ≥ k, i.e. lv(x) ≥ k
and lv(x′) ≥ k. Our objective is to build such mapping M that for any two p1, p2 ∈
S, the paths M(p1) and M(p2) share the prefix of length lv(x)/2 corresponding to
assignments to variables U1 U2 . . .U lv(x)−1; this ensures that x is renamed to the same
fresh copy in clauses of the leafs. The same holds for leafs in S′. Since the quadruples
are connected, there is some leaf p that belongs to p ∈ S ∩S′. Further, since both x
and x′ are at a level greater or equal to k, by transitivity, all leafs in S ∪S′ must be
mapped to such paths of the ∀-expansion tree T that they share their prefixes of length
k/2. This immediately generalizes to sequences of connected quadruples. If two leafs
p1, p2 of π share level k = 2l, then M(p1) and M(p2) must have common prefix of
length l, corresponding to assignments to variables U1 U2 . . .Uk−1.

This observation motivates Algorithm 1, which is represented as a recursive func-
tion. The recursion is initiated by the call Build(1, 2N +1, Lall) where Lall is the set of
leafs of π. After this initial call terminates, any root-to-leaf paths with the same labeling
in the returned tree are merged to obtain the required T .

The function returns T ′, a subtree of the tree T being constructed, and a mapping
M ′ that maps the given leafs L to paths of T ′. The labeling of root-to-leaf paths in
T ′ are total assignments to variables Uk,Uk+2, . . . ,U2N−1, where k is an odd natural
number. Hence, for the base case of the recursion, i.e. k = 2N + 1, the function creates
a single-node tree T ′ and maps all given leafs L to an empty path starting and ending
in the root of T ′.

8

For the non-base case, the function partitions the given leafs L of π by the “share
level k + 1” relation. From the conditions on T , clauses labeling leafs that share level
k + 1 must be expanded such that existential variables with level > k are replaced
with the same copies. At the same time, the universal literals in these clauses with
level ≤ k must be assigned to 0. The algorithm visits each partition ρ of the “share
level k + 1” partition and collects quadruples q ∈ Qπ for which there is some leaf
p ∈ ρ in q. Subsequently, it collects all universal literals at level k that appear in these
quadruples and computes an assignment τρ which assigns them to 0 and other literals
assigns arbitrarily (line 14).

Example 3. Consider the following Q-resolution proof π with the prefix ∀u1∃e2∀u3∃e4.

p9 ⊥

p8 u1 ∨ ū3
p4 ē4p7

u1 ∨ ū3 ∨ e4

p3 ē2 ∨ ū3 ∨ e4p6u1 ∨ e2

p5u1 ∨ e2 ∨ u3
p2 u3 ∨ e4p1u1 ∨ e2 ∨ u3 ∨ ē4

(p8, e4, {u1, ū3}, {p3, p4})
(p7, e2, {u1}, {p1, p3})

(p5, e4, {u1, u3}, {p1, p2})

This yields the quadruples depicted on the right hand side. All leafs share level 1+1
and are put into a single partition ρ = {p1, p2, p3, p4} labeled with {u1/0}. Based
on sharing of level 3 + 1, ρ is split into {p1, p2} and {p3, p4}, labeled {u3/0} and
{u3/1}, respectively. The resulting mapping is M(p1) = M(p2) = {u1/0, u3/0} and
M(p3) = M(p4) = {u1/0, u3/1}.

Let us now focus on the correctness of Algorithm 1. The algorithm is terminating
because the set of quadruples Qπ is finite. That the algorithm constructs mapping M
and the tree T satisfying the conditions (C 1)–(C 3) of Proposition 1 hinges on proving
that the set of literals Dρ (line 12) does not contain complementary literals. Conse-
quently, that the assignment τρ (line 14) is indeed an assignment. For now we assume
that this holds and show it later in order to first focus on the overall workings of the
algorithm.

Since π has no empty clauses in leafs and all input clauses are ∀-reduced, every
leaf p labeled with some clause C must be in some quadruple in Qπ . At each level k,
quadruples are partitioned so eventually there will be one and only one path P in T
s.t. M(p) = P . Thus satisfying condition (C 1) of Proposition 1. If C contains some
universal literal l with lv(l) = k, l must be blocked by some existential literal b ∈ C
with lv(b) > k. This literal b is eventually resolved away and therefore there must be a
quadruple qb = (r, var(b), Db, Sb) ∈ Qπ s.t. p ∈ Sb. Since b blocks l on a path from p
to some child of r, it also holds that l ∈ Db. Hence qb ∈ Qρ, defined on line 11, and
l ∈ Dρ, defined on line 12. The algorithm places p into a subtree prepended by an edge
labeled with τρ, which sets l to 0. Thus satisfying condition (C 2). Consider two leafs
p1, p2 of π such that they are in the same quadruple q at some level l. These leafs are
connected at level ≤ l. Hence they will be part of the same partition for levels k < l.
Therefore, the algorithm puts the leafs in the same subtree while k < l and therefore
M(p1) and M(p2) assign the same value to all universal variables with level k < l thus
satisfying condition (C 3).

Now it remains to be shown that the set Dρ constructed on line 12 is not contradic-
tory. This will be shown in Lemma 5. However, before we reach this lemma, a series of

9

auxiliary lemmas need to be derived. Since Q-resolution enables resolving two clauses
C1 ∨ x and C2 ∨ x̄ only if C1 ∪C2 does not contain complementary literals, we can
make the following observation.

Observation 2 For any (r, x,D, S) ∈ Qπ , the literals D are noncontradictory.

Lemma 1. If any two quadruples (r1, x1, D1, S1), (r2, x2, D2, S2) ∈ Qπ are con-
nected, then r1 dominates r2, i.e. r2 is in a subtree of r1, or r2 dominates r1.

Proof. Since the quadruples are connected, there is some leaf pl of π s.t. pl ∈ S1 and
pl ∈ S2. At the same time there is an undirected path from both r1 and r2 to pl. If
neither r1 dominated r2 nor r2 dominated r1 there would be a cycle from root to r1, pl,
r2, and back to the root. ut

Lemma 2. Consider any two quadruples (r1, x1, D1, S1), (r2, x2, D2, S2) ∈ Qπ such
that r1 dominates r2 and r2 dominates some pl ∈ S1. Then all the clauses on the path
from r1 to r2 except for r1 contain a literal b ∈ {x1, x̄1}.

Proof. Since the leaf pl is dominated by both r1 and r2, there is a path from the root
of π going through r1, r2, and ending in pl. Since pl ∈ S1, from definition of the
quadruples, there is a literal b ∈ x1, x̄1 that appears everywhere on the path except for
the node r1. ut

The following lemma shows that for any sequence of connected quadruples that are
all at some level l ≥ k, there is a quadruple pertaining to a resolution node r such that r
dominates all the other resolution nodes in the sequence, and, all paths from this node to
these resolution nodes contain some existential literal b with lv(b) ≥ k. Consequently,
these literals block all universal literals with level l < k on these paths.

Lemma 3. Consider a sequence of quadruples γ = q1, . . . , qn, such that each qi ∈ Qπ
in the sequence has a level l ≥ k and each two adjacent quadruples are connected. Then
there is (r, x,D, S) ∈ γ such that for any quadruple (rj , xj , Dj , Sj) ∈ γ the node r
dominates rj and all the clauses on the path from r to rj , except for r, contain some
existential literal b with lv(b) ≥ k.

Proof. Proof by induction on the length of prefix of γ. For the base case choose (r, x,D, S)
as q1. For the inductive case consider i > 1 and q′ = (r′, x′, D′, S′) from the induction
hypothesis such that q′ satisfies the condition for q1, . . . , qi−1. Since adjacent quadru-
ples are connected, for qi = (ri, xi, Di, Si) and qi−1 = (ri−1, xi−1, Di−1, Si−1) there
is a leaf pc ∈ Si−1 ∩Si. Split on the following cases.

If qi is equal to any of the qj for j < i, choose (r, x,D, S) to be q′. If ri dominates
r′ then invoke Lemma 2 whose preconditions are satisfied because ri dominates r′ and
r′ dominates pc, from the induction hypothesis. Hence there is a path from one of the
children of ri to r containing the literal b ∈ {xi, x̄i}. Note that b does not appear in
ri but does appear in r′. From induction hypothesis, for any rj , j < i there is a path
from a child of r′ to rj where each clause is blocked by some literal with level l ≥ k.
Concatenating the path from ri to r′ with the path r′ to rj satisfies the condition for j.
Choose (r, x,D, S) to be qi.

10

From Lemma 1, either ri is dominated by ri−1 or ri−1 is dominated by ri. Hence
we need to consider only these two remaining cases. If ri−1 dominates ri, then from
Lemma 2 there is a bi−1 ∈ {xi−1, x̄i−1} that appears on the path from one of the
children of ri−1 to ri (inclusively). From induction hypothesis, there is a path from r′

to ri−1, excluding r′, that contains some existential literals b with lv(b) ≥ k. Concate-
nating this path with the path from ri−1 to ri gives us a path satisfying the required
condition for the node ri. In particular, there is a path from a child of r′ to ri such that
each clause on the path contains a some existential literals b with lv(b) ≥ k.

If ri−1 is dominated by ri and ri does not dominate r′, then r′ must dominate ri
otherwise there would be a cycle from the root to r′, ri−1, ri, and back to root. From
induction hypothesis, each clause on the path from r′ to ri−1 contains some existential
literal b with lv(b) ≥ k. Since r′ dominates ri, which in turn dominates ri−1, the path
from r′ to ri is a prefix of the path from r′ to ri−1 and therefore also satisfies the
required condition. Choose (r, x,D, S) to be q′. ut

Lemma 4. Consider ρ a subset of leafs of π that is an equivalence class of the share
level k + 1 relation for some odd number k. Define Qkρ ⊆ Qπ as follows.

Qkρ = {(r, x,D, S) ∈ Qπ | p ∈ ρ, p ∈ S, lv(x) > k}

Then for any qa, qb ∈ Qkρ there is a sequence of quadruples q1, . . . , qm where qa = q1,
qb = qm, each qi is at a level > k and qi ∈ Qkρ , and each two adjacent qi,qi+1 ∈ Qkρ
are connected.

Proof. From definition of Qkρ there are leafs pa, pb ∈ ρ s.t. pa ∈ qa, pb ∈ qb. Since ρ
is an equivalence class of share level k + 1 relation, there is a sequence of connected
quadruples s1, . . . , sn such that pa is in s1 and pb is in sn, and each quadruple in the
sequence is at a level > k. Since for any si = (ri, xi, Di, Si), the set Si is non-empty,
all leafs p ∈ Si share level k + 1 with pa and p ∈ ρ. Hence, all the quadruples si
in the sequence are in Qkρ . Since qa and s1 are connected because of pa and qb and
qb are connected because of pb, constructing the sequence qa, s1, . . . , sn, qb yields the
required sequence. ut

Lemma 5. Let k, ρ, and Qkρ be defined as in Lemma 4. Define a set of literals Dk
ρ as

Dk
ρ =

{
l | (r, x,D, S) ∈ Qkρ, lv(l) = k, l ∈ D

}
. The set Dk

ρ does not contain comple-
mentary literals.

Proof. Lemma 4 gives us that Qkρ can be organized into a sequence γ where each two
adjacent quadruples are connected and each qi ∈ γ is at a level > k. From Lemma 3
there is a quadruple (rd, xd, Dd, Sd) ∈ γ s.t. for any quadruple (rj , xj , Dj , Sj) ∈ γ
the node rd dominates rj and all the clauses on the path from rd to rj , except for
rd, contain some existential literal b with lv(b) > k. Hence, no universal literals with
level l ≤ k can be ∀-reduced on a path from rj to rd in π. Therefore necessarily, Dd

contains all literals Dj . Consequently, Dk
ρ ⊆ Dd. From Observation 2, the set Dd is

noncontradictory and therefore Dk
ρ is also noncontradictory. ut

This last lemma gives us what we needed to conclude the correctness of Algo-
rithm 1, i.e. that the set of literals Dρ, constructed on line 12 is not contradictory. Al-
gorithm 1 operates in time polynomial to the size of π because the size of the set Qπ

11

is linear to the size of π and partitioning by “share level k + 1” relation can be done in
polynomial time. This fact, together with Proposition 1 lets us derive the following.

Theorem 2. For any tree Q-resolution refutation π there exists a ∀Exp+Res refuta-
tion (T , πT) s.t. both T and πT are polynomial in size of π. This ∀Exp+Res refuta-
tion can be constructed in time polynomial to π. Hence, ∀Exp+Res p-simulates tree
Q-resolution.

4 Simulating Restricted ∀Exp+Res by Q-Resolution

This section shows that a certain fragment of ∀Exp+Res refutations can be simulated
by Q-resolution. This fragment allows expansions of universal quantifiers as before but
puts a restriction on the resolution proof of the expansion. In particular, it allows only
resolutions that follow the order of the quantifier prefix.

Definition 4 (level-ordered). Consider a ∀Exp+Res refutation (T , π) of Φ. We say that
(T , π) is level-ordered iff the following holds. Let xP ∨C1 and x̄P ∨C2 be some clauses
resolved in π, then lv(y) ≤ lv(x) for any yP1 ∈ var(C1 ∨ C2).

Lemma 6. Let (T , π) be a level-ordered ∀Exp+Res refutation of Φ. Let C be some
clause in π and xP1

1 ,xP2
2 ∈ var(C). If lv(x1) ≤ lv(x2), then the path P1 is a prefix of

the path P2.

Proof. By induction on the number of resolution steps that led to C. The condition is
true for the leafs of π from the definition of E . For the induction step consider clauses
C1∨x̄Pr andC2∨xPr with the resolventC = C1∨C2. IfC is empty or unit, the condition
is trivially satisfied. Let xP1

1 ,xP2
2 ∈ var(C) with lv(x1) ≤ lv(x2). Because π is level-

ordered, lv(x1) ≤ lv(xr) and lv(x2) ≤ lv(xr), from which the induction hypothesis
gives that both paths P1 and P2 are prefixes of the path P . Since lv(x1) ≤ lv(x2), then
|P1| ≤ |P2| from definition of E . Hence the path P1 is a prefix of the path P2. ut

Lemma 7. Let (T , π) be a level-ordered ∀Exp+Res refutation of Φ. Let C be a clause
in π and xP1 ,xP2 ∈ var(C), then P1 = P2.

Proof. Immediate consequence of Lemma 6. ut

Theorem 3. Let (T , π) be a level-ordered ∀Exp+Res refutation ofΦ. Then a Q-resolution
refutation of Φ can be constructed in polynomial time with respect to |(T , π)|. Hence,
Q-resolution p-simulates level-ordered ∀Exp+Res.

Proof (sketch). The proof is similar to the one of Proposition 1, i.e. we construct a Q-
resolution refutation π′ based on π and prove its correctness by induction on resolution
depth. For each leaf p in π labeled with a clause C, there exists a path P from the root
to some leaf in T and a clause C ′ ∈ φ such that E (P,C ′) = C. Replace C with C ′.
Whenever there is a resolution on some variable xP in π, perform resolution on x in π′.
Add ∀-reduction steps after each resolution step. Effectively, the Q-resolution refutation
will have the same shape as the plain resolution refutation but each variable xP will be

12

p9 ⊥

p6u1 ∨ e2

p4u1 ∨ e2 ∨ u3 ∨ u4

p1u1 ∨ e2 ∨ u3 ∨ u4 ∨ e5 p2 u3 ∨ ē5

p7 u1 ∨ ē2

p5 u1 ∨ ē2 ∨ u3 ∨ ū4

p3 u1 ∨ ē2 ∨ u3 ∨ ū4 ∨ e5

Fig. 3. Nontree Q-resolution example

replaced with the variable x (“removed superscripts”), and, some universal literals will
be inserted into the clauses.

The correctness of the resulting π′ follows from Lemmas 6 and 7. Lemma 7 guar-
antees that in the plain resolution refutation there are no clauses containing variables
xP1 and xP2 with P1 6= P2. Consequently, removing the superscripts does not yield
complementary existential literals in clauses of π′.

It remains to be shown that there are no complementary universal literals within
clauses of π′. If there’s a universal literal k ∈ C ′ for some clause C ′ ∈ π, there most be
some existential literal x ∈ C ′ that blocks it. At the same time there’s a corresponding
literal xP ∈ C for the corresponding clause in π. We observe that P assigns k to 0.
For leaf clauses this follows from the definition of E . For resolution steps this follows
from the level-orderndess which guarantees that the literal being resolved on blocks
all universal literals in the clause. So if there’s a resolution on a xP in π, the clauses
involved in the corresponding resolution in π′ may contain only universal literals that
are assigned to 0 by P and therefore complementary universal literals cannot meet.

5 Examples

This section illustrates some of the practical implications of the results derived so far.
Section 3 shows that tree Q-resolution refutations can be simulated by ∀Exp+Res refu-
tations. This result points in the direction of formulas where ∀Exp+Res will perform
significantly worse than Q-resolution. In particular, this hints that non-tree Q-resolution
refutations might prove nontrivial to simulate for ∀Exp+Res. The following example il-
lustrates why that is the case.

For the quantifier prefix ∀u1∃e2∀u3u4∃e5, Figure 3 shows a simple non-tree Q-
resolution proof that demonstrates a drawback of ∀-expansion-based proofs. Assume
that clauses on p1, p3 are expanded to some clauses C ′1, C ′3, respectively. The clauses
will contain some copies of e5: eP1

5 ∈ C ′1, eP3
5 ∈ C ′3, let’s say. It must be that P1(u1) =

P1(u3) = P1(u4) = 0 and P3(u1) = P3(u3) = P3(ū4) = 0 Because of the different
polarity of literal u4 in the assignments, P1 6= P3. This means that there must be 2
different expansions of clause on p2. Hence, formulas leading to a high level of sharing
in Q-resolution are likely to be easier for DPLL-based solvers than for expansion-based
solvers.

Section 4 shows that Q-resolution can simulate ∀Exp+Res refutations where the
plain resolution part follows a certain variable order. Again, this points us in the di-
rection of formulas where ∀Exp+Res might perform better than Q-resolution, i.e. for-
mulas with proofs not respecting this order. To support this hypothesis, we construct

13

xi ∨ z ∨C1
i x̄i ∨ z̄ ∨C2

i

x1 ∨ z ∨ ȳ1 x̄1 ∨ z̄ ∨ ȳ1
x2 ∨ z ∨ y1 x̄2 ∨ z̄ ∨ ȳ1
x3 ∨ z ∨ ȳ1 x̄3 ∨ z̄ ∨ y1
x4 ∨ z ∨ y1 x̄4 ∨ z̄ ∨ y1

z/0 z/1

x1 ∨ ȳ z/01 x̄1 ∨ ȳ z/11

x2 ∨ y z/01 x̄2 ∨ ȳ z/11

x3 ∨ ȳ z/01 x̄3 ∨ y z/11

x4 ∨ y z/01 x̄4 ∨ y z/11

Fig. 4. Example formula for n = 1

the following formula3. Let n ∈ N+ and H = 22n. Consider the set of variables
y1, . . . , yn,x1, . . . , xH , z and the prefix ∃x1, . . . , xH∀z∃y1, . . . , yn. We construct the
matrix as follows. For each i ∈ 1 . . . H construct two clauses of the form xi+1∨z∨C1

i ,
x̄i+1 ∨ z̄ ∨ C2

i , where var(C1
i) = var(C2

i) = y1 . . . yn and the pair C1
i , C

2
i goes over

all the possible 22n = H pairs of sets of literals on the pertaining variables. More pre-
cisely, Let ij be the jth bit of i, where j ∈ 0..(2N − 1). Add to C1

i the literal ȳj if
ij = 0, where j ∈ 0..(N − 1). Add to C1

i the literal yj if ij = 1, where j ∈ 0..(N − 1).
Add to C2

i the literal ȳj if ij = 0, where j ∈ N..(2N − 1). Add to C2
i the literal yj

if ij = 1, where j ∈ N..(2N − 1). For the expansion we consider an expansion that
includes both possible assignments: z/0 and z/1. Figure 4 shows the matrix and the
expansion for n = 1.

While the expansion duplicates the yi variables, it is easily shown unsatisfiable.
Any total assignment to the copies of yi variables gives a conflict and therefore a SAT
solver that assigns these variables first, will need at most 22n = H conflicts to show
unsatisfiability.

We show that this formula requires exponential computation by a conflict-driven
DPLL QBF solver [23]. (However, this does not mean that there is no polynomial Q-
resolution proof.) We first make the following observation.

Lemma 8. If a CNF ψ is unsatisfiable and |C| ≥ k for all C ∈ ψ, then |ψ| ≥ 2k.

Proof. Let V = var(ψ). Each clause C ∈ ψ is 0 under 2|V |−|C| ≤ 2|V |−k assignments
to variables V . Since ψ is unsatisfiable, for each assignment τ to variables V there is a
clause that is 0 under τ . By averaging |ψ| ≥ 2|V |

2|V |−k = 2k.

A conflict-driven QBF solver first assigns the xi variables, then z, and then yi vari-
ables. Since long-distance resolution is not invoked in this example, clauses containing
z do not give propagation while xi variables are being assigned. Since the formula is
false, after all xi variables are assigned by some assignment τx, the solver eventually
finds such value vz for z that φ[τx, z/vz] is unsatisfiable. Once z is assigned a value,
either all xi ∨ z ∨ C1

i are satisfied or all x̄i ∨ z̄ ∨ C2
i are satisfied. For the solver to

backtrack to the level of xi variables, it must learn a clause containing only xi vari-
ables. From Lemma 8, 2n clauses must be used in learning this clause since this clause
is a result of a resolution tree that forms a refutation proof once all z and xi variables
are removed from it. Consequently, the learned clause containing only xi variables has
at least 2n variables. This is repeated until the set of learned clauses containing only

3 The formula’s generator is found at http://sat.inesc-id.pt/~mikolas/sat13.

14

http://sat.inesc-id.pt/~mikolas/sat13

xi variables is unsatisfiable. Invoking again Lemma 8 gives that this must be repeated
at least 22

n

= 2
√
H times (exponentially more than the expansion approach). We note

that QuBE7.2 [13], DepQBF [20], and, non-CEGAR version of GhostQ [17] were able
solve this formula only for n ≤ 3. The expansion-based solver RAReQS [15] was able
to solve the formula up to n = 10 (which has 1, 048, 587 variables).

6 Conclusions and Future Work

This paper introduces and studies a proof system ∀Exp+Res aimed at refuting false
QBFs based on expansion of universal variables and propositional resolution. Besides
preprocessing [6,5] expansion of variables plays an important role in QBF solving.
The solvers QUBOS [1], Nenofex [19], Quantor [4] expand universal variables from
inner- to outermost levels. However, these expansions are possibly interleaved with
operations for removal of existential quantifiers. In future work, we wish to investigate
if these interleaved expansions give additional proving power to the solvers. The solver
sKizzo [3] expands all universal quantifiers as is done in ∀Exp+Res (even though the
process is called Skolemization). sKizzo expands the formula clause by clause, ignoring
assignments to universal variables that satisfy the clause. So even though sKizzo does
not explicitly avail of partial expansions, trivial parts of the expansion are not generated.

The solver RaReQS [16,15] constructs two types of expansions: one for universal
variables and one for existential ones. For false QBFs, universal expansion eventually
becomes false. Hence, the workings of RaReQS mimics the ∀Exp+Res in the case of
false formulas. It should also be noted that out of the mentioned solvers, only RaReQS
constructs partial expansions, i.e. both polarities of the expanded variable are consid-
ered in the other solvers.

It is the ability of ∀Exp+Res to expand partially that was crucial in showing that
∀Exp+Res can p-simulate tree Q-resolution refutations. In the opposite direction, we
showed that Q-resolution can polynomially simulate ∀Exp+Res if the plain resolution
part follows certain order of variables.

Hence, at this point it remains open how unrestricted ∀Exp+Res compares to unre-
stricted Q-resolution or possibly long distance Q-resolution [23,2,17]. However, Sec-
tion 5 hints towards formulas that will be easy for one calculus and hard for the other.
We conjecture that exponential separations can be shown in both directions. Such sep-
aration would be of high practical importance. Firstly, it would explain why expansion-
based solvers are better for some classes of instances than DPLL solvers, and the other
way around. Secondly, the separation would necessitate QBF certification formats sup-
porting both types of solvers.

Acknowledgments. We would like to thank Uwe Egly and Will Klieber for various
helpful conversations on QBFs. We would also like to thank the anonymous reviewers
for their stimulating feedback. This work is partially supported by SFI PI grant BEA-
CON (09/IN.1/I2618), FCT grants ATTEST (CMU-PT/ELE/0009/2009) and POLARIS
(PTDC/EIA-CCO/123051/2010), and multiannual PIDDAC program funds (PEst-OE-
/EEI/LA0021/2011).

15

References

1. Ayari, A., Basin, D.A.: QUBOS: Deciding quantified Boolean logic using propositional sat-
isfiability solvers. In: Aagaard, M., O’Leary, J.W. (eds.) FMCAD. pp. 187–201 (2002)

2. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods
in System Design 41(1), 45–65 (2012)

3. Benedetti, M.: Evaluating QBFs via symbolic Skolemization. In: LPAR (2004)
4. Biere, A.: Resolve and expand. In: SAT (2004)
5. Bubeck, U.: Model-based transformations for quantified Boolean formulas. Ph.D. thesis,

University of Paderborn (2010)
6. Bubeck, U., Büning, H.K.: Bounded universal expansion for preprocessing QBF. In: SAT

(2007)
7. Büning, H.K., Bubeck, U.: Theory of quantified boolean formulas. In: Handbook of Satisfi-

ability. IOS Press (2009)
8. Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf.

Comput. 117(1) (1995)
9. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate quanti-

fied Boolean formulae and its experimental evaluation. J. Autom. Reasoning 28(2), 101–142
(2002)

10. Cimatti, A., Sebastiani, R. (eds.): Theory and Applications of Satisfiability Testing - SAT
2012 - 15th International Conference, Trento, Italy, June 17-20, 2012. Proceedings, Lecture
Notes in Computer Science, vol. 7317. Springer (2012)

11. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb.
Log. 44(1), 36–50 (1979)

12. Egly, U.: On sequent systems and resolution for QBFs. In: Cimatti and Sebastiani [10], pp.
100–113

13. Giunchiglia, E., Marin, P., Narizzano, M.: QuBE 7.0 system description. Journal on Satisfi-
ability, Boolean Modeling and Computation 7 (2010)

14. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the
evaluation of quantified Boolean formulas. Journal of Artificial Intelligence Research 26(1),
371–416 (2006)

15. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample
guided refinement. In: Cimatti and Sebastiani [10], pp. 114–128

16. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah, K.A.,
Simon, L. (eds.) SAT (2011)

17. Klieber, W., Sapra, S., Gao, S., Clarke, E.M.: A non-prenex, non-clausal QBF solver with
game-state learning. In: SAT (2010)

18. Krajı́ček, J., Pudlák, P.: Quantified propositional calculi and fragments of bounded arith-
metic. Mathematical Logic Quarterly 36(1), 29–46 (1990)

19. Lonsing, F., Biere, A.: Nenofex: Expanding NNF for QBF solving. In: SAT (2008)
20. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. JSAT (2010)
21. Rintanen, J.: Improvements to the evaluation of quantified Boolean formulae. In: Dean, T.

(ed.) IJCAI. pp. 1192–1197. Morgan Kaufmann (1999)
22. Urquhart, A.: The complexity of propositional proofs. Bulletin of the EATCS 64 (1998)
23. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In:

ICCAD (2002)

16

	On Propositional QBF Expansions and Q-Resolution

