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Abstract. In recent years, there have been significant improvements in algo-
rithms both for Quantified Boolean Formulas (QBF) and for Maximum Satisfia-
bility (MaxSAT). This paper studies the problem of solving quantified formulas
subject to a cost function, and considers the problem in a quantified MaxSAT set-
ting. Two approaches are investigated. One is based on relaxing the soft clauses
and performing a linear search on the cost function. The other approach, which
is the main contribution of the paper, is inspired by recent work on MaxSAT, and
exploits the iterative identification of unsatisfiable cores. The paper investigates
the application of these approaches to the concrete problem of computing small-
est minimal unsatisfiable subformulas (SMUS), a decision version of which is a
well-known problem in the second level of the polynomial hierarchy. Experimen-
tal results, obtained on representative problem instances, indicate that the core-
guided approach for the SMUS problem outperforms the use of linear search over
the values of the cost function. More significantly, the core-guided approach also
outperforms the state-of-the-art SMUS extractor Digger.

1 Introduction

When reasoning about quantified Boolean formulas (QBF), different optimization prob-
lems can be envisioned. MAX-QSAT [16] is a well-known example. Considering a
QBF as a game between the existential and universal players, if the existential player
can guarantee that k clauses are satisfied independently of the universal player, then k
clauses are said to be simultaneously satisfiable. The MAX-QSAT problem is to find
the maximum number of simultaneously satisfiable clauses. Original interest in MAX-
QSAT was motivated by work on non-approximability results for problems in the poly-
nomial hierarchy. A different optimization problem is to select a subset of clauses of a
QBF such that the resulting QBF is true. A related optimization problem assumes the
first quantifier to be existential, and asks for an assignment to those existential variables
such that the QBF is true and a cost function is optimized. Work in quantified CSP in-
volves computing strategies that optimize some cost function or associating costs with
strategies [14,8]. Besides the theoretical interest, there are a number of practical settings
where quantified optimization problems find application. This is for example the case
when the goal is to optimize a cost function subject to a quantified set of constraints
(e. g. the iterative use of QBF for optimizing target values in [13]). Many other concrete
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examples are given by the optimization versions of decision problems in the polynomial
hierarchy [35].

This paper addresses the problem of optimizing a cost function subject to a quan-
tified set of constraints. The cost function will be represented as a set of soft clauses,
and so this problem is referred to as Quantified MaxSAT (QMaxSAT). Inspired by al-
gorithms for the non-quantified MaxSAT problem [19,2,23,9], this paper develops two
novel approaches for QMaxSAT. The first one consists of relaxing all clauses and per-
forming a linear (or binary) search over the values of the cost function. The linear search
can either refine upper or lower bounds on the number of falsified soft clauses [19,9].
In contrast, binary search refines both lower and upper bounds [19,23]. The second ap-
proach represents the main contribution of this paper, and is inspired by recent work
on core-guided MaxSAT, i.e. solving MaxSAT by iteratively computing unsatisfiable
subformulas [19]. Thus, this new approach requires QBF solvers to be able to produce
unsatisfiable cores. As a result, the second contribution of this paper is to show how re-
cent 2QBF solvers based on abstraction refinement [25,24] can be modified to produce
unsatisfiable cores.

The new algorithms for QMaxSAT are evaluated on the problem of computing
the smallest minimally unsatisfiable subformula (SMUS) [29,32]. The SMUS decision
problem is well-known to be in the second level of the polynomial hierarchy (e. g. [20])
and studied in the context of formal verification. Computing SMUSes is also relevant
for assessing the quality of computed MUSes in practice. The third contribution of the
paper is a novel QMaxSAT formulation for the SMUS problem, and QMaxSAT-based
algorithm. Experimental results, obtained on representative problem instances, show
that the core-guided QMaxSAT algorithm outperforms Digger, a state-of-the-art algo-
rithm for the SMUS problem [26]. More importantly, these results validate the use of
core-guided approaches for QMaxSAT.

The paper is organized as follows. The next section overviews basic definitions on
SAT, MaxSAT, and QBF. Section 3 introduces the QMaxSAT problem, and Section 4
proposes several algorithms for QMaxSAT with an arbitrary number of quantification
levels. This is completemented by a description in Section 4.1 of how a CEGAR-based
2QBF instrumented to generate unsatisfiable cores, and so used in QMaxSAT algo-
rithms. Section 5 shows the practicality of the framework: it models the SMUS prob-
lem as QMaxSAT and describes improvements to the QMaxSAT for the concrete prob-
lem of computing an SMUS. Section 6 presents the experimental results on computing
SMUSes. Section 7 concludes the paper.

2 Preliminaries

This section provides the notation and basic definitions related to SAT, MaxSAT and
QBF.

2.1 Boolean Satisfiability

Let us consider a set of Boolean variables X = {x1, . . . , xn}, n ∈ N. A literal for
variable xi, i ∈ {1, . . . , n}, is an atomic formula, denoted by li, which can be either
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a positive literal xi, or its negation ¬xi. A set of literals connected by a disjunction is
called a clause. A conjunction of clauses ϕ = c1 ∧ c2 ∧ . . . ∧ cm, m ∈ N, is called
a formula in conjunctive normal form (CNF formula). Whenever convenient, a CNF
formula is treated as a set of sets of literals ϕ = {c1, c2, . . . , cm}.

An assignment is a total mapping AX : X → {0, 1} defined on set X of variables.
The notion of assignment AX can be extended to literals by setting AX(¬xi) = 1 −
AX(xi) for xi ∈ X . Hereinafter, expression ϕ|AX

denotes a formula obtained from
a Boolean formula ϕ by replacing each variable xi of X with its value AX(xi). The
same restriction notation c|AX

is used with regard to a clause c of a CNF formula. Since
formula ϕ expresses some Boolean function f(x1, . . . , xn), ϕ|AX

defines the value of
function f , which in what follows is denoted by f(AX). The same notation is used for
denoting values of pseudo-Boolean functions.

IfAX(li) = 1 then literal li is said to be satisfied by assignmentAX ; ifAX(li) = 0
then li is falsified by AX . Assignment AX satisfies a clause c, i. e. c|AX

= 1, if it
satisfies at least one of its literals; otherwise the clause is said to be falsified by AX
(c|AX

= 0). If for a given CNF formula ϕ there is an assignmentAX such that ϕ|AX
=

1, then formula ϕ is called satisfiable and AX is its satisfying assignment, or model.
In the remainder of the paper, the set of all models of a CNF formula ϕ is denoted by
M(ϕ).

2.2 Maximum Satisfiability

The Maximum Satisfiability (MaxSAT) is an optimization generalization of SAT for-
mulated as follows: for a given CNF formula ϕ = {c1, c2, . . . , cm}, m ∈ N, find
such an assignmentAX that satisfies the maximum number of clauses of ϕ. A standard
way of dealing with MaxSAT problems is to introduce a set R = {r1, r2, . . . , rm} of
additional variables (called relaxation variables) and consider a relaxed CNF formula
ϕR = {cR1 , . . . , cRm}, where cRi = ci ∨ ri. Observe that ϕR is satisfiable. The MaxSAT
problem for ϕ can be now formulated as follows: given a cost function f(r1, . . . , rm) =∑m
i=1 ri, find an assignment AX∪R ∈ M(ϕR) such that for any other assignment

BX∪R ∈M(ϕR)

f(AX∪R) ≤ f(BX∪R)

The partial MaxSAT problem generalizes MaxSAT and deals with CNF formulas
of the form ϕ = ϕS ∪ ϕH , where all the clauses of ϕS are declared to be relaxable
or soft while the rest (clauses of ϕH ) are declared to be hard. The problem is to find
an assignment AX that satisfies all the hard clauses and maximizes the number of the
soft clauses that are satisfied. Analogously to the MaxSAT formulation given above,
one can formulate the partial MaxSAT problem by relaxing only the soft clauses and
considering a cost function using the corresponding relaxation variables.

2.3 Quantified Boolean Formula

Quantified Boolean formulas (QBFs) are an extension of propositional logic with exis-
tential and universal quantifiers (∀, ∃) [11].
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In this paper QBFs are assumed to be in prenex closed form Q1x1. . .Qnxn. ϕ,
where Qi ∈ {∀,∃}, xi are distinct Boolean variables, and ϕ is a Boolean formula
using only the variables xi and the constants 0 (false), 1 (true). The sequence of quan-
tifiers in a QBF is called the prefix and the Boolean formula the matrix. The seman-
tics of QBF is defined recursively. A QBF ∃x1Q2x2. . .Qnxn. ϕ is true if and only if
Q2x2. . .Qnxn. ϕ|x1=1 or Q2x2. . .Qnxn. ϕ|x1=0 is true. A QBF ∀x1Q2x2. . .Qnxn. ϕ
is true iffQ2x2. . .Qnxn. ϕ|x1=1 andQ2x2. . .Qnxn. ϕ|x1=0 are true. To decide whether
a given QBF is true or not, is PSPACE-complete [11].

Within a prefix, two adjacent quantifiers of different type, namely ∀xi∃xi+1 and
∃xi∀xi+1, are called a quantifier alternation. A QBF with k alternations has k + 1
quantification levels. Whenever possible, for variables x1, . . . , xn, xi ∈ Xj , under the
same quantifier Qj we write QjXj instead of Qjx1 . . . Qjxn. Therefore, a formula
with k quantification levels can be denoted byQ1X1 . . . QkXk. ϕ. Moreover, the prefix
Q1X1 . . . QkXk of a QBF with k quantification levels is usually denoted by

−→
Q .

In Section 5, devoted to the SMUS problem, we focus on QBFs with 2 levels of
quantification, i. e. formulas of the form ∀X∃Y. ϕ or ∃X∀Y. ϕ, commonly denoted by
2QBF. Deciding whether a formula in 2QBF is true is complete for the second level of
the polynomial hierarchy [11].

Section 3 uses the notion of solution of QBFs of the form ψ = ∃X0
−→
Q. ϕ. An

assignment AX0
is a solution of ψ iff

−→
Q. ϕ|AX0

is true4. Analogously to the set of all
models of a CNF formula, the set of all solutions of a QBF ψ, where the first quantifier
is ∃, is denoted byM(ψ).

3 Quantified MaxSAT

In this section we consider an optimization formulation of the QBF problem, when one
should choose such a solution of the problem (among all solutions), that is optimal with
respect to some given criterion. This kind of problems is a natural generalization of
MaxSAT: instead of CNF formulas, we consider quantified formulas specified in a gen-
eral form. Moreover, the optimization criterion in this problem is generalized as well.
For example, it is possible to specify it as a minimization problem for some pseudo-
Boolean cost function (see [21]).

Consider sets of Boolean variablesX1,X2, . . .,Xk and a set of additional variables
E = {e1, . . . , el}. Let

ψ = ∃E
−→
Q. ϕ (1)

be a quantified Boolean formula, where its matrix ϕ is a propositional formula over the
set (

⋃k
i=1Xi) ∪ E given in a potentially non-CNF form. Consider a linear5 pseudo-

Boolean function f(e1, . . . , el) =
∑l
i=1 ai · ei as a cost function. Then the quantified

4 Note that solution of a quantified formula defined in this way represents a “portion” of the
formula’s model, which is defined, for example, in [12].

5 Non-linear pseudo-Boolean formulas can be linearized with the use of auxiliary variables.
Some linearization techniques are described in [18,6].
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MaxSAT (QMaxSAT) problem can be formulated as the problem of finding an assign-
ment AE ∈M(ψ) such that for any other assignment BE ∈M(ψ)

f(AE) ≤ f(BE)

Example 1. Consider a 2QBF formula

ξ = ∃e1, e2 ∀x1, x2. ϕ,

where ϕ = (¬e1 ∧ ¬e2) → (x1 ∨ x2); and a cost function f(e1, e2) = 2 · e1 + 3 · e2.
Formula ξ has three possible solutions: e1 = 0, e2 = 1; e1 = 1, e2 = 0; e1 = 1, e2 = 1.
However, the optimal solution which minimizes the cost function is e1 = 1, e2 = 0,
i. e. f(1, 0) = minM(ξ) f(e1, e2) = 2.

Let us show how the formulated QMaxSAT problem relates to classical (quantifier-
free) MaxSAT. First, we define another problem, which is a special case of QMaxSAT.
Consider a QBF

−→
Q. ϕ, which is false, and let its matrix ϕ be in CNF. Then the problem

of finding a maximal subset ϕ′ ⊂ ϕ such that
−→
Q. ϕ′ is true, can be easily expressed in

terms of QMaxSAT described above. To do this, one should consider a set R of relax-
ation variables and a CNF formula ϕR = {c1 ∨ r1, . . . , cm ∨ rm}, ci ∈ ϕ, ri ∈ R, and
choose f(r1, . . . , rm) =

∑m
i=1 ri as the cost function. Then the problem is to find the

best solution of QBF ∃R
−→
Q. ϕR subject to the cost function f . This problem is obvi-

ously a generalization of classical MaxSAT but also a special case of QMaxSAT. Note
that although variables E from the QMaxSAT formulation are replaced by relaxation
variables R here, they do not play the role of relaxation variables in general (e. g., see
the matrix of formula ξ in Example 1).

Due to the close relationship of the QMaxSAT problem to its classical version, an
interesting line of work is to apply to this problem the ideas and algorithms developed
for non-quantified MaxSAT. The next section gives an explanation of how MaxSAT
algorithms can be adapted to the QMaxSAT problem.

Related Work. Optimization problems subject to quantified constraints have been
studied elsewhere [16,14,8], but address more general formulations than QMaxSAT.
The Max-QSAT problem [16] can be viewed as computing a strategy that maximizes
the number of simultaneously satisfiable clauses. Other optimization problems have
been studied in the recent past [14,8]. The focus of [14] is approximation algorithms
for computing a winning strategy that minimizes some cost function, whereas [8] stud-
ies preferences over strategies. To our best knowledge, and besides our work, [8] is the
only other reference that proposes an exact algorithm for solving optimization problems
over quantified constraints.

4 QMaxSAT Algorithms

One of the simplest approaches to the QMaxSAT problem is to iteratively decide the
following formula with a QBF oracle:

∃E
−→
Q. ϕ ∧ (f(e1, . . . , el) ≤ k) (2)



6 A. Ignatiev, M. Janota, J. Marques-Silva

Here one can start from a lower bound (e. g. k = 0) and increase k until formula
(2) becomes true, or decrease it from some upper bound (e. g. k = max{0,1}l f ) value
while (2) is true. This is analogous to the linear search for non-quantified MaxSAT [9],
which refines lower and upper bounds on the value of the cost function6. Although these
algorithms are not the main contribution of the paper, we implemented and compared
them to our main algorithm for the concrete case of the SMUS problem (see Section 6).

The main goal of this paper is to construct an algorithm which is based on the
use of unsatisfiable cores (or simply cores) similar to the Fu&Malik’s algorithm for
MaxSAT [19]. Similarly to the linear search that refines lower bounds on the value of
the cost function, Fu&Malik’s algorithm (we refer to its original version as MSU1 [30];
some authors refer to this algorithm as WPM1 [1]) tests a series of unsatisfiable in-
stances until a satisfiable instance is found. However, instead of dealing with the con-
straint f(e1, . . . , el) ≤ k and increasing k with each call to a SAT solver, it identifies a
small unsatisfiable part of the current formula, which is called an unsatisfiable core. Se-
quential core computation in MSU1 increases the current cost value with each iteration,
i. e. with every new core computed. Thus, each unsatisfiable core increments a possible
minimum cost of an assignment that satisfies the constraints.

Recall that function f is linear, i. e. f(e1, . . . , el) =
∑l
i=1 ai · ei. Assume7, that

ai = 1, ∀i ∈ {1, . . . , l}. For each term ei of formula f(e1, . . . , el) =
∑l
i=1 ei create

a unit clause ¬ei. Denote CNF formula {¬e1,¬e2, . . . ,¬el} by ϕS . Observe that each
term ei of f incrementing its value (i. e. ei = 1) corresponds to a falsified clause ¬ei
of ϕS . This means that an assignment evaluates function f to some value y, 0 ≤ y ≤ l,
if and only if it satisfies l − y clauses of ϕS . Therefore, function f is evaluated to its
minimum value by such an assignment AE , that maximizes the number of satisfied
clauses of ϕS . Let #(ϕS |AE

) be a function that outputs the number of clauses of ϕS
that are satisfied by some assignment AE , i. e. #(ϕS |AE

) =
∑
c∈ϕS

c|AE
. Instead of

QBF ψ (see (1)), consider the formula

ψ′ = ∃E
−→
Q. ϕ ∧ ϕS (3)

Now we can formulate another way to solve the QMaxSAT problem for QBF ψ sub-
ject to the cost function f . It consists in finding an assignment AE ∈ M(ψ) such that
for any other assignment BE ∈ M(ψ) the following holds: #(ϕS |AE

) ≥ #(ϕS |BE
).

On the analogy of partial MaxSAT, CNF ϕS can be treated as a set of soft clauses while
the original QBF matrix ϕ is a hard part given in a potentially non-CNF form. Let us
define a core of formula ψ. This will enable us to extend the MSU1 algorithm to the
case of QMaxSAT.

Definition 1. A Boolean formula ϕC = ϕ ∧ ϕ′S , ϕ′S ⊆ ϕS , is called an unsatisfiable
core of formula ψ′, if and only if the following is false

∃E
−→
Q. ϕC

6 Instead of the linear search algorithms, one can use binary search [19,23]. Binary search algo-
rithms are not covered by this paper.

7 Otherwise we have a weighted version of the problem, and all the ideas described in this
section, can be extended as is done for weighted MaxSAT algorithms [30,1].
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Algorithm 1: QMSU1 Algorithm

input : A QBF ψ = ∃E
−→
Q. ϕ s. t.M(ψ) 6= ∅, and a CNF ϕS

output : AE ∈M(ψ), s. t. ∀BE ∈M(ψ): #(ϕS |AE ) ≥ #(ϕS |BE )

1 Rall ← ∅ // set of all relaxation variables

2 while true do
3 ψ′

R = ∃E ∃Rall
−→
Q. ϕ ∧ ϕS

4 (st, ϕC ,AE)← QBF(ψ′
R) // calling a QBF oracle

5 if st = true then
6 return AE
7 R← ∅ // set of relaxation variables

8 foreach c ∈ Soft(ϕC) do
9 let r be a new relaxation variable

10 R← R ∪ {r}
11 ϕS ← ϕS \ {c} ∪ {c ∨ r}
12 ϕ← ϕ ∧ CNF(

∑
r∈R r ≤ 1)

13 Rall ← Rall ∪R

According to Definition 1, the hard part of formula ψ′ is included into any unsat-
isfiable core ϕC of ψ′. However, similarly to the core-guided algorithms for the non-
quantified MaxSAT, in the algorithm described below we will need only the soft part
ϕ′S of the core. The algorithm selects soft clauses from the core by calling a function
Soft(ϕC).

Algorithm 1 shows the pseudo-code of the MSU1 algorithm adapted to QMaxSAT
(we refer to this algorithm as QMSU1). For a formula ψ′ given in the form (3), which is
implicitly defined by a QBF ψ from (1) and a CNF formula ϕS , the QMSU1 algorithm
outputs such a solution AE of ψ that maximizes the number of satisfied clauses of ϕS
over the set M(ψ). One important pre-condition of the algorithm is that formula ψ
must have at least one solution, i. e.M(ψ) 6= ∅. The set of all relaxation variables used
by the algorithm is denoted by Rall and initialized by ∅ (line 1). At each iteration of
the loop the algorithm constructs a relaxed copy ψ′R of formula ψ′ (line 3) and asks a
QBF oracle to decide whether it is true or false (line 4). As an answer the oracle returns
a 3-tuple (st, ϕC ,AE). If st = false, then the algorithm considers a set of relaxation
variables R (initially set to ∅) and processes the unsatisfiable core ϕC returned by the
QBF oracle. This step consists of relaxing soft clauses of the core, i. e. the algorithm
introduces a new relaxation variable r ∈ R for each soft clause c of the core ϕC , and
replaces original clause c with its relaxed copy c ∨ r in ϕS . At the end of the iteration
QMSU1 adds a CNF encoding of a new cardinality constraint

∑
r∈R r ≤ 1 to the hard

part ϕ of ψ′. Note that since each relaxation variable r ∈ Rall is added only to a clause
of the form ¬ej , all of them can be quantified by the same ∃-quantifier as variables
ej ∈ E (see line 3). The algorithm iterates until formula ψ′R is true and AE ∈ M(ψ′R)
(line 6). By construction,AE maximizes the number of satisfied clauses of ϕS over the
set M(ψ), i. e. it is the solution of a QMaxSAT problem. Note that the algorithm is
analogous to the MSU1 algorithm for non-quantified MaxSAT. The only difference is
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Fig. 1: Gradual strengthening of abstractions until a solution is found

that QMSU1 uses not a SAT solver as an oracle but a QBF solver, and the hard part of
the formula can be in a non-CNF form. Thus, the correctness of the algorithm relies on
the corresponding result for the MSU1 algorithm [19].

Note that the only requirement imposed by the QMSU1 algorithm on the QBF or-
acle is the ability to produce a certificate that could validate the answer true or false.
While providing a solution of a formula seems straightforward to implement, the ora-
cle must also be able to explain why the input formula is false, i. e. to extract an un-
satisfiable core from the formula. A simple solution is to include all the soft clauses
in the core. However, the efficiency of the algorithm relies on producing small cores.
There exist methods for extracting unsatisfiable cores from unsatisfiable QBF instances
for DPLL-based QBF solvers (e. g., see [37]). While the QMSU1 algorithm can use
any QBF solver as long as it produces cores, this work uses a CEGAR-based 2QBF
solver [25,24] as an underlying QBF oracle for a particular problem (the smallest MUS
problem). Section 4.1 describes a method using a CEGAR-based 2QBF solver for ex-
tracting unsatisfiable cores. Following the ideas of [24], the method can be easily ex-
tended to the case of formulas with an arbitrary number of quantification levels. The
task is further simplified by the fact that the QMSU1 algorithm requires only soft part
of the core, which depends on variables quantified at the outermost level.

4.1 Extracting Cores in CEGAR-based 2QBF

Among the many practical uses of the counterexample guided abstraction refinement
(CEGAR) [15], it can also be applied for solving 2QBF [25]. The key idea of CE-
GAR is to consider an approximate representation of a problem (called the abstraction)
instead of its explicit representation that could be too large to construct or unknown.
This section provides a basic overview of the algorithm8 and describes its modification,
which is able to extract an unsatisfiable core of a formula if the formula is false.

For the sake of succintness, in this section we denote assignments to variables of
X and Y by µ and ν, respectively. We also assume, that the matrix of the 2QBF is
presented as ϕH ∧ ϕS , where ϕS represents a set of soft clauses, and ϕH is a hard part
given in a possibly non-CNF form. The algorithm hinges on the idea that the problem

8 The reader is referred to [25] for further details and properties of the algorithm.
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Algorithm 2: CEGAR loop for 2QBF
input : ∃X∀Y. ϕH ∧ ϕS
output : (true, µ) if there exists µ s.t. ∀Y. (ϕH ∧ ϕS)|µ,

(false, ϕH ∧ ϕ′
S) s.t. ϕ′

S ⊆ ϕS otherwise

1 ω ← ∅
2 while true do
3 ϕ← CNF(

∧
ν∈ω ϕH |ν) ∪

∧
ν∈ω ϕS |ν

4 (st1, µ, ϕC)← SAT(ϕ) // candidate

5 if st1 = false then
6 ϕ′

S ← {c ∈ ϕS | c′ ∈ ϕC , ν ∈ ω, c′ = c|ν}
7 return (false, ϕH ∧ ϕ′

S) // no candidate found

8 (st2, ν)← SAT (¬(ϕH ∧ ϕS)|µ) // counterexample

9 if st2 = false then
10 return (true, µ) // solution found

11 ω ← ω ∪ {ν} // refine

∃X∀Y. ϕH ∧ ϕS can be equivalently represented as

∃X.
∧

ν∈{0,1}|Y |

(ϕH ∧ ϕS)|ν (4)

where the universal quantifier is expanded using a conjunction. Since the full expan-
sion (4) of the problem can be exponentially large with respect to the original problem,
it is infeasible to construct such representation in practice. Instead of constructing the
full expansion (4), CEGAR constructs a partial expansion of the given problem, i. e.

∃X.
∧
ν∈W

(ϕH ∧ ϕS)|ν (5)

where W ⊆ {0, 1}|Y |. We refer to formula (5) as W -abstraction. Observe that for any
W , the corresponding W -abstraction is weaker than the full expansion (4). This means
that the set of the W -abstraction’s solutions is a superset over the set of solutions of
the original problem, i. e. some of the W -abstraction’s solutions may not satisfy (4).
The idea of the CEGAR-based algorithm described below is to gradually strengthen the
abstraction until a solution of the original problem is found, or the abstraction is proved
to be false (see Figure 1).

Algorithm 2 shows the pseudocode of the algorithm. The algorithm maintains a set
of assignments W in the variable ω. We start with the abstraction equal to the formula
1, any assignment µ to the variable of X satisfies the abstraction. Assume, that the
algorithm encodes the hard part ϕH into a CNF formula by calling a function CNF(ϕH).

In each iteration of the loop, the algorithm first computes a solution to the abstrac-
tion, which is maintained in ϕ and constructed at line 3. We refer to this solution as a
candidate solution, because it is not guaranteed that it is indeed a solution to the orig-
inal problem. If a SAT oracle says (see line 4) that there is no candidate solution, i. e.
the abstraction has no solutions, the original problem does not have any solutions either
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(recall that the abstraction is always weaker than the problem). In this case the algo-
rithm returns an unsatisfiable core of the input formula in the form ϕH ∧ ϕ′S (line 7).
Observe that the soft part ϕ′S of the QBF core can be easily extracted from the core
ϕC returned by the SAT oracle: ϕ′S should include a clause c ∈ ϕS if there is a clause
c′ ∈ ϕC and an assignment ν ∈ ω such that c′ = c|ν . In other words, the unsatisfiable
core ϕC shows the falsity of the W -abstraction even if we consider the abstraction’s
soft part to be ϕ′S instead of ϕS , i. e. ∃X.

∧
ν∈W (ϕH ∧ ϕ′S)|ν is false. Note that there

can be several clauses ci ∈ ϕS such that c′ = ci|ν . However, it is sufficient to include
just one of these clauses into ϕ′S — by doing this one can get smaller QBF cores.

If the SAT oracle says that there is a candidate solution, then the algorithm checks
whether it is indeed a solution of the problem or not. This is done by computing a
counterexample. For a candidate µ, a counterexample ν is an assignment to the variables
of Y such that ¬ϕ|µ,ν . A counterexample ν serves as a witness that µ is not a solution,
i. e. it is not the case that ∀Y. ϕ|µ because ϕ is false when y has the value ν. If no
counterexample is found, the current candidate is indeed a solution and can be returned.
If a counterexample is found, it is added to the set ω which effectively strengthens the
abstraction.

5 Smallest MUS Problem

This section considers a concrete application of the QMaxSAT problem — the problem
of finding a smallest MUS of a CNF formula. LetX = {x1, . . . , xn} be a set of Boolean
variables and ϕ = {c1, . . . , cm} be a CNF formula. Formula ψ ⊆ ϕ is called a minimal
unsatisfiable subformula (MUS) of ϕ, if ψ is unsatisfiable and ∀ci ∈ ψ formula ψ\{ci}
is satisfiable. The MUS problem is a subject of active research (e. g. [31]).

Definition 2. Formula ψ∗, ψ∗ ⊆ ϕ, is called a smallest MUS of ϕ if
1. ψ∗ is unsatisfiable;
2. for any MUS ψ, ψ ⊆ ϕ, the following holds |ψ∗| ≤ |ψ|.

The smallest MUS problem (SMUS) consists in finding a smallest MUS of a CNF
formula. An algorithm that computes an SMUS by searching the space of all unsat-
isfiable subformulas was presented in [29]. A greedy genetic algorithm that finds ap-
proximate solutions of the SMUS problem was proposed in [38]. A branch and bound
algorithm for computing SMUSes was described in [32,26]. The decision version of the
SMUS problem, i. e. the problem of determining whether a given formula has a small-
est MUS of size k, is known to be ΣP

2 -complete (e. g., see [20]). The Digger algorithm,
which is a state-of-the-art algorithm for computing an SMUS of a CNF formula, was
proposed in [32,26].

Let us formulate an optimization extension of SMUS in terms of QMaxSAT defined
in Section 3. First, we consider a set of selection variables S = {s1, . . . , sm}. Instead
of formula ϕ, we consider a formula ϕR = {c1 ∨ ¬s1, . . . , cm ∨ ¬sm}, ci ∈ ϕ. Let us
introduce a function f : {0, 1}m → N:

f(s1, . . . , sm) =

m∑
i=1

si.
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Then the problem of finding a smallest MUS of ϕ consists in finding such an assignment
AS ∈ M(¬ϕR) that for any other assignment BS ∈ M(¬ϕR) the following holds:
f(AS) ≤ f(BS).

As shown in Section 4, to solve this problem, one can use an iterative approach
calling a 2QBF oracle which decides whether the following quantified formula is true
or false:

∃S ∀X. ¬ϕR ∧ (f(s1, . . . , sm) ≤ k) (6)

However, one can apply algorithm QMSU1 to this problem as well. Similarly to
Section 4, we introduce a set ϕs = {¬s1,¬s2, . . . ,¬sm} of soft clauses instead of
considering constraint f(s1, . . . , sm) ≤ k and iteratively ask the QBF oracle to decide
the following QBF:

ψ = ∃S ∀X. ¬ϕR ∧ ϕS (7)

Observe that CNF formula ϕS is the set of soft clauses of ψ while ϕR is the hard
part presented in a non-clausal form. Thus, the QMSU1 algorithm iteratively extracts
and relaxes unsatisfiable cores of formula ψ, which are some subsets of ϕS , until it
finds an assignment AS ∈ M(¬ϕR) that maximizes the number of satisfied clauses of
ϕS . Assignment AS corresponds to an SMUS ψ∗, ψ∗ ⊆ ϕ, such that a clause ci ∈ ψ∗
iff AS(si) = 1.

5.1 Improvements to the Algorithm

To increase the performance of the Digger algorithm, the authors of [26] use a prepro-
cessing technique — computing a set of disjoint MCSes. An MCS (or minimal correc-
tion set) of an unsatisfiable CNF formula ϕ is a subset of clauses δ ⊂ ϕ such that ϕ \ δ
is satisfiable while ϕ \ δ ∪ c is unsatisfiable for any clause c ∈ δ. There is an important
connection between MCSes and MUSes of CNF formulas (see [34,22,10,3,27,28]): any
MUS of formula ϕ is a minimal hitting set of the complete set of MCSes of ϕ. There-
fore, the enumeration of disjoint MCSes gives a lower bound of the size of an SMUS,
thus, reducing the search space of the Digger algorithm.

Due to the fact that the QMSU1 algorithm does not handle constraints ≤ k directly,
lower bounds for SMUS themselves cannot be directly used in QMSU1. However, the
enumeration of disjoint MCSes can be still helpful while solving SMUS by QMSU1.
For example, if a CNF formula ϕ has an MCS C = {c}, where c is a clause (so called
unit MCS), then each MUS of ϕ contains clause c. Therefore, one of the improvements
of QMSU1 for computing an SMUS of formula ϕ can be enumeration of all the unit
MCSes of ϕ.

Another technique we exploit in our approach is the use of MCSes, found during
the preprocessing stage, as unsatisfiable cores of formula (7). Let δ be an MCS of ϕ.
By ϕδS we denote a subformula of ϕS containing only clauses of ϕS that correspond
to clauses of δ, i. e. (¬si) ∈ ϕδS if ci ∈ δ. By definition of an MCS, formula ϕ \ δ is
satisfiable. This means that ϕR ∧ ϕδS is also satisfiable. Then formula

∃S ∀X. ¬ϕR ∧ ϕδS

is false. Given Definition 1, this means that ¬ϕR ∧ ϕδS is a core of (7). Therefore,
k MCSes computed by preprocessing give us k unsatisfiable cores of (7). Moreover,
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since all the computed MCSes are disjoint, the cores are disjoint. In practice, the use
of this preprocessing technique significantly increases the performance of the QMSU1
algorithm.

6 Experimental Results

A prototype of a solver for the SMUS problem implementing the QMSU1 algorithm
was developed with the use of a CEGAR-based 2QBF oracle described in Section 4.1.
The underlying SAT solver of our 2QBF oracle implementation is MINISAT 2.2 [17].
We refer to this prototype as MinUC (Minimum Unsatisfiable Core finder). Three ver-
sions of this solver were developed. The default one is the core-guided version. The
other two include MinUC-LB and MinUC-UB and implement iterative linear lower and
upper bound approaches respectively.

During the course of this research, we implemented a number of efficient algo-
rithms to enumerate disjoint MCSes of CNF formulas. These are beyond the scope of
this paper. However, to do a more comprehensive comparison between QMSU1 and
Digger, we ran MinUC in three different modes (the corresponding names of the tools
are presented in the parentheses):

– without enumerating disjoint MCSes (MinUC-w);
– with the use of the Digger’s disjoint MCS enumerator (MinUC-d);
– with the use of the default built-in disjoint MCS enumerator (MinUC).

The set of instances considered includes several sets of benchmarks described be-
low. The first set consists of automotive product configuration benchmarks [36]. Two
other sets of benchmarks come from circuit diagnosis. Additionally, we selected in-
stances from the complete set of the MUS competitions benchmarks9 as follows. Since
the SMUS problem is computationally harder than problem of extracting an MUS of
formula, we picked all the instances from the MUS competitions that can be solved by
muser-2 (see [7]) in 10 seconds. The total number of instances in the set is 682. All
experimental results were obtained on an Intel Xeon 5160 3GHz, with 4GB of memory,
and running Fedora Linux operating system. The experiments were made with a 800
seconds time limit and a 2GB memory limit. The detailed overview of the results is
presented in the following plots.

Figure 2a shows a cactus plot illustrating the performance of the core-guided version
of MinUC compared to Digger. The version of MinUC without enumerating disjoint
MCSes (MinUC-w) can solve 325 instances only. Digger solves 364 instances while
MinUC with the same MCS enumerator (MinUC-d) is able to solve 396 instances. This
is 8.8% more than by Digger’s result (4.7% of all the 682 instances). In the case of using
its own MCS enumerator MinUC demonstrates the best performance with 444 instances
solved, having 22% advantage over Digger (11.7% of the total 682 instances). Figure 2b
and Figure 2c show similar plots for linear search LB and UB modes respectively. Even
with the use of its own MCS enumerator, linear search modes of MinUC perform worse
than Digger: MinUC-LB solves 322 while MinUC-UB solves 294 instances. Figure 2d
gives a more graphic comparison between Digger and all the versions of MinUC using

9 http://www.satcompetition.org/2011/

http://www.satcompetition.org/2011/
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Fig. 2: Performance of MinUC compared to Digger

Digger’s MCS enumerator. In this case, the time required to enumerate disjoint MCSes
is not taken into account (because it is the same for all the solvers) while in all the other
cases it is included in the runtime.

Figure 3 shows scatter plots comparing the QMSU1 versions of MinUC to Digger
(see Figure 3a and Figure 3b) and to its linear search versions (Figure 3c and Figure 3d).
Figure 4 gives an overview on how many instances are solvable either by Digger or by
core-guided MinUC only.

The results indicate that the core-guided version of MinUC has an advantage over
other approaches. Digger comes second. MinUC-LB and MinUC-UB have the worst
performance. Although the experiment results are quite positive for the current version
of the core-guided version of MinUC comparing to Digger, it is still has a potential of
possible improvements.
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Fig. 3: Performance of the used approaches

7 Conclusions

This paper studies optimization problems over quantified sets of constraints, and fo-
cuses on the concrete case of quantified MaxSAT (QMaxSAT). The main contributions
of the paper are: (i) a novel core-guided algorithm for QMaxSAT; (ii) generation of un-
satisfiable cores with CEGAR-based QBF solvers; (iii) a QMaxSAT-based approach for
solving the smallest MUS (SMUS) problem; and (iv) new pruning techniques for solv-
ing the SMUS problem. The novel core-guided algorithm for QMaxSAT is based on
the original work of Fu&Malik [19]. Nevertheless, other algorithms for non-quantified
MaxSAT can also be adapted to the quantified case (e. g. [2,23]).

Experimental results on representative problem instances demonstrate that the novel
approach for computing SMUSes, based on core-guided QMaxSAT algorithms, sig-
nificantly outperforms Digger, a state-of-the-art algorithm for computing an SMUS.
These results motivate applying core-guided QMaxSAT algorithms to other optimiza-
tion problems with quantified constraints.
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A number of future research directions can be envisioned. Investigating additional
optimization problems with quantified constraints will provide a larger set of problem
instances. Motivated by a larger universe of problems and problem instances, additional
core-guided algorithms can be developed for QMaxSAT. Finally, it will be important
to investigate how to extend the algorithms developed in this paper to settings more
general than QMaxSAT. For example, MAX-QSAT [16] among others [14,8]. Any QBF
solver can be integrated into the QMSU1 algorithm as an oracle as long as it produces
unsatisfiable cores. There are known techniques for extracting unsatisfiable cores from
unsatisfiable QBF instances for DPLL-based QBF solvers. One of these techniques
is proposed in [37] and then followed by recent works on certificate generation for
resolution-based QBF solvers (e. g. [4,5,33]). Thus, an interesting subject of future work
is integration of a DPLL-based QBF solver into the QMSU1 algorithm and comparison
of its performance (in terms of speed and a core size) with performance of the currently
implemented CEGAR-based core-producing QBF oracle.

For the concrete application of QMaxSAT, the SMUS problem, several optimiza-
tions can be considered. Modern (and efficient) MUS solvers [7] can be used for com-
puting an upper bound on the size of the SMUS. If the lower bound (e. g. due to disjoint
cores, or by iterative core extraction) equals the upper bound, then an SMUS will by
given by any minimal hitting set of all the disjoint MCSes. Moreover, several prepro-
cessing approaches can be used, several of which are more efficient than the one used
in Digger.
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