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Abstract. Quantified Boolean Formulas (QBFs) enable standard representation
of PSPACE problems. In particular, formulas with two quantifier levels (2QBFs)
enable representing problems in the second level of the polynomial hierarchy
(ITF, xF). This paper proposes an algorithm for solving 2QBF satisfiability
by counterexample guided abstraction refinement (CEGAR). This represents an
alternative approach to 2QBF satisfiability and, by extension, to solving deci-
sion problems in the second level of polynomial hierarchy. In addition, the paper
presents a comparison of a prototype implementing the presented algorithm to
state of the art QBF solvers, showing that a larger set of instances is solved.

1 Introduction

The Quantified Boolean Formula (QBF) decision problem represents the paradigmatic
PSPACE-complete decision problem [21]. Restrictions of QBF have also been used to
characterize the polynomial hierarchy [21]. The QBF problem is important not only
from a theoretical perspective, but also from an applied one, with many applications
being easily modeled as instances of QBF [14]. There has been renewed interest in
QBF solving over the last decade, in part motivated by the practical success of SAT
solvers [23]. Most modern QBF algorithms build on the success of SAT solvers, but
implement dedicated techniques [14].

One of the most successful approaches for symbolic model checking is counter-
example-guided abstraction refinement (CEGAR) [6,7], having been applied in BDD-
based and SAT-based model checking [5,7,8]. The success of CEGAR motivated its use
with more expressive logics [1,27,12]. Moreover, recent work has applied the CEGAR
paradigm in handling quantification on a number of different settings with promising re-
sults, including propositional circumscription [20], quantified bit-vector formulas [40],
and linear real arithmetic [26]. Although the previous approaches for handling quantifi-
cation could be used for solving QBEF, it is expected that dedicated solutions will result
in more effective algorithms.

This paper develops a CEGAR approach for solving QBF with 2 levels of quan-
tifiers. The proposed algorithm generalizes the algorithm from [20] to the 2QBF case.
Although the two algorithms exhibit similar abstraction refinement loops, the actual im-
plementation of the key steps of the algorithms differs substantially. These differences
are detailed in this paper. Experimental results, obtained on a wide range of problem in-
stances, shows that the new algorithm outperforms the best QBF solvers from the most
recent QBF evaluation [28]. Moreover, the new algorithm also outperforms the encod-
ing of 2QBF to propositional circumscription [20], thus confirming that reduction of
2QBF to other domains is unlikely to result in efficient algorithms.
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Fig. 1. CEGAR loop

2 Preliminaries

Lowercase letters from the end of the alphabet are used for Boolean variables (z1, ¥,
etc.); capital letters from the end of the alphabet (X, Y, etc.) are used to denote vectors
of variables. Quantified Boolean formulas (QBF) are assumed to be in the prenex form
Q171...Qnzn.¢ where Q; € {V,3}, z; are distinct variables, and ¢ is a propositional
formula using only the variables z; and the constants O (false), 1 (true). The sequence
of quantifiers in a QBF is called the prefix and the propositional formula the matrix. If a
prefix contains a subsequence Vz; ... Vx,, resp. dz1 ... 3z, we denote it by V.X, resp.

3X, for the variable vector X = {x1,...,z,}.
The Greek letters v and p are used to denote vectors of the constants 0 and 1. For a
Boolean formula ¢ and vectors X = {x1,...,z,},v = {a1,...,a,} we write ¢[ X /]

for the simultaneous substitution of occurrences of x; by a;. Further, ¢[X/v] assumes
that the formula has been partially evaluated (z V 0 = z, etc.). If X are all the variables
in ¢, we treat the value vector v as a variable valuation and ¢[X/v] is the formula’s
value under that valuation. We write B for the set {0, 1} and B™ for the set of vectors
of the values 0,1 of length n.

A Boolean formula in conjunctive normal form (CNF) is a conjunction of clauses,
where a clause is a disjunction of literals, and a literal is either a variable or a comple-
ment. Whenever convenient, a CNF formula is treated as a set of clauses and a clause
is treated as a set of literals. For a literal [ we write var(l) for the variable in [, i.e.
var(—z) = var(z) = z.

Some of the heuristics proposed in the paper use a partial MAX-SAT problem for-
mulation. The partial MAX-SAT problem is specified with two sets of clauses: a set of
hard clauses, and a set of soft clauses. A solution to the problem is a variable valuation
that satisfies all the hard clauses and maximizes the number of satisfied soft clauses [22].

2.1 Counterexample Guided Abstraction Refinement (CEGAR)

Counterexample Guided Abstraction Refinement (CEGAR) was designed for tackling
problems whose implicit representation is infeasible to solve and thus an abstract rep-
resentation is tackled instead. Here we present a informal description of the approach
necessary for the understanding of the article. For more details see [7].

In CEGAR-based algorithm we talk about concrete and abstract representation of
the problem. Then we talk about abstract solutions, which are solutions to the abstract
version, and concrete solutions which are solutions to the actual problem. The goal of
the CEGAR approach is to get to a concrete solution via abstract solutions. The relation
between these two representations is characterized by the following properties:



1. If the abstraction does not have a solution, the concrete problem does not have a
solution either.

2. If an abstract solution is not a concrete solution, a counterexample is produced to
demonstrate this fact.

3. If there are no counterexamples to an abstract solution, it is also a concrete solution.

The search for a solution of the concrete problem is carried out in the following
loop (see Figure 1). First, a solution for the abstraction is computed. If such does not
exist, the search terminates unsuccessfully due to property 1. If the abstraction has a
solution, it needs to be checked whether it is also a concrete solution. If there are no
counterexamples to the abstract solution, it is also a concrete solution and the search
terminates successfully due to property 3. Otherwise, the abstraction needs to be refined
where the obtained counterexample is used to guide the refinement. Observe that an
abstract solution is in fact a candidate for a solution to the given problem, the second
step of the iteration then checks if it is really a solution.

We should note that conceptually, here we are looking for a solution to the problem.
However, often, especially in verification, the goal of the CEGAR loop is to show un-
satisfiability of the problem, i.e., lack of solutions. Finding a solution then corresponds
to finding an error in the modeled system. Algorithmically, these goals are identical but
the pertaining terminology in literature may differ.

3 Problems

This article focuses on the satisfiability of formulas with two levels on quantifiers. In
particular, we focus on the following two problems.

Name: 2QBF PROBLEM
Given: 3XVY.¢, where ¢ is a propositional formula
Question: Is there value a vector v such that VY.¢[X/v]?

Name: 2QCNF PROBLEM
Given: 3XVY.(—¢'), where ¢’ is a CNF
Question: Is there value a vector v such that VY. ¢/ [ X /v]?

In both problems, a vector v satisfying the condition is called a solution of IXVY.¢.
While deciding the satisfiability of a QBF is PSPACE complete, the above problems are
25 -complete [24,21].

Here we make several notes on the specific form of the problems that we chose
for this article. While 2QCNF PROBLEM is a special case of 2QBF PROBLEM, we
single out 2QCNF PROBLEM as the uniformity of the format can be exploited for effi-
ciency. The satisfiability of a formula of the form VX 3Y.¢ can be decided by negating
to 3XVY.—¢ and negating the response, which is why we consider only the latter form.
Conceptually, 3XVY.—¢ can be thought of as an attempt to refute VX3Y.¢ .

While for CNF ¢’ the satisfiability of VX 3Y.¢' is in 11, 3XVY.¢' is an NP prob-
lem. Hence, we consider only the satisfiability of 3XVY.(—¢’), which corresponds to
refuting VX 3Y.¢'.



4 Algorithm for the 2QBF PROBLEM

This section presents a CEGAR-based algorithm for the 2QBF PROBLEM. The algo-
rithm relies on a SAT oracle (a SAT solver) and hence we begin by observing the rela-
tion of 2QBF to Boolean satisfiability. First let us observe that the 2QBF PROBLEM can
be expressed as a Boolean satisfiability problem if the universal quantifier is expanded
into conjunctions.

4.1 Algorithm

Observation 1 A value vector v is a solution to AXVY.¢ iff v is a satisfying assignment
of the following formula:
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Consequently, AXVY.¢ has a solution iff (1) is satisfiable.

Hence, a naive approach to solving the 2QBF problem would be to perform the
expansion outlined above and invoke a SAT solver. However, this is infeasible since
the formula grows exponentially. We continue by observing that the question whether a
certain value vector is a solution can be formulated as a Boolean satisfiability question®.

Observation 2 A value v is a solution to AXVY.¢ iff the following formula is unsatis-
fiable:

—¢[X/v] 2)

Example 1. Expanding the formula @ = J2Vy.x — y yields x — 0 Az — 1, which is
equivalent to the formula —z. Hence, according to Observation 1, {x = 0} is a solution
of the formula Q. In contrast, Observation 2 tells us that the value vector {x = 1} is
not a solution since 1 A —y is satisfiable.

The two observations above motivate the following abstraction-based approach. In-
stead of considering the full expansion of the given problem (see (1)), we consider only
a partial expansion, which will serve as the abstraction in the approach.

Definition 1 (1 -abstraction). Ler W C B'Y!, then the W -abstraction of IXVY. is
the following formula.
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A satisfying valuation of a IV -abstraction is not necessarily a solution for the given
problem. Recall that a solution v must satisfy VY.¢[X/v]. Hence, if v is not a solution,
then there must exist a valuation p of the variables Y for which ¢[X/v] does not hold,
i.e. [ X/v][Y/u] = 0. This valuation y is used as the counterexample in the approach.

3 This observation is in fact a consequence of the fact that the problem is in 3.



Algorithm 1: CEGAR loop for 2QBF
input : IXVY.¢
output: (true, v) if there exists v s.t. VY ¢[ X /1],
(false, —) otherwise

1 w1

2 while true do

3 (outcy, v) < SAT(w) // find a candidate solution

4 if outc; = false then

5 L return (false,—) // no candidate found

6 (outca, pt) +— SAT (—¢[X/V]) // find a counterexample
if outce = false then

8 L return (true, v) // candidate is a solution

9 | wewARY/ul // refine

Definition 2 (counterexample). If v and p are value vectors and p is a satisfying
valuation of —¢|X /v] then i is called a counterexample to v.

Proposition 1. Ifa W -abstraction is unsatisfiable then the corresponding 2QBF PROB-
LEM has no solutions. If for a value vector v there are no counterexamples, then v is a
solution to the 2QBF PROBLEM.

Proof (sketch). For any W C B ¥l the W -abstraction w is weaker than (1), hence if w
is unsatisfiable, the given problem does not have a solution due to Observation 1. There
are no counterexamples to v iff —¢[X/v] is unsatisfiable, which is true only if v is a
solution (Observation 2).

Algorithm 1 shows a pseudo-code representation of the 2QBF CEGAR loop using
the notion of abstraction and counterexample defined above. The pseudo-code assumes
a satisfiability oracle SAT which for a Boolean formula returns whether it is satisfiable or
not. If it is satisfiable, it also returns a satisfying valuation; this information is returned
as a pair with the first element representing satisfiability and the second element the
valuation (if applicable).

The algorithm maintains the WW-abstraction in the variable w and it starts with
W = (), i.e. w = 1 (line 1). Each iteration of the loop begins by looking for a so-
lution for the abstraction, this solution is called the candidate. If the abstraction is
unsatisfiable—there are no candidates—the given problem is unsatisfiable and hence
the loop terminates (line 5). If a candidate was found, the algorithm checks whether
the candidate is indeed a concrete solution to the given problem or not. If the candidate
is a solution, then the loop terminates successfully (line 8). If the candidate is not a
concrete solution, the abstraction is refined according to the counterexample. The re-
finement consists in adding the counterexample w to the set W, which corresponds to
conjoining ¢[Y /] to w (line 9). Observe that the set W monotonically increases from
0 to BIY! with one iteration adding one element to it.

Example 2. Let ¢ = (z1 V y1) A (z2 V y2) then =¢ = (—z1 A —y1) V (mz2 A —y2)
and the following is a possible run of Algorithm 1. Initial w; = 1, yields a candidate



SAT(wq) = (true, v1) with vy = {&; = 0,22 = 0}. In turn we obtain a counterexample
SAT (—¢[X/11]) = (true, p1) with g = {y1 = 1, y2 = 0}. The counterexample yields
the refinement ws = wy A x5 = x5. The second iteration yields a candidate SAT(ws) =
(true,va) with v = {21 = 0,22 = 1} and a counterexample SAT (—¢[X/v2]) =
(true, uo) with uy = {y1 = 0,yo = 1}. The corresponding refinement is w3 = wa A
x1 = 3 A 1. The candidate in the third iteration is inevitably v5 = {1 = 1,29 = 1},
which is a solution as there are no counterexamples to it (SAT(—¢[X/v5]) = (false, -)).

4.2 Properties

Here we discuss the correctness and some other properties of the algorithm. A cru-
cial observation is that no counterexample can appear in two distinct iterations of the
CEGAR loop, which is stated by the following lemma.

Lemma 1. Let p; and iy, be counterexamples found in the i-th and k-th iterations of
the loop, respectively, where i < k. Then p; # jij.

Proof (sketch). For contradiction assume that u = u; = pi and let v be a candidate
found in the k-th step. The candidate v satisfies the current abstraction, which is of the
form w’ A @¢[Y/ ] since the abstraction was refined with y in the step 7. Hence, y is a
model of ¢[X/v], which is a contradiction since it is also a model of —¢[X/v].

The above lemma ensures that the CEGAR loop will have a finite number of itera-
tions since there is only a finite number of possible counterexamples. However, the al-
gorithm has even a stronger property. Once a counterexample p is found, all candidates
to which p is a counterexample are eliminated from the space of possible candidates.
This is stated formally in the following lemma.

Lemma 2. Let u; be a counterexample found in the i-th iteration of the loop and vy
be a candidate found in the k-th iteration of the loop, where k > i. Then ; is not a
counterexample to vy. In particular, no candidate can appear more than once.

Proof (sketch). In the i-th iteration of the loop the abstraction has been refined as w =
W' A @Y/ 1;]. Since vy, must satisfy w, and therefore also ¢[Y/u;]. Consequently, p;
and vy, cannot together satisfy —¢.

Lemma 1 and Lemma 2 tell us that neither candidates nor counterexamples can
repeat in the iteration loop, which yields the following upper bound on the total number
of iterations.

Proposition 2. Let k = min(|X|,|Y|), then Algorithm 1 performs at most 2% iterations
of the loop and requires O(|¢| * 2%) space.

Proof (sketch). Immediate consequence of Lemma 1, Lemma 2, and the fact that there
are 2!%| different value assignments to a set of variables Z.



Algorithm 2: CEGAR loop for 2QCNF
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input : IXVY.(~¢")
output: (true, v) if there exists v s.t. VY ¢’ [ X /1],
(false, —) otherwise

w1
while true do
(outct,v) + SAT(w) // find a candidate solution
if outcy = false then
L return (false,—-) // no candidate found
(outca, p) < SAT (¢'[X/v]) // find a counterexample
if outco = false then
L return (true, v) // candidate is a solution

// refine

C«{c|ded ne=C[Y/ulAnc#1} // substitute
let z. be a fresh variable for each ¢ € C'

wwU{—z.Val|ceCAlLECc}

w—wU{V co 2e}

While the theoretical upper bound given by Proposition 2 is rather crude, we can
observe that Lemma 2 gives us some further insight. A refinement according to a coun-
terexample p prevents the algorithm from finding any candidates to which p is also a
counterexample. In other words, the space of possible candidates is diminished more if
the counterexample is a counterexample to many possible candidates. This is illustrated
by the following example.

Example 3. Let ® = 3xyVq. (x A q) V (x A—=q)) A((y A q) V (y A =¢)) and consider
the following run of the algorithm. The first candidate 14, = {z = 0,y = 0} yielding
the counterexample 111 = {q¢ = 1}. The corresponding refinement is wo = = A y.
Inevitably, the second candidate 1y = {x = 1,y = 1} is a solution to the problem.
Observe that pi; is a counterexample to all candidates that are not solutions.

More generally, we hypothesize that the algorithm is likely to work well for prob-
lems where one counterexample is a counterexample to many potential candidates.

5 Algorithm for the 2QCNF PROBLEM

This section looks in more detail at the CNF formulation of the problem. Recall that
in 2QCNF PROBLEM the input formula ¢ is of the form —¢’ where ¢’ is in CNF.
The structure of the algorithm remains the same but we make several observations that
enable more efficient implementation. The pseudo-code is presented by Algorithm 2.
First, observe that —=¢[X /v] = ¢'[X/v] since ¢ = —¢’. Hence, a search for a coun-
terexample to the candidate v is simplified to SAT(¢'[X/v]) (instead of SAT(—¢[X/v])).
Second, the refinement w < w A ¢[Y/u] now has the form w + w A =¢'[Y/u]. To



maintain w in CNF, we perform a variant of Plaisted-Greenbaum transformation [30]*.
For each clause ¢ € ¢'[Y/p] introduce a fresh variable z. and add to w the clauses
=z, V =l for each literal [ € c. Finally, add the clause \/ce &Y /] Zer Intuitively, a vari-
able z, represents that the clause c is false and their disjunction represents that at least
one of them is false, thus enforcing —¢'[Y/p].

The size of the refinement is trimmed by omitting those clauses that are immediately
satisfied by the counterexample p (this happens whenever p satisfies at least one literal
in the clause). Further, at the implementation level, the incremental interface of the SAT
solver is used as w is gradually strengthened; the variables z. are reused if the clause ¢
appears in multiple iterations of the CEGAR loop.

5.1 Heuristics

The CEGAR loop relies on two calls to a SAT solver and either of these two calls may
yield different models for the same abstraction or candidate, respectively. While the
correctness of the algorithm is not affected by which of these models is returned, the
overall efficiency of the algorithm may be affected. Here we propose heuristics that
determine which candidates and counterexamples are better.

Candidate heuristic The objective of the heuristic used in computing a candidate is to
find such candidates that there likely to be solutions to the original problem 3XVY.(=¢').
Since a solution must satisfy VY.—¢’, we propose a heuristic that maximizes the number
of unsatisfied clauses in ¢’. In particular, the satisfiability problem SAT(w) is replaced
by the following MAX-SAT problem:

{hard ¢ | ¢ € w}
{hard =z, V =l | z. is a fresh variable Ac € ¢’ ANl € cAvar(l) ¢ Y} 4)
{soft z. | c€ ¢'}

Counterexample heuristic In the refinement step we need to consider only those clauses
that are not satisfied by the counterexample u, i.e. ¢ € ¢ A c[Y/u] # 1. Hence, the
clause \/ z., added in line 12, has less literals the more clauses are satisfied by . Since,
in general, short clauses represent stronger constraints then long clauses, we propose
the heuristic to look for those counterexamples that maximize the number of satisfied
clauses in ¢'. In particular, the satisfiability problem SAT (¢'[X/v]) is replaced by the
following MAX-SAT problem:

{hardc | € ¢’ Nc=c[X/v]} )
{softc|d e ne={l|(led)Avar(l) ¢ X}}

Implementing heuristics In both of the aforementioned heuristics the corresponding
SAT problem is transformed into a MAX-SAT problem. Solving these MAX-SAT prob-
lems in each iteration of the CEGAR loop is not feasible because typically a large
number of iterations is required (up to hundreds of thousands) and MAX-SAT is sig-
nificantly more time-consuming than SAT. Hence, in the implementation we compute

* As opposed to Tseitin transformation [38], implications in only one direction are introduced.



Table 1. Numbers of solved instances

[strugs|QuBET7.1]gbf2circ[AReQS[AReQS-H]|

2qbf ‘10 pre (114) 30 93 37 101 101
circ pre (117) 6 113 117 117 117
icore pre (140) 30 23 33 62 62
robots pre (999) | 516 921 647 974 975
noprepro (232) 15 47 18 51 55

| total 1602) [597 [ 1197 [ 852 [ 1305 | 1310 |

an approximate solution to the MAX-SAT problems by skewing the default decision
polarity and variable activity of a SAT solver. Hard clauses are given to the SAT solver
as standard clauses without any change. Each soft clause c is represented by the clause
re V ¢ where r. is a fresh variable. The polarity of the variable r. is set to 0 and the
activity increased. This instructs the SAT solver to set r. to 0 as soon as possible in
the search for a satisfying valuation, which then enforces c to be satisfied. While this
approach does not guarantee the optimum, it is commonly used in modern MAX-SAT
and PB solvers and has been successfully applied to SAT solving with preference [35].

6 Experimental Results

A prototype implementing Algorithm 2 was developed using MiniSat2.2 as the un-
derlying SAT solver [10]. In the following text we refer to the prototype as AReQS
(Abstraction Refinement QBF Solver). Two versions of AReQS were evaluated: one
that does not use any heuristics (denoted AReQS) and the second that uses the heuris-
tics described in Section 5.1 (denoted AReQS-H).

For comparison, two QBF solvers were chosen: strugs [37] and QuBE7.1 [16],
which are the official and unofficial® winner, respectively, of the 2QBF track of the 2010
QBF evaluation [31]. Besides comparing to these two solvers, AReQS was compared
to our own tool gbf2circ. The tool utilizes a transformation from 2QBF to propositional
circumscription [11], and invokes a dedicated propositional circumscription solver [20].
Since the dedicated solver is based on similar ideas presented in this paper, the purpose
of this translation was to investigate whether a dedicated QBF solver pays off.

A variety of benchmarks was chosen for the empirical evaluation. The sources for
the benchmarks were: QBF library [32], QBF evaluation [31], and two well-known 22P
and 1§ complete problems. From the QBF library [32] we chose the Robots2D bench-
marks, from QBF evaluation the set of problems used in 2010 2QBF track. Entailment
in propositional circumscription is a well-known 74" problem and instances from prod-
uct configuration were used [19]; implicates core is the problem of deciding for a given
clause ¢, a constant k, and a CNF ¢ whether there exists a clause ¢’ C ¢, s.t. || < k
and ¢ — ¢/, the problem is well known to be X4’ -complete [39]°. Only problems of the

5 QuBE7 was disqualified because of discrepancies, which are already fixed in QuBE7.1.
® The problem is usually presented for an implicant rather than implicate, which is easily con-
vertible to the implicate problem by negating the input formula.



form V3 were considered from the QBF library (this was true for all the problems in the
2QBF track of the QBF-Evaluation); the implicant core problem was directly generated
in its negated form (the again producing the V3 form). All experimental results were
obtained on an Intel Xeon 5160 3GHz, with 4GB of memory, and running Linux. The
experiments were obtained with a 1000 seconds time limit and 2GB memory limit.

Our initial experiments showed that all the tested solvers perform extremely poorly
when the input problem is not preprocessed. Hence, the preprocessor sQueezeBF [13]
(part of QuBE7.17) was first applied on the instances (discarding instances solved com-
pletely by the preprocessor). A random subset of the aforementioned problems were
chosen for the evaluation without the processing (noprepro). Therefore, all the sets in-
stances except for noprepro consist of instances already simplified by sQueezeBF.

Table 1 shows the number of solved instances for each set of benchmarks and
solver. The new tool AReQS solves ca. 10% more instances than QuBE7.1 and more
than double the instances solved by strugs. The gains achieved with AReQS are uni-
formly distributed among the classes of problem instances considered. The tool gbf2circ
solves more instances than strugs, but less than QuBE7.1. Figure 2 shows a more detail
overview of the runtimes with cactus and scatter plots. Both versions of AReQS con-
sistently outperform all the other approaches; QuBE7.1 comes second; strugs performs
slightly worse than gbf2circ, and both perform significantly worse than QuBE7.1.

The first scatter plot compares AReQS-H and QuBE7.1 on all the instances com-
bined. This plot shows that AReQS-H not only solves more instances but the majority
is solved faster. The last two scatter plots compare the heuristic approach to the non-
heuristic approach. In the first of the to scatter plots the times are compared and in the
second the number of iterations of the CEGAR loop. The heuristics yield an overall im-
provement, both in time and iteration count; in a number of instances the improvement
is in orders of magnitude.

The experimental results suggest that CEGAR is a promising approach for devel-
oping dedicated algorithms for 2QBF. Although the AReQS tool is still a prototype,
it consistently outperforms state of the art QBF solvers on several classes of problem
instances. Nevertheless, the importance of preprocessing should be noted, and any ap-
proach needs preprocessing for achieving good overall performance.

7 Related Work

QBF is a well-known PSPACE-complete problem (e.g. [21]), with a wide range of
practical applications [14]. Restrictions on the number of alternations have been used
to characterize the polynomial hierarchy [21]. QBF algorithms have been the subject of
significant improvements over the last decade [14,33,29]. Examples of recent work can
be found in [28,15].

Counterexample guided abstraction refinement was successfully applied in model
checking [6,7] and since then it has appeared in various forms. In satisfiability modulo
theories (SMT) solvers, CEGAR has been used to abstract first order theories as propo-
sitional theories with the use of a SAT solver and decision procedures [1,27,12]. The
refinement in these works consists in blocking the abstract solution just found.

" QuBE itself was then run with the no processing option.
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Rintanen uses an idea similar to the W -abstraction in a technique called inversion
of quantifiers in the context of search-based QBF solving [34]. This abstraction is popu-
lated randomly (whereas in our case it is determined by counterexamples); the abstrac-
tion does not drive the algorithm, instead, it is used as a simplification technique in a
search-based algorithm. SAT-based algorithms were used for solving 2QBF formulas
in the context of bounded model checking [9] and in planning [4]. However, these algo-
rithms are highly specialized for the problems in question and it is not clear how they
could be generalized for arbitrary 2QBF.

A variation of the CEGAR approach used in SMT [1,27,12] was applied to cer-
tain special forms of 2QBF. Mneimneh and Sakallah compute the vertex eccentricity
of a transition system (also known as the diameter) [25]. Browning and Remshagen
tackle the validity of Q-ALL SAT [3]. Besides the fact that the algorithms presented in
these articles are specialized to subsets of 2QBF, there is also an important difference
in the refinement they use. Once a candidate is found, it is simply blocked so that it
is not found again. That means that the set of possible candidates is explored one by
one. In contrast, in our approach multiple candidates are removed upon each iteration
(see Lemma 2). The one-by-one iteration over candidates not only affects the theoreti-
cal upper bound for number of iterations (Proposition 2) but also is likely to lead to an
unmanageable number of iterations, especially for unsatisfiable instances where all pos-
sible candidates need to be considered. Browning and Remshagen address this problem
by a heuristic for decreasing the size of the blocking clause. This heuristic is computa-
tionally expensive since it requires additional calls to the solver, does not provide any
theoretical guarantee, and it is unclear how it could be generalized for arbitrary QBF.

More recently, there has been increased interest in the CEGAR approach in the con-
text of quantification [20,40,26]. Out of these works, our own work on propositional
circumscription entailment is probably the most similar [20]. Although the algorithm
based on propositional circumscription can be used to solve 2QBF, e.g. by using the
well-known reduction from [11], the new dedicated 2QBF algorithm is shown to out-
perform this approach. The dedicated algorithm exploits the problem representation,
and this provides a natural performance edge.

The work described in [26] is for quantified linear real arithmetic. Although this
work could be used on QBF formulas, the key techniques do not aim Boolean formulas.
Finally, the work reported in [40] is solving a computationally harder decision prob-
lem, namely quantified bit-vector formulas. This means that [40] can be used to solve
arbitrary QBFs, but it is also unlikely to scale as well as a dedicated algorithm.

8 Conclusions

This paper develops a new algorithm for the 2QBF and 2QCNF problems. The algo-
rithm exploits the counterexample-guided abstraction refinement paradigm [6,7], and is
shown to outperform the best peforming QBF solvers from the most recent QBF Eval-
uation [28]. Although the work builds on recent work on using counterexample-guided
abstraction for handling quantification [20,40,26], the algorithm exploits the natural
properties of the problem formulation, and is shown to outperform approaches based
on mapping QBF to another domain [20]. Refining the abstraction in some sense corre-



sponds to traversing the search space with the use of learned clauses [23,17]. However,
there are some important differences. Learned clauses can be removed without affecting
the correctness of the algorithm, which is not the case for the abstraction refinements.
This has the adversary effect that the abstraction algorithm requires exponential space.
One the other hand, the CEGAR-based search does not require traversal in any particu-
lar order, which enables us to focus on likely solutions. This advantage is demonstrated
by the heuristics developed for the approach (Section 5.1). Further, we hypothesize that
the approach will work well on certain types of problems (Section 4.2).

The promising experimental results motivate extending the work to arbitrary levels
of the polynomial hierarchy and to general QBF. Nevertheless, many interesting appli-
cations lie in the second level of the polynomial hierarchy and this paper suggests that
dedicated algorithm may in general represent the best approach for achieving the most
efficient solutions.
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