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Backbones

Backbones of propositional theories are literals that are true in every
model.
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Motivation

backbones tell us more about the formula, e.g.
I upper bound for number of models

2n−k , where n #variables and k #backbones

I product configuration

gas-engine ∨ electric-engine
electric-engine⇒ automatic
¬automatic ∨ ¬manual


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Motivation

Can we compute backbones for large instances?

How many backbone literals do real-world instances have?
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Armory

We use a satisfiability (SAT) solver as a blackbox

SAT(x ∨ y) = (true, {x ,¬y})

SAT(x ∧ ¬x) = (false,−)
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Model Enumeration

Input : CNF formula ϕ
Output: Backbone of ϕ, νR

νR ← {¬x , x | x ∈ X} // initial backbone estimate

repeat
(outc, ν)← SAT(ϕ) // SAT solver call

if outc = false then
return νR // terminate if unsatisfiable

νR ← νR ∩ ν // update backbone estimate

ωB ← BlockClause(ν) // block model

ϕ← ϕ ∪ ωB

until νR = ∅
return ∅
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Iterative SAT Testing

Can we decide whether l is a backbone using a SAT solver?
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Iterative SAT Testing
Input : CNF formula ϕ, with variables X
Output: Backbone of ϕ, νR

νR ← ∅
foreach l ∈ {¬x , x | x ∈ X} do

(outc, ν)← SAT(ϕ ∪ {¬l})
if outc = false then

νR ← νR ∪ {l} // l is backbone

ϕ← ϕ ∪ {l}

return νR
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Iterative SAT Testing
Input : CNF formula ϕ, with variables X
Output: Backbone of ϕ, νR

νR ← ∅
foreach l ∈ {¬x , x | x ∈ X} do

(outc, ν)← SAT(ϕ ∪ {¬l})
if outc = false then

νR ← νR ∪ {l} // l is backbone

ϕ← ϕ ∪ {l}

return νR

SAT is called twice per variable
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Observation

if ν is a model of φ and l ∈ ν then ¬l is not a backbone

. . . xi . . .

. . . ¬xi . . .
...

...
...

OR: if l /∈ ν, for some model ν, then l is not a backbone
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Improving Iterative Testing

Input : CNF formula ϕ, with variables X
Output: Backbone of ϕ, νR

Λ← {x ,¬x | x ∈ X} // candidates for backbone

νR ← ∅ // initial backbone estimate

foreach l ∈ Λ do
(outc, ν)← SAT(ϕ ∪ {¬l})
if outc = false then

νR ← νR ∪ {l} // Backbone identified

ϕ← ϕ ∪ {l}
else

Λ← Λ ∩ ν
return νR
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Characteristics

model enumeration computes backbone from the upper bound
(at the beginning everything can be a backbone)

iterative testing goes from the lower bound
(at the beginning nothing is a backbone)

can we have a smarter upper bound algorithm?

idea

look only for those models that show that something that still can be
a backbone, is not a backbone
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Upper Bound Algorithm

Input : CNF formula ϕ, with variables X
Output: Backbone of ϕ, νR

(outc, νR)← SAT(ϕ) // initial backbone estimate

if outc = false then return ∅ // unsatisfiable case

while νR 6= ∅ do
(outc, ν)← SAT(ϕ ∧

∨
l∈νR ¬l)

if outc = false then
return νR // estimate contains only backbones

else
νR ← νR ∩ ν

return νR
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Characteristics

the estimate will eventually contain only backbones, which will need
to be proven in the last call

the SAT calls are getting gradually harder

can we join the two approaches?

idea

split the estimate into chunks of size K

test only one chunk at a time
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Upper Bound Chunking Algorithm
Input : CNF formula ϕ, with variables X . K ∈ N+

Output: Backbone of ϕ, νR

(outc,Λ)← SAT(ϕ) // initial backbone estimate

if outc = false then return ∅ // unsatisfiable case

νR ← ∅ // initial backbone estimate

while Λ 6= ∅ do
k ← min(|νR |, K )
Γ← pick k literals from Λ
(outc, ν)← SAT(ϕ ∧

∨
l∈Γ ¬l)

if outc = false then
νR ← νR ∪ Γ // chunk contains only backbones

ϕ← ϕ ∧
∧

l∈Γ l

else
Λ← Λ ∩ ν // something in the chunk not backbone

return νR
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Characteristics

K backbones can be shown in one call thus reducing the number of
calls

K = 1 is the iterative algorithm

K = |X | is the upper-bound algorithm
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Results
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Summary and Future Work

analysis of algorithms for computing backbones that use a SAT solver
as a blackbox

iterative algorithm (one call per variable)

upper bound (backbone proven in the last call)

generalized by chunking algorithm
(K literals can be shown as a backbone in one call)

chunking overall does not outperform the iterative algorithm but
helps in some cases

adaptive algorithms for chunks
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