
Experimental Analysis of
Backbone Computation Algorithms

Mikoláš Janota1 Inês Lynce2 Joao Marques-Silva3

1 INESC-ID, Lisbon, Portugal
2 INESC-ID/IST, Lisbon, Portugal

3 CASL/CSI, University College Dublin, Ireland

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 1 / 16

Backbones

Backbones of propositional theories are literals that are true in every
model.

. . . xj . . . xk . . . xn

.

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 2 / 16

Backbones

Backbones of propositional theories are literals that are true in every
model.

. . . xj . . . xk . . . xn

. . . xj . . . ¬xk . . . ¬xn

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 2 / 16

Backbones

Backbones of propositional theories are literals that are true in every
model.

. . . xj . . . xk . . . xn

. . . xj . . . ¬xk . . . ¬xn

. . . xj . . . ¬xk . . . xn

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 2 / 16

Backbones

Backbones of propositional theories are literals that are true in every
model.

. . . xj . . . xk . . . xn

. . . xj . . . ¬xk . . . ¬xn

. . . xj . . . ¬xk . . . xn

. . . xj . . . ¬xk . . . ¬xn

. . . xj . . . ¬xk . . . xn

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 2 / 16

Backbones

Backbones of propositional theories are literals that are true in every
model.

. . . xj . . . xk . . . xn

. . . xj . . . ¬xk . . . ¬xn

. . . xj . . . ¬xk . . . xn

. . . xj . . . ¬xk . . . ¬xn

. . . xj . . . ¬xk . . . xn

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 2 / 16

Backbones

Backbones of propositional theories are literals that are true in every
model.

. . . xj . . . xk . . . xn

. . . xj . . . ¬xk . . . ¬xn

. . . xj . . . ¬xk . . . xn

. . . xj . . . ¬xk . . . ¬xn

. . . xj . . . ¬xk . . . xn

φ |= xj φ |= ¬xk

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 2 / 16

Motivation

backbones tell us more about the formula, e.g.
I upper bound for number of models

2n−k , where n #variables and k #backbones

I product configuration

gas-engine ∨ electric-engine
electric-engine⇒ automatic
¬automatic ∨ ¬manual



Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 3 / 16

Motivation

backbones tell us more about the formula, e.g.
I upper bound for number of models

2n−k , where n #variables and k #backbones

I product configuration

gas-engine ∨ electric-engine
electric-engine⇒ automatic
¬automatic ∨ ¬manual



Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 3 / 16

Motivation

backbones tell us more about the formula, e.g.
I upper bound for number of models

2n−k , where n #variables and k #backbones

I product configuration

gas-engine ∨ electric-engine
electric-engine⇒ automatic
¬automatic ∨ ¬manual
electric-engine



Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 3 / 16

Motivation

backbones tell us more about the formula, e.g.
I upper bound for number of models

2n−k , where n #variables and k #backbones

I product configuration

gas-engine ∨ electric-engine
electric-engine⇒ automatic
¬automatic ∨ ¬manual
electric-engine

 automatic , ¬manual

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 3 / 16

Motivation

Can we compute backbones for large instances?

How many backbone literals do real-world instances have?

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 4 / 16

Armory

We use a satisfiability (SAT) solver as a blackbox

SAT(x ∨ y) = (true, {x ,¬y})

SAT(x ∧ ¬x) = (false,−)

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 5 / 16

Armory

We use a satisfiability (SAT) solver as a blackbox

SAT(x ∨ y) = (true, {x ,¬y})

SAT(x ∧ ¬x) = (false,−)

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 5 / 16

Armory

We use a satisfiability (SAT) solver as a blackbox

SAT(x ∨ y) = (true, {x ,¬y})

SAT(x ∧ ¬x) = (false,−)

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 5 / 16

Model Enumeration

Input : CNF formula ϕ
Output: Backbone of ϕ, νR

νR ← {¬x , x | x ∈ X} // initial backbone estimate

repeat
(outc, ν)← SAT(ϕ) // SAT solver call

if outc = false then
return νR // terminate if unsatisfiable

νR ← νR ∩ ν // update backbone estimate

ωB ← BlockClause(ν) // block model

ϕ← ϕ ∪ ωB

until νR = ∅
return ∅

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 6 / 16

Iterative SAT Testing

Can we decide whether l is a backbone using a SAT solver?

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 7 / 16

Iterative SAT Testing

Can we decide whether l is a backbone using a SAT solver?

φ |= l

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 7 / 16

Iterative SAT Testing

Can we decide whether l is a backbone using a SAT solver?

φ |= l iff UNSAT(φ ∧ ¬l)

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 7 / 16

Iterative SAT Testing

Can we decide whether l is a backbone using a SAT solver?

φ |= l iff UNSAT(φ ∧ ¬l)

φ |= x

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 7 / 16

Iterative SAT Testing

Can we decide whether l is a backbone using a SAT solver?

φ |= l iff UNSAT(φ ∧ ¬l)

φ |= x iff UNSAT(φ ∧ ¬x)

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 7 / 16

Iterative SAT Testing
Input : CNF formula ϕ, with variables X
Output: Backbone of ϕ, νR

νR ← ∅
foreach l ∈ {¬x , x | x ∈ X} do

(outc, ν)← SAT(ϕ ∪ {¬l})
if outc = false then

νR ← νR ∪ {l} // l is backbone

ϕ← ϕ ∪ {l}

return νR

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 7 / 16

Iterative SAT Testing
Input : CNF formula ϕ, with variables X
Output: Backbone of ϕ, νR

νR ← ∅
foreach l ∈ {¬x , x | x ∈ X} do

(outc, ν)← SAT(ϕ ∪ {¬l})
if outc = false then

νR ← νR ∪ {l} // l is backbone

ϕ← ϕ ∪ {l}

return νR

SAT is called twice per variable

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 7 / 16

Observation

if ν is a model of φ and l ∈ ν then ¬l is not a backbone

. . . xi . . .

. . . ¬xi . . .
...

...
...

OR: if l /∈ ν, for some model ν, then l is not a backbone

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 8 / 16

Observation

if ν is a model of φ and l ∈ ν then ¬l is not a backbone

. . . xi . . .

. . . ¬xi . . .
...

...
...

OR: if l /∈ ν, for some model ν, then l is not a backbone

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 8 / 16

Observation

if ν is a model of φ and l ∈ ν then ¬l is not a backbone

. . . xi . . .

. . . ¬xi . . . φ 2 xi
...

...
...

OR: if l /∈ ν, for some model ν, then l is not a backbone

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 8 / 16

Observation

if ν is a model of φ and l ∈ ν then ¬l is not a backbone

. . . xi . . .

. . . ¬xi . . . φ 2 xi
...

...
...

OR: if l /∈ ν, for some model ν, then l is not a backbone

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 8 / 16

Improving Iterative Testing

Input : CNF formula ϕ, with variables X
Output: Backbone of ϕ, νR

Λ← {x ,¬x | x ∈ X} // candidates for backbone

νR ← ∅ // initial backbone estimate

foreach l ∈ Λ do
(outc, ν)← SAT(ϕ ∪ {¬l})
if outc = false then

νR ← νR ∪ {l} // Backbone identified

ϕ← ϕ ∪ {l}
else

Λ← Λ ∩ ν
return νR

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 9 / 16

Characteristics

model enumeration computes backbone from the upper bound
(at the beginning everything can be a backbone)

iterative testing goes from the lower bound
(at the beginning nothing is a backbone)

can we have a smarter upper bound algorithm?

idea

look only for those models that show that something that still can be
a backbone, is not a backbone

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 10 / 16

Characteristics

model enumeration computes backbone from the upper bound
(at the beginning everything can be a backbone)

iterative testing goes from the lower bound
(at the beginning nothing is a backbone)

can we have a smarter upper bound algorithm?

idea

look only for those models that show that something that still can be
a backbone, is not a backbone

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 10 / 16

Characteristics

model enumeration computes backbone from the upper bound
(at the beginning everything can be a backbone)

iterative testing goes from the lower bound
(at the beginning nothing is a backbone)

can we have a smarter upper bound algorithm?

idea

look only for those models that show that something that still can be
a backbone, is not a backbone

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 10 / 16

Characteristics

model enumeration computes backbone from the upper bound
(at the beginning everything can be a backbone)

iterative testing goes from the lower bound
(at the beginning nothing is a backbone)

can we have a smarter upper bound algorithm?

idea

look only for those models that show that something that still can be
a backbone, is not a backbone

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 10 / 16

Upper Bound Algorithm

Input : CNF formula ϕ, with variables X
Output: Backbone of ϕ, νR

(outc, νR)← SAT(ϕ) // initial backbone estimate

if outc = false then return ∅ // unsatisfiable case

while νR 6= ∅ do
(outc, ν)← SAT(ϕ ∧

∨
l∈νR ¬l)

if outc = false then
return νR // estimate contains only backbones

else
νR ← νR ∩ ν

return νR

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 11 / 16

Characteristics

the estimate will eventually contain only backbones, which will need
to be proven in the last call

the SAT calls are getting gradually harder

can we join the two approaches?

idea

split the estimate into chunks of size K

test only one chunk at a time

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 12 / 16

Characteristics

the estimate will eventually contain only backbones, which will need
to be proven in the last call

the SAT calls are getting gradually harder

can we join the two approaches?

idea

split the estimate into chunks of size K

test only one chunk at a time

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 12 / 16

Characteristics

the estimate will eventually contain only backbones, which will need
to be proven in the last call

the SAT calls are getting gradually harder

can we join the two approaches?

idea

split the estimate into chunks of size K

test only one chunk at a time

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 12 / 16

Characteristics

the estimate will eventually contain only backbones, which will need
to be proven in the last call

the SAT calls are getting gradually harder

can we join the two approaches?

idea

split the estimate into chunks of size K

test only one chunk at a time

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 12 / 16

Upper Bound Chunking Algorithm
Input : CNF formula ϕ, with variables X . K ∈ N+

Output: Backbone of ϕ, νR

(outc,Λ)← SAT(ϕ) // initial backbone estimate

if outc = false then return ∅ // unsatisfiable case

νR ← ∅ // initial backbone estimate

while Λ 6= ∅ do
k ← min(|νR |, K)
Γ← pick k literals from Λ
(outc, ν)← SAT(ϕ ∧

∨
l∈Γ ¬l)

if outc = false then
νR ← νR ∪ Γ // chunk contains only backbones

ϕ← ϕ ∧
∧

l∈Γ l

else
Λ← Λ ∩ ν // something in the chunk not backbone

return νR

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 13 / 16

Characteristics

K backbones can be shown in one call thus reducing the number of
calls

K = 1 is the iterative algorithm

K = |X | is the upper-bound algorithm

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 14 / 16

Characteristics

K backbones can be shown in one call thus reducing the number of
calls

K = 1 is the iterative algorithm

K = |X | is the upper-bound algorithm

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 14 / 16

Characteristics

K backbones can be shown in one call thus reducing the number of
calls

K = 1 is the iterative algorithm

K = |X | is the upper-bound algorithm

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 14 / 16

Results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300

C
P

U
 ti

m
e

instances

C-U
C-500
C-100

C-10
C-1

VBS

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 15 / 16

Summary and Future Work

analysis of algorithms for computing backbones that use a SAT solver
as a blackbox

iterative algorithm (one call per variable)

upper bound (backbone proven in the last call)

generalized by chunking algorithm
(K literals can be shown as a backbone in one call)

chunking overall does not outperform the iterative algorithm but
helps in some cases

adaptive algorithms for chunks

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 16 / 16

Summary and Future Work

analysis of algorithms for computing backbones that use a SAT solver
as a blackbox

iterative algorithm (one call per variable)

upper bound (backbone proven in the last call)

generalized by chunking algorithm
(K literals can be shown as a backbone in one call)

chunking overall does not outperform the iterative algorithm but
helps in some cases

adaptive algorithms for chunks

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 16 / 16

Summary and Future Work

analysis of algorithms for computing backbones that use a SAT solver
as a blackbox

iterative algorithm (one call per variable)

upper bound (backbone proven in the last call)

generalized by chunking algorithm
(K literals can be shown as a backbone in one call)

chunking overall does not outperform the iterative algorithm but
helps in some cases

adaptive algorithms for chunks

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 16 / 16

Summary and Future Work

analysis of algorithms for computing backbones that use a SAT solver
as a blackbox

iterative algorithm (one call per variable)

upper bound (backbone proven in the last call)

generalized by chunking algorithm
(K literals can be shown as a backbone in one call)

chunking overall does not outperform the iterative algorithm but
helps in some cases

adaptive algorithms for chunks

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 16 / 16

Summary and Future Work

analysis of algorithms for computing backbones that use a SAT solver
as a blackbox

iterative algorithm (one call per variable)

upper bound (backbone proven in the last call)

generalized by chunking algorithm
(K literals can be shown as a backbone in one call)

chunking overall does not outperform the iterative algorithm but
helps in some cases

adaptive algorithms for chunks

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 16 / 16

Summary and Future Work

analysis of algorithms for computing backbones that use a SAT solver
as a blackbox

iterative algorithm (one call per variable)

upper bound (backbone proven in the last call)

generalized by chunking algorithm
(K literals can be shown as a backbone in one call)

chunking overall does not outperform the iterative algorithm but
helps in some cases

adaptive algorithms for chunks

Janota et al. (INESC-ID, UCD, IST) On Computing Backbones 16 / 16

