
New Resolution-based QBF Calculi and Their Proof
Complexity

OLAF BEYERSDORFF, Institute of Computer Science, Friedrich Schiller University Jena, Germany
LEROY CHEW, School of Computing, University of Leeds, UK
MIKOLÁŠ JANOTA, IST/INESC-ID, Universidade de Lisboa, Portugal

Modern QBF solvers typically use two different paradigms, conflict-driven clause learning (CDCL) solving or
expansion solving. Proof systems for quantified Boolean formulas (QBFs) provide a theoretical underpinning
for the performance of these solvers, with Q-Resolution and its extensions relating to CDCL solving and
∀Exp+Res relating to expansion solving. This paper defines two novel calculi, which are resolution-based
and enable unification of some of the principal existing resolution-based QBF calculi, namely Q-resolution,
long-distance Q-resolution and the expansion-based calculus ∀Exp+Res.

However, the proof complexity of the QBF resolution proof systems is currently not well understood. In this
paper we completely determine the relative power of the main QBF resolution systems, settling in particular
the relationship between the two different types of resolution-based QBF calculi: proof systems for CDCL-
based solvers (Q-resolution, universal and long-distance Q-resolution) and proof systems for expansion-based
solvers (∀Exp+Res and its generalizations IR-calc and IRM-calc defined here).

The most challenging part of this comparison is to exhibit hard formulas that underly the exponential
separations of the aforementioned proof systems. To this end we exhibit a new and elegant proof technique
for showing lower bounds in QBF proof systems based on strategy extraction. This technique provides a direct
transfer of circuit lower bounds to lengths of proofs lower bounds. We use our method to show the hardness
of a natural class of parity formulas for Q-resolution and universal Q-resolution. Variants of the formulas are
hard for even stronger systems as long-distance Q-resolution and extensions.

With a completely different and novel counting argument we show the hardness of the prominent formulas
of Kleine Büning et al. [51] for the strong expansion-based calculus IR-calc.

CCS Concepts: • Theory of computation → Proof complexity; Automated reasoning; •Mathematics of
computing → Solvers;

Additional Key Words and Phrases: proof complexity, QBF, lower bound techniques, separations

ACM Reference Format:
Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. 2022. New Resolution-based QBF Calculi and Their Proof
Complexity. ACM Trans. Comput. Theory 1, 1 (March 2022), 42 pages. https://doi.org/10.1145/3352155

1 INTRODUCTION
Proof complexity studies the complexity of proof measures in various formal systems, providing
both sharp lower and upper bounds for the size of proofs of important combinatorial statements.
One motivation for this research comes from its close connection to fundamental questions in
computational complexity, and this connection has been present since the very beginnings of the
field [32]. Another motivation is the tremendous success of SAT solvers, which today solve huge
industrial instances of the NP-hard SAT problem with even millions of variables. Proof complexity
provides the main theoretical tool for an understanding of the power and limitations of these
algorithms. As most modern SAT solvers are based on resolution, this proof system has received

Authors’ addresses: Olaf Beyersdorff, Institute of Computer Science, Friedrich Schiller University Jena, Germany, olaf.
beyersdorff@uni-jena.de; Leroy Chew, School of Computing, University of Leeds, Woodhouse Lane, Leeds, West Yorkshire,
LS2, UK, scslnc@leeds.ac.uk; Mikoláš Janota, IST/INESC-ID, Universidade de Lisboa, Portugal.

This is a preprint of TOCT paper.
https://doi.org/10.1145/3352155

1

https://doi.org/10.1145/3352155
https://doi.org/10.1145/3352155

2 1 INTRODUCTION

key attention; and many ingenious techniques have been devised to understand the complexity of
resolution proofs (cf. [27, 68] for surveys).

During the last decade there has been great interest and research activity to extend the success
of SAT solvers to the more powerful case of quantified Boolean formulas (QBF). Due to its PSPACE
completeness (even for restricted versions [2]), QBF is far more succinct than SAT and thus applies
to further fields such as formal verification or planning [8, 34, 62]. As for SAT solvers, runs of QBF
solvers produce witnesses of unsatisfiability (proofs), and there has been a lot of interest in the
correspondence between the formal systems and solvers. In fact, QBF solvers can also provide
witnesses in terms of proofs for true QBFs. However, in this article we only consider refutational
systems that refute closed false QBFs.
In particular, Kleine Büning et al. [51] defined a resolution-like calculus called Q-resolution

(Q-Res). There are several extensions of Q-Res; notably long-distance Q-resolution (LQ-Res) [3],
which is more powerful than the standard Q-Res [35]. While Q-Res can only resolve on existential
variables, the proof system QU-Res, introduced by Van Gelder [71], also allows to resolve on
universal variables. Combining universal and long-distance Q-resolution, Balabanov et al. [5]
considered the system LQU+-Res. Q-Res and its extensions are important as they model QBF
solving based on conflict driven clause learning (CDCL) [37].

Apart from CDCL, another main approach to QBF-solving is through expansion of quantifiers [7,
22, 47]. Recently, a proof system ∀Exp+Res was introduced [48] with the motivation to trace
expansion-based QBF solvers. ∀Exp+Res also uses resolution, but is conceptually very different
from Q-Res.
Conceptually, the variants of Q-resolution correspond to solving QBF by search and clause-

learning. In contrast, expansion-based systems correspond to solving QBF by rewriting quantifiers

into Boolean connectives — such rewrites may be iterative and may require introduction of fresh
variables. Hence, the division between expansion-based systems and Q-resolution-based systems is
naturally reflected in solving techniques.

1.1 Our contributions
In this paper we aim towards a significantly better understanding of QBF resolution proof systems
and their proof complexity. Our main contributions are (A) two new resolution-type proof systems
that naturally combine features of CDCL and expansion QBF solving and (B) the analysis of the
proof complexity of these systems. In the following we explain our main results.

A. Unifying QBF resolution calculi. Our first contribution is the introduction of two new calculi that
combine core ideas in CDCL and expansion solving.

A1. New QBF proof systems.We introduce two novel calculi IR-calc and IRM-calc, which are
shown to be sound and complete for QBF. These calculi are able to simulate the basic existing QBF
resolution-based calculi from both CDCL and expansion solving and thus combine core features of
these two solving approaches in one system.1 At the same time the new systems remain amenable
to machine manipulation.

IR-calc takes influence from the expansion in∀Exp+Res. While∀Exp+Res uses only full expansion
of all universal variables — resulting in a propositional CNF to which classical resolution is applied
— our new system IR-calc works with partial expansions and thus allows to mix resolution and
expansion steps. Working with partial expansions, which can be completed later in different ways,
yields additional power over ∀Exp+Res and allows IR-calc to both simulate ∀Exp+Res and Q-Res.

1We remark that there are further features in QBF solving not captured by our system (cf. Section 1.2).

1.1 Our contributions 3

Our second system IRM-calc extends IR-calc by allowing merge steps for universal variables and
more flexible annotations (using a new ∗ symbol which may stand for expansions by either 0 or 1).
This takes inspiration from LQ-Res, and in fact IRM-calc can simulate LQ-Res, hence unifying
CDCL- and expansion-based ideas.

A2. Strategy extraction. The semantics of a closed prenix QBF can be understood as a two-player
game between ∃ and ∀ who alternatively pick values for the variables in the order of the quantifier
prefix. In this game ∃ has a winning strategy if and only if the QBF is true, and ∀ has a winning
strategy if and only if the formula is false. A QBF proof system has strategy extraction if given a
refutation of a false QBF 𝜑 it is possible to efficiently compute a winning strategy for the universal
player for 𝜑 . Here we show that both IR-calc and IRM-calc admit strategy extraction in polynomial
time.

Indeed, unified certification of QBF solvers or certification of solvers combining expansion and
DPLL is of immense practical importance [3, 35, 42] and presents one of the main motivations for
our new systems.

B. Proof complexity of QBF resolution calculi. In general, it is fair to say that in comparison to propo-
sitional proofs, the complexity and relations between QBF proof systems are not well understood.
In particular, it is crucial to understand which lower bound techniques are available for QBF proof
systems.

B1. A new lower bound method based on strategy extraction.We exhibit a new method to
obtain lower bounds to the proof size in QBF proof systems, which directly allows to transfer circuit
lower bounds to size of proof lower bounds. This method is based on the afore-mentioned property
of strategy extraction, which is known to hold for many resolution-based QBF proof systems.

The basic idea of our method is both conceptually simple and elegant: If we know that a family 𝜑𝑛
of false QBFs requires large winning strategies, then proofs of 𝜑𝑛 must be large in all proof systems
with feasible strategy extraction. Now we need suitable formulas 𝜑𝑛 . Starting with a language 𝐿 —
for which we know (or conjecture) circuit lower bounds — we construct a family of false QBFs 𝜑𝑛
such that every winning strategy of the universal player for 𝜑𝑛 will have to compute 𝐿 for inputs
of length 𝑛. Consequently, a circuit lower bound for 𝐿 directly translates into a lower bound for the
winning strategy and therefore the proof size.

Carefully implemented, our method yields unconditional lower bounds. For Q-Res (and QU-Res)
it is known that strategy extraction is computationally easy [3]; it is in fact possible in AC0 as we
verify here. Using the hardness of parity for AC0 we can therefore construct formulas QParity𝑛
that require exponential-size proofs in Q-Res (and QU-Res).

Conceptually, our lower bound method via strategy extraction is similar to the feasible interpola-
tion technique [54], which is one of the most successful techniques in classical proof complexity.
In feasible interpolation, circuit lower bounds are also translated into proof size lower bounds.
However, feasible interpolation only works for formulas of a special syntactic form, while our
technique directly applies to arbitrary languages. It is a long-standing belief in the proof complexity
community that there exists a direct connection between progress for showing lower bounds in
circuit complexity and for proof systems (cf. [31]). For QBF proof systems our technique makes
such a connection very explicit.

B2. Lower bounds for QBF proof systems. Our new lower bound method directly gives a
new lower bound for Q-Res for the parity formulas. In addition, we transfer this lower bound
to the stronger systems LQ-Res and QU-Res by arguing that neither long-distance nor universal
resolution gives any advantage on a suitable modification of the parity formulas.

4 1 INTRODUCTION

Tree-Q-Res

Q-Res∀Exp+Res

LQ-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

5

9

43

1 2

6

97 8

10

1112

14

13

strictly stronger (p-simulates,
but exponentially separated)

incomparable (mutual
exponential separations)

new results

expansion solving

CDCL solving

Simulation/Separation Incomparable
1 [48] [48] 10 [48], Cor. 28
2 by def. [25] 11 [5]
3 Thm. 18 [48], Thm. 16 12 Cor. 40, Cor. 56
4 Thm. 16 Cor. 28 13 Cor. 28, Cor. 60
5 by def. [35] 14 Cor. 40, Cor. 56
6 by def. [71]
7 by def. Thm. 19, Cor. 56
8 Thm. 19 Cor. 40
9 by def. [5]

Fig. 1. The simulation order of QBF resolution systems

For the strong system IR-calc we show that the strategy extraction method is not directly
applicable (at least for unconditional bounds in the way we use it here). However, we use a
completely different lower bound argument to obtain an exponential lower bound for the well-
known formulas KBKF(𝑡) of Kleine Büning, Karpinski and Flögel [51] in IR-calc. In the same
work [51], where Q-Res was introduced, these formulas were suggested as hard formulas for Q-Res.
In fact, a number of further separations of QBF proof systems builds on this [5, 35]. Here we show
in a technically involved counting argument that the formulas are even hard for IR-calc. As IR-calc
simulates Q-Res we obtain as a by-product a formal proof of the hardness of KBKF(𝑡) in Q-Res.

B3. Separations between QBF proof systems. Our lower bounds imply a number of new
separations and incomparability results. The three main new results are: (i) IR-calc does not simulate

LQ-Res; (ii) IRM-calc does not simulate QU-Res; (iii) LQU+-Res does not simulate ∀Exp+Res. All are
in fact exponential separations. Items (i) and (ii) are obtained from lower bounds for KBKF(𝑡) and
a modification thereof suggested in [5], while (iii) follows from the lower bound on a variant of the

1.2 Relations to further work 5

parity formulas.2 In contrast to separations by KBKF(𝑡), all separations derived from (iii) even hold
for formulas of bounded quantifier complexity.
By transitivity and together with previous simulation results these imply many further separa-

tions. Figure 1 depicts the simulation order of QBF resolution systems together with the separations.
Combined with previous simulations and separations (cf. the table accompanying Figure 1) this
yields a complete understanding of the simulation order of QBF resolution systems, i.e., any two
systems depicted in Figure 1 either simulate each other or are exponentially separated (lines not
depicted in Figure 1 follow by transitivity).

1.2 Relations to further work
Follow-up work.We point out that since the appearance of the conference versions [11, 12] —
containing parts of the material of the present article — there has been interesting follow-up work
on the results presented here, thus demonstrating the impact of this work. Recently our lower
bound method based on strategy extraction has been generalised to much stronger systems than
QBF resolution, namely QBF Frege systems defined in [10], thereby exploiting the full range of
current circuit lower bounds for lower bounds in strong QBF proof systems [10, 21].
Another line of very recent research assessed the applicability of classical proof complexity

techniques to the QBF resolution systems investigated and defined here. Specifically, feasible
interpolation [54, 60] was shown to hold for all QBF resolution systems depicted in Figure 1,
and indeed, this technique can be interpreted as a special case of our new strategy extraction
technique [14]. In contrast, the seminal size-width technique for classical resolution [6] only works
in very limited settings for tree-like Q-Res and tree-like IR-calc, but drastically fails for most other
QBF resolution systems [15, 30]. Game-theoretic techniques from classical resolution [18–20, 61],
however, can be generalised to QBF resolution [17, 28].
Finally, [16] shows that IR-calc can be lifted to a sound and complete proof system for the

NEXPTIME-complete logic of dependency QBFs (DQBF), while all other lifted versions of QBF
resolution systems from Figure 1 except ∀Exp+Res are either incomplete or unsound. Further, Egly
[33] shows that IR-calc can be interpreted as a meaningful fragment of FO resolution.3 These results
confirm that IR-calc is a natural choice for a QBF resolution calculus.

Other approaches in QBF solving. In addition to the core features from CDCL and expansion
solving modelled by the proof systems investigated here, practical QBF solving incorporates a
number of further ideas, which are beyond the scope of the present paper. Most notably this
concerns the use of dependency schemes [55, 56, 65, 66, 70], which enable de-linearizing the prefix
and thus strengthen the performance of solvers. Dependency schemes are not modelled by the
systems in Figure 1. However, some of the proof systems considered here can be parameterized by
dependency schemes (cf. [9, 59, 69]).
Another approach not covered in this paper is extension variables [49, 53]. Some initial proof

complexity investigation on the power of extension variables in QBF is contained in [13]. We also
note that [33] contains an extension of IR-calc, where the propositional extension rule is permitted.
If universal variables cannot only be replaced by truth values but also by existential variables of
smaller level, then the propositional extension rule allows for a simulation of powerful quantifier
rules known from sequent calculi for QBFs.

2Items (i) and (iii) are already stated and sketched in the conference version [12] of this paper, whereas the separation in
item (ii) is posed in [12] as an open problem and is shown here for the first time.
3This also holds for other QBF resolution variants like Q-Res or QU-Res. However, FO resolution (together with suitable
translations) is stronger than IR-calc and IRM-calc [33].

6 2 PRELIMINARIES

Finally, preprocessing is a powerful tool in QBF [22, 24, 26, 38, 67]. A variety of applied techniques
are traceable by Q-resolution [46], but some of the techniques are expansion-based. We do not
determine the relationship of preprocessing to the calculi studied here. A proof system for tracing
preprocessing was recently developed in the form of QRAT [44].

True vs false QBFs.We concentrate in this paper on refuting false QBFs, but QBF solvers also
need to cope with true formulas. While our results show separations for calculi (and associated
solving approaches) on false QBFs, we do not investigate similar separations on true QBFs. We
comment briefly on this.

There are two main approaches to show that a formula is true in QBF solving. Term-resolution is
dual to Q-resolution—it operates on terms rather than clauses—with an additional rule that enables
generating terms (in fact implicants) from the CNF matrix on the fly [39]. Another approach is
to reason on the formula’s negation, which is especially advantageous when the input is non-
CNF [40, 41, 53, 72, 75]. We conjecture that the ideas presented here can be adapted to either of
these approaches; some preliminary results exist in this direction [13, 45], however that is beyond
the scope of this article. Some approaches certify true formulas by a winning strategy for the
existential player [4, 42, 49]. Nevertheless, this is not a calculus in the traditional sense as verifying
that a strategy is indeed a winning one is coNP-complete [52].

1.3 Organisation
The remainder of this article is organised as follows. Section 2 explains background on QBFs,
including their semantics and the previously known QBF resolution proof systems.
In Section 3 we define the new proof systems IR-calc and IRM-calc, which generalise the

expansion calculus ∀Exp+Res. In order to show soundness we prove that they have strategy
extraction in polynomial time. We then show that IR-calc p-simulates both Q-Res and ∀Exp+Res
and that IRM-calc p-simulates LQ-Res, implying that our new calculi IR-calc and IRM-calc are
complete.

Sections 4 and 5 contain our lower bound arguments and techniques, based on strategy extraction
(Section 4) and for the formulas from Kleine Büning et al. [51] (Section 5). These lower bounds also
imply the separations shown in Figure 1.

2 PRELIMINARIES

Notions from complexity. We use standard notions from computational complexity [1]. The
circuit class AC0 contains all languages computable by a uniform family of Boolean circuits with ¬,
∧, and ∨ gates, where each circuit’s depth is bounded by a constant (cf. [73]).
Notions from logic. A literal is a Boolean variable or its negation. If 𝑙 is a literal, then ¬𝑙 denotes
the complementary literal, i.e. ¬¬𝑥 = 𝑥 . A clause is a disjunction of literals (which we typically
represent as a set) and a term is a conjunction of literals. The empty clause is denoted by ⊥, which
is semantically equivalent to false. A formula in conjunctive normal form (CNF) is a conjunction of
clauses. For a literal 𝑙 = 𝑥 or 𝑙 = ¬𝑥 , we write var(𝑙) for 𝑥 and extend this notation to var(𝐶) for a
clause 𝐶 .

Given a propositional formula Φ and a partial assignment 𝛼 , the restriction of Φ by 𝛼 , denoted Φ|𝛼 ,
results from substituting the values specified by 𝛼 into Φ (and simplifying the formula accordingly).
Quantified Boolean Formulas (QBFs) [50] extend propositional logic with quantifiers with the

standard semantics that ∀𝑥 .Ψ is satisfied by the same truth assignments as Ψ|𝑥=0 ∧ Ψ|𝑥=1 and
∃𝑥 .Ψ as Ψ|𝑥=0 ∨ Ψ|𝑥=1. Unless specified otherwise, we assume that QBFs are in closed prenex form
with a CNF matrix, i.e., we consider the form Q1𝑋1 . . .Q𝑘𝑋𝑘 . 𝜙 , where 𝑋𝑖 are pairwise disjoint
(ordered) sets of variables; Q𝑖 ∈ {∃,∀} and Q𝑖 ≠ Q𝑖+1. The formula 𝜙 is in CNF and is defined only

7

(Axiom)
𝐶

𝐷 ∪ {𝑢}
(∀-Red)

𝐷

𝐷 ∪ {𝑢∗}
(∀-Red∗)

𝐷

𝐶 is a non-tautological clause in the original matrix. Literal 𝑢 is universal and lv(𝑢) ≥ lv(𝑙) for
all 𝑙 ∈ 𝐷 .

𝐶1 ∪𝑈1 ∪ {𝑥} 𝐶2 ∪𝑈2 ∪ {¬𝑥}
(Res)

𝐶1 ∪𝐶2 ∪𝑈
We consider four instantiations of the Res-rule:
S∃R: 𝑥 is an existential variable. If 𝑧 is a literal with var(𝑧) ≠ 𝑥 and 𝑧 ∈ 𝐶1, then ¬𝑧 ∉ 𝐶2.
𝑈1 = 𝑈2 = 𝑈 = ∅.
S∀R: 𝑥 is a universal variable. Otherwise same conditions as S∃R.
L∃R: 𝑥 is an existential variable.
If 𝑙1 ∈ 𝐶1, 𝑙2 ∈ 𝐶2, and var(𝑙1) = var(𝑙2) = 𝑧 then 𝑙1 = 𝑙2 ≠ 𝑧∗. 𝑈1,𝑈2 contain only universal
literals with var(𝑈1) = var(𝑈2) and ind(𝑥) < ind(𝑢) for each 𝑢 ∈ var(𝑈1).
If 𝑤1 ∈ 𝑈1,𝑤2 ∈ 𝑈2, var(𝑤1) = var(𝑤2) = 𝑢 then 𝑤1 = ¬𝑤2 or 𝑤1 = 𝑢∗ or 𝑤2 = 𝑢∗.
𝑈 = {𝑢∗ | 𝑢 ∈ var(𝑈1)}.
L∀R: 𝑥 is a universal variable (but not a merged literal 𝑧∗). Otherwise same conditions as L∃R.

proof system rules
Q-Res S∃R, ∀-Red
LQ-Res L∃R, ∀-Red, ∀-Red∗
QU-Res S∃R, S∀R, ∀-Red
LQU+-Res L∃R, L∀R, ∀-Red, ∀-Red∗

Fig. 2. The rules of CDCL-based proof systems

on variables 𝑋1 ∪ . . .∪𝑋𝑘 . The propositional part 𝜙 is called the matrix and the rest the prefix. If
𝑥 ∈ 𝑋𝑖 , we say that 𝑥 is at level 𝑖 and write lv(𝑥) = 𝑖; we write lv(𝑙) for lv(var(𝑙)). In contrast to
the level, the index ind(𝑥) provides the more detailed information on the actual position of 𝑥 in the
prefix, i.e. all variables are indexed by 1, . . . , 𝑛 from left to right. Only occasionally we distinguish
between a level and index, e.g. in the definition of LQ-Res below.
Often it is useful to think of a QBF Q1𝑋1 . . .Q𝑘𝑋𝑘 . 𝜙 as a game between the universal and the

existential player. In the 𝑖-th step of the game, the player Q𝑖 assigns values to all the variables 𝑋𝑖 ,
and both players have complete information on all previous moves. The existential player wins the
game iff the matrix 𝜙 evaluates to 1 under the assignment constructed in the game. The universal
player wins iff the matrix 𝜙 evaluates to 0. Given a universal variable 𝑢 with level 𝑖 , a strategy for 𝑢

is a function, which maps assignments of 0/1 values to the variables of lower index than 𝑢 to {0, 1}
(the intended response for 𝑢). A QBF is false iff there exists a winning strategy for the universal
player, i.e. if the universal player has a strategy for all universal variables that wins any possible
game [42][1, Sec. 4.2.2][58, Chap. 19].
A proof system [32] for a language 𝐿 over alphabet Γ (usually binary) is a polynomial-time

computable partial function 𝑓 : Γ★ → Γ★ with rng(𝑓) = 𝐿. If 𝑓 (𝑥) = 𝑦 then 𝑥 is called an 𝑓 -proof
for 𝑦. If 𝐿 consists of all propositional tautologies, then 𝑓 is called a propositional proof system, and
proof systems for the language TQBF of true QBFs are called QBF proof systems. Equivalently, we
can consider refutation proof systems where we start with the negation of the formula that we
want to prove and derive a contradiction.

8 2 PRELIMINARIES

A proof system 𝑆 for 𝐿 simulates a proof system 𝑃 for 𝐿 if there exists a polynomial 𝑝 such that
for all 𝑃-proofs 𝜋 of 𝑥 there is an 𝑆-proof 𝜋 ′ of 𝑥 with |𝜋 ′ | ≤ 𝑝 (|𝜋 |). If such a proof 𝜋 ′ can even be
computed from 𝜋 in polynomial time we say that 𝑆 p-simulates 𝑃 .
Resolution is one of the best studied propositional proof systems (cf. [68]). It is a refutational

proof system manipulating unsatisfiable CNFs as sets of clauses. The only inference rule is

𝐶 ∪ {𝑥} 𝐷 ∪ {¬𝑥}
𝐶 ∪ 𝐷

where 𝐶, 𝐷 are clauses and 𝑥 a variable. A Resolution refutation derives the empty clause ⊥.
Resolution-based calculi for QBF.We now give a brief overview of the main existing resolution-
based calculi for QBF, which model CDCL-based QBF solving. Their rules are summarized in Figure 2.
Like Resolution, all of these proof systems are refutation systems operating with clauses. As before,
a refutation in any of these systems has the empty clause as its last clause.

The most basic and important system is Q-resolution (Q-Res) by Kleine Büning et al. [51]. It is a
resolution-like calculus that operates on QBFs in prenex form with CNF matrix. In addition to the
axioms, Q-Res comprises the resolution rule S∃R and universal reduction ∀-Red (cf. Fig. 2). The
∀-Red rule allows to drop a universal literal 𝑢 from the clause, provided 𝑢 has highest level in the
clause (i.e., no existential variable in the clause depends on 𝑢). Note that the rule S∃R is just the
classical resolution rule on existential variables. However, it imposes the restriction not to derive
tautological clauses. In propositional resolution this does not present a problem, but in Q-Res we
need this restriction to guarantee soundness. Consider the example ∀𝑢∃𝑥 . (𝑥 ∨ 𝑢) ∧ (¬𝑥 ∨ ¬𝑢).
This is a true QBF. However, if tautological resolvents were allowed, we could derive 𝑢 ∨ ¬𝑢 and
then ∀-reduce to the empty clause.
Long-distance resolution (LQ-Res) appears originally in the work of Zhang and Malik [74] and

was formalized into a calculus by Balabanov and Jiang [3]. The idea of long-distance resolution is
to allow certain resolution steps that produce tautological clauses and are thus prohibited in Q-Res.
However, this is only allowed under certain side-conditions, explained below. Instead of deriving a
tautological clause containing 𝑢 ∨ ¬𝑢, long-distance steps merge complementary universal literals
𝑢 and ¬𝑢 of a universal variable 𝑢 into the special literal 𝑢∗. Syntactically, 𝑢∗ is just a new variable,
but intuitively, one may think of 𝑢∗ as some kind of representation for 𝑢 ∨ ¬𝑢.4
The mentioned side-conditions in the long-distance rule L∃R are as follows (cf. Figure 2). The

pivot is the existential variable 𝑥 . In addition, there are universal literals 𝑈1 contained in the first
clause and𝑈2 contained in the second clause, which all appear right of the pivot 𝑥 in the quantifier
prefix. Moreover, 𝑈1 and 𝑈2 contain exactly the same universal variables, but in opposite polarities
(or already in its starred version 𝑢∗). In the long-distance resolution step, all variables in𝑈1 and𝑈2
will be merged, i.e., for each 𝑢 appearing in𝑈1 and𝑈2 we include 𝑢∗ in the resolvent.

LQ-Res uses the ‘long-distance’ resolution rule L∃R over existential pivots (generalising the
‘short-distance’ resolution rule S∃R over existentials) together with the universal reduction rules
∀-Red and ∀-Red∗.
As a toy example consider the formula ∃𝑥∀𝑢. (𝑥 ∨ 𝑢) ∧ (¬𝑥 ∨ ¬𝑢), where we can perform a

long-distance step with pivot 𝑥 , leading to 𝑢∗, which can subsequently be ∀-reduced to the empty
clause. However, the unsound step used in our earlier example ∀𝑢∃𝑥 . (𝑥 ∨ 𝑢) ∧ (¬𝑥 ∨ ¬𝑢) is still
prohibited in LQ-Res as the merged literals must have higher index than the pivot.

QU-resolution (QU-Res) [71] is a different extension of Q-Res, which removes the restriction from
Q-Res that the resolved variable must be an existential variable and allows resolution of universal
variables. However, it still forbids tautological resolvents. The rules of QU-Res are S∃R, S∀R, and
∀-Red.
4Note that complementary universal literals appear naturally in learned clauses in QBF solvers [74].

3.1 Introducing the expansion calculi IR-calc and IRM-calc 9

Finally, LQU+-Res [5] combines LQ-Res and QU-Res by allowing short and long distance res-
olution over both existential or universal pivots. However, the pivot is never a merged literal 𝑧∗.
LQU+-Res uses the rules L∃R, L∀R, ∀-Red, and ∀-Red∗.
For any of the resolution calculi above, the size of a derivation is the number of clauses in the

proof.

3 EXPANSION CALCULI: DEFINITIONS, STRATEGY EXTRACTION, AND
SIMULATIONS

In this section we define the new expansion calculi IR-calc and IRM-calc (Section 3.1), show their
soundness by strategy extraction — a very desirable property in practice (Section 3.3) — and compare
them to previously defined QBF resolution systems (Section 3.4).

3.1 Introducing the expansion calculi IR-calc and IRM-calc
In contrast to the QBF resolution systems from the previous section the expansion calculi we will
consider here use only existential variables. Before giving the technical details, let us try to explain
the idea of expansion of universal variables.
Consider the QBF ∃𝑥∀𝑢∃𝑦. 𝜙 (𝑥,𝑢,𝑦). Expanding the universal variable 𝑢, this is semantically

equivalent to ∃𝑥∃𝑦0∃𝑦1. 𝜙 (𝑥, 0, 𝑦0) ∧ 𝜙 (𝑥, 1, 𝑦1), where we need to create two fresh copies of the
existential variables right of 𝑢 (in this case we create two copies 𝑦0 and 𝑦1, but keep 𝑥). In fact,
instead of just renaming the variable 𝑦 to 𝑦0 and 𝑦1 it will be more convenient to record in the
annotation, which expansion caused the renaming. In our example, we would name 𝑦0 as 𝑦0/𝑢 and
𝑦1 as 𝑦1/𝑢 to remember that we created the copies of 𝑦 by expanding 𝑢.

In this way we expand all the universal variables in the QBF, which results in a purely existentially
quantified formula. Of course, in general this will produce an exponential increase in the formula
size. However, in some cases it may suffice to instantiate a universal variable in just one polarity
and still preserve the falsity of the QBF. Consider the example ∀𝑢∃𝑥 . (𝑢 ∨ 𝑥) ∧ (𝑢 ∨ ¬𝑥), where we
can just instantiate 𝑢 by 0 to obtain the false QBF ∃𝑥0/𝑢 . 𝑥0/𝑢 ∨ ¬𝑥0/𝑢 . We refer to [48] for more
background information on expansion.
This approach is in line with the workings of the highly competitive QBF solver RAReQS [47],

which gradually expands all universal variables to obtain a purely existential formula that is then
passed to a SAT solver. Proof theoretically, RAReQS corresponds to the calculus ∀Exp+Res [48],
introduced below. On a technical note, the solver also simultaneously expands the formula’s
negation, which enables proving true formulas.

We now start to set up the formal framework allowing us to define our new calculi. The framework
hinges on the concept of clauses that only contain existential variables with annotations.

Definition 1.

(1) An extended assignment is a partial mapping from the universal variables to {0, 1, ∗}. We remark

that this notation has nothing to do with the proof complexity convention to map unassigned

variables to ∗. Rather, a variable 𝑢 is mapped to ∗ if 𝑢∗ appears in some clause, which will be

made precise later.

In contrast, an assignment has range {0, 1}, as usual. To highlight the difference, we will some-

times refer to assignments as 0/1 assignments.

(2) An annotated clause is a clause where each existential literal is annotated by an extended

assignment to universal variables.

(3) For an extended assignment 𝜎 to universal variables we write 𝑙 [𝜎] to denote an annotated literal

where [𝜎] = {𝑐/𝑢 ∈ 𝜎 | lv(𝑢) < lv(𝑙)}. Thus 𝑙 [𝜎] annotates 𝑙 only with the variables in 𝜎 left

10 3 EXPANSION CALCULI: DEFINITIONS, STRATEGY EXTRACTION, AND SIMULATIONS

of 𝑙 in the quantifier prefix (which are the variables assigned before 𝑙 in the game semantics of

QBF).

(4) Two (extended) assignments 𝜏 and 𝜇 are called contradictory if there exists a variable 𝑥 ∈
dom(𝜏) ∩ dom(𝜇) with 𝜏 (𝑥) ≠ 𝜇 (𝑥).

Further we define operations that let us modify annotations of a clause by instantiation.

Definition 2. For (extended) assignments 𝜏 and 𝜇, we write 𝜏 ◦ 𝜇 for the assignment 𝜎 defined

as follows: 𝜎 (𝑥) = 𝜏 (𝑥) if 𝑥 ∈ dom(𝜏), otherwise 𝜎 (𝑥) = 𝜇 (𝑥) if 𝑥 ∈ dom(𝜇). The operation 𝜏 ◦ 𝜇 is
referred to as completion because 𝜇 provides values for variables that are not defined in 𝜏 .

The completion operation is associative and therefore we can omit parentheses. In contrast, it
is not commutative. The following properties hold: (i) For non-contradictory 𝜇 and 𝜏 , we have
𝜇 ◦ 𝜏 = 𝜏 ◦ 𝜇 = 𝜇 ∪𝜏 . (ii) 𝜏 ◦ 𝜏 = 𝜏 .

We also need an auxiliary operation of instantiation, which completes the annotations of literals
in a clause by a partial (extended) assignment.

Definition 3. For an extended assignment 𝜏 and an annotated clause 𝐶 , the function inst(𝜏,𝐶)
returns the annotated clause

{
𝑙 [𝜎◦𝜏] | 𝑙𝜎 ∈ 𝐶

}
.

We are now ready to describe the expansion QBF systems.
The first of these is the calculus ∀Exp+Res from [48]. In Figure 3 we present an adapted version

of this calculus so that it is congruent with the new concepts presented here (semantically it is the
same as in [48]). The axiom rule for ∀Exp+Res simply downloads a clause by picking a total 0/1
assignment to the universal variables, applies it to the clause, and records the used assignment in
the annotations.
Note that, in ∀Exp+Res, 𝜏 is always a complete assignment to all universal variables. However,

when appearing as annotation to an existential variable 𝑥 , it is truncated to the universal variables
left of 𝑥 . This is reflected in the notation 𝑥 [𝜏] (cf. Definition 1). For example, if we have a formula
∀𝑢∃𝑥∀𝑣∃𝑦. 𝜙 and 𝜏 assigns 𝑢 and 𝑣 to 0, then a clause 𝑢 ∨ 𝑥 ∨ 𝑣 ∨𝑦 from 𝜙 would be instantiated to
𝑥0/𝑢 ∨ 𝑦0/𝑢,0/𝑣 .

The resolution rule of ∀Exp+Res is just the propositional resolution rule. Note, however, that the
pivot annotations need to match exactly in both parent clauses. This makes sense, because in our
framework, different annotations formally lead to distinct variables.

In∀Exp+Res, proofs can be easily split into two phases. The first consists only of axiom downloads,
removing all universal variables and annotating the existential variables. This is followed by the
second phase, consisting only of classical resolution steps on the new annotated variables, cf.
Section 3.2 for an example.

We now describe our first new system IR-calc. Like ∀Exp+Res it completely eliminates universal
variables and operates with annotated clauses. The main difference is that, unlike in ∀Exp+Res,
where existentials are always annotated by all universals preceding them in the prefix, the system
IR-calc can deal with partial assignments. The calculus introduces clauses from the matrix and
allows to Instantiate and Resolve clauses; hence the name IR-calc. It comprises the rules in Figure 4.

The axiom download rule is similar to ∀Exp+Res, but only annotates the existential literals with
those preceding universals which actually occur in the clause. For example, if ∀𝑢∃𝑥∀𝑣∃𝑦. 𝜙 contains
the clause 𝑥 ∨ 𝑣 ∨ 𝑦 we download it in IR-calc as 𝑥 ∨ 𝑦0/𝑣 , whereas in ∀Exp+Res we also need to
choose a value for 𝑢 and could either download it as 𝑥0/𝑢 ∨ 𝑦0/𝑢,0/𝑣 or 𝑥1/𝑢 ∨ 𝑦1/𝑢,0/𝑣 .
The resolution rule is identical to ∀Exp+Res. Again, annotations in the pivot need to match

precisely, and for this reason we also adopt an instantiation rule, which can increase annotations
in the clause. This can enable further resolution steps. Again, in instantiation steps we need to

3.1 Introducing the expansion calculi IR-calc and IRM-calc 11

(Axiom){
𝑙 [𝜏] | 𝑙 ∈ 𝐶, 𝑙 is an existential literal

}
𝐶 is a non-tautological clause from the original matrix and 𝜏 is a 0/1 assignment to all universal
variables in the quantifier prefix that falsifies all universal literals in 𝐶 .

𝐶1 ∪ {𝑥𝜏 } 𝐶2 ∪ {¬𝑥𝜏 }
(Res)

𝐶1 ∪𝐶2
𝐶1 and 𝐶2 are clauses of annotated literals and 𝑥𝜏 is an annotated variable.

Fig. 3. The rules of ∀Exp+Res (adapted from [48])

(Axiom){
𝑙 [𝜏] | 𝑙 ∈ 𝐶, 𝑙 is an existential literal

}
𝐶 is a non-tautological clause from the original matrix. 𝜏 is a partial 0/1 assignment to universal
variables, which has exactly all universal variables from𝐶 as its domain and falsifies all universal
literals in 𝐶 , i.e., 𝜏 = {0/𝑢 | 𝑢 ∈ 𝐶,𝑢 is universal} ∪ {1/𝑢 | ¬𝑢 ∈ 𝐶,𝑢 is universal}.

{𝑥𝜏 } ∪𝐶1 {¬𝑥𝜏 } ∪𝐶2 (Resolution)
𝐶1 ∪𝐶2

𝐶 (Instantiation)
inst(𝜏,𝐶)

𝐶1, 𝐶2, and 𝐶 are clauses of annotated literals.
𝜏 is a partial 0/1 assignment to universal variables with rng(𝜏) ⊆ {0, 1}.

Fig. 4. The rules of IR-calc.

truncate the annotations to universal variables left of the annotated existential variable, as indicated
by the notation 𝑙 [𝜎◦𝜏] in Definition 3.
Unlike in the ∀Exp+Res system, IR-calc proofs are no longer separated into an annotation

and a resolution phase, but can mix instantiation and resolution steps in the proof by “delayed
instantiations" as and when they are needed. An example is contained in Section 3.2.
Note that in ∀Exp+Res, propositional variables are introduced so that their annotations assign

all relevant variables. In this way, each literal corresponds to a value of a Skolem function in a
specific point. In contrast, in IR-calc, variables are annotated “lazily”, i.e., it enables us to reason
about multiple points of Skolem functions at the same time. This is analogous to specialization of
free variables by constants in first-order logic (FO). Similarly, resolution in IR-calc is analogous to
resolution in Robinson’s FO resolution [64]. The papers [16, 33] further explore the connection
between IR-calc and FO resolution.5 From the FO perspective, IR-calc appears to be a very natural
proof system. In [16] this is confirmed by the fact that ∀Exp+Res and IR-calc are the only proof
system among the resolution systems considered here that lift to the more succinct setting of
dependency QBFs (DQBF).
Our second new system IRM-calc is an extension of IR-calc where we allow as annotations

extended assignments with range {0, 1, ∗}. The purpose of ∗ is similar to the role of ∗ in LQ-Res (cf.
the remarks in Section 2).

5We remark that the instantiation rule in Figure 4 can be omitted when the resolution rule is extended by unification which
computes most general unifiers between the (FO image of) complementary annotated literals. Unification and most general
unifiers guarantee that the refutation is as general as possible, i.e., instantiations are “minimal”.

12 3 EXPANSION CALCULI: DEFINITIONS, STRATEGY EXTRACTION, AND SIMULATIONS

Axiom and instantiation rules as in IR-calc in Figure 4.

𝑥𝜏∪𝜉 ∨𝐶1 ¬𝑥𝜏∪𝜎 ∨𝐶2 (Resolution)
inst(𝜎,𝐶1) ∪ inst(𝜉,𝐶2)

𝐶1 and 𝐶2 are clauses of annotated literals. 𝜏 is a partial assignment to universal variables (i.e.,
rng(𝜏) = {0, 1}) and 𝜉 , 𝜎 are extended assignments (i.e., they assign universal variables to {0, 1, ∗}).
dom(𝜉) ∩ dom(𝜎) = ∅.

𝐶 ∨ 𝑙𝜇 ∨ 𝑙𝜎 (Merging)
𝐶 ∨ 𝑙𝜉

𝐶 is a clause of annotated literals. 𝑙 is a literal and 𝜇 and 𝜎 are extended assignments with
dom(𝜇) = dom(𝜎). 𝜉 = {𝑐/𝑢 | 𝑐/𝑢 ∈ 𝜇, 𝑐/𝑢 ∈ 𝜎} ∪ {∗/𝑢 | 𝑐/𝑢 ∈ 𝜇, 𝑑/𝑢 ∈ 𝜎, 𝑐 ≠ 𝑑}

Fig. 5. The rules of IRM-calc.

Axioms and instantiation rules of IRM-calc are handled as in IR-calc, which do not create ∗.
The annotation ∗ may be introduced by a new rule called merging. It merges two literals on the
same existential variable to one copy where all conflicting annotations produce ∗. For example, the
merge of 𝑥0/𝑢,0/𝑣,0/𝑤 and 𝑥0/𝑢,1/𝑣,∗/𝑤 produces 𝑥0/𝑢,∗/𝑣,∗/𝑤 .

The resolution rule is defined slightly differently, annotations of the pivot need not necessarily
match before application of the rule, but are matched “on the fly" while resolving (the resolution
rule is designed such that this matching is possible). More precisely, the resolution rule in Figure 5
uses pivot 𝑥 , annotated as 𝑥𝜏∪𝜉 in the first parent clause and as ¬𝑥𝜏∪𝜎 in the second parent, where
𝜉 and 𝜎 are partial extended assignments with disjoint domain. Thus, by instantiating the first
parent with 𝜎 and the second parent with 𝜉 we create a pivot 𝑥𝜏∪𝜉∪𝜎 with matching annotations
and obtain a sound resolution step. The resolution rule can now deal with ∗, but when 𝜉 = 𝜎 = ∅
we have exactly the resolution rule from Figure 4. Thus IRM-calc encompasses IR-calc.

IRM-calc is defined in Figure 5, an example is contained in Section 3.2.
Intuitively, a unit clause 𝑥0/𝑢 asserts that any interpretation of the Skolem function for 𝑥 must

yield 1 whenever 𝑢 = 0. Thus the clause 𝑥1/𝑢 ∨ 𝑥0/𝑢 asserts that for any value of the remaining
relevant universal variables, the Skolem function must yield 1 on 𝑢 = 1 or on 𝑢 = 0. Note that
this does not mean that the function has to be constantly 1. Merging enables compressing such
clauses. For instance, in IR-calc, to refute the clauses {¬𝑥1/𝑤, 𝑥0/𝑢 ∨ 𝑥1/𝑢} one would apply the
instantiation rule to obtain {¬𝑥0/𝑢,1/𝑤,¬𝑥1/𝑢,1/𝑤, 𝑥0/𝑢,1/𝑤∨𝑥1/𝑢,1/𝑤} and then proceed as in classical
propositional resolution. In contrast, IRM-calc enables merging the binary clause into the unit
clause 𝑥∗/𝑢 , which in turn gives a contradiction with the original clause ¬𝑥1/𝑤 .

3.2 Proof examples
We illustrate the expansion calculi from Section 3.1 by a few examples. We write 𝑙𝑢 as a shorthand
for 𝑙1/𝑢 and 𝑙𝑢 for 𝑙0/𝑢 .

Example 4. Figure 6(a) exemplifies a proof in ∀Exp+Res. In this case there is only one universal

variable 𝑢. The variable needs to be instantiated whenever a new clause is introduced into the proof. In

the case of the clause ¬𝑒2 there are two options for instantiation. In the case of the two other clauses

only one of the instantiations is useful. Note that only 𝑒2 is annotated by 𝑢 because lv(𝑒1) < lv(𝑢).
Example 5. Figure 6(b) exemplifies a proof in IR-calc; most notably, ¬𝑒5 needs to be annotated only

by 𝑢3 when it enters the proof.

Example 6. Figure 6(c) shows an IRM-calc refutation, containing ∗ in an annotation of 𝑒5.

3.2 Proof examples 13

∃e1∀u∃e2
𝑒1∨𝑢∨𝑒2 ¬𝑒1∨¬𝑢∨𝑒2

𝑒1∨𝑒𝑢̄2 ¬𝑒1∨𝑒𝑢2

𝑢 𝑢

¬𝑒2

¬𝑒𝑢̄2 ¬𝑒𝑢2

𝑢 𝑢

𝑒𝑢̄2 ∨𝑒𝑢2

𝑒𝑢2

⊥

(a) An example proof in ∀Exp+Res.

∀u1∃e2∀u3∀u4∃e5
𝑢3∨¬𝑒5

¬𝑒𝑢̄3
5

𝑢3

𝑢1∨¬𝑒2∨𝑢3∨¬𝑢4∨𝑒5

¬𝑒𝑢̄1
2 ∨𝑒𝑢̄1𝑢̄3𝑢4

5

𝑢1∨𝑒2∨𝑢3∨𝑢4∨𝑒5

𝑒
𝑢̄1
2 ∨𝑒𝑢̄1𝑢̄3𝑢̄4

5

𝑢1𝑢3𝑢4𝑢1𝑢3𝑢4

¬𝑒𝑢̄1𝑢̄3𝑢4
5¬𝑒𝑢̄1𝑢̄3𝑢̄4

5

¬𝑒𝑢̄1
2𝑒

𝑢̄1
2

⊥

𝑢1𝑢4𝑢1𝑢4

(b) An example proof in IR-calc.

∀u1∀u2∃e3∀u4∃e5
𝑢1∨¬𝑒3∨𝑢4∨𝑒5

¬𝑒0/𝑢1
3 ∨𝑒0/𝑢1,0/𝑢4

5

𝑢1𝑢4

𝑒3∨¬𝑢4∨𝑒5

𝑒3∨𝑒1/𝑢4
5

𝑢2∨¬𝑒5

𝑢4

𝑒
0/𝑢1,0/𝑢4
5 ∨𝑒0/𝑢11/𝑢4

5

𝑒
0/𝑢1∗/𝑢4
5

¬𝑒0/𝑢2
5

⊥

𝑢2

𝑒
0/𝑢1,0/𝑢4
5 𝑒

0/𝑢11/𝑢4
5

(c) An example proof in IRM-calc.

axiom downloads or
instantiation steps

resolution steps

axioms from the matrix

derived clauses

Fig. 6. Proof examples. Instantiation

Example 7. Consider the (true) QBF ∃𝑥∀𝑢𝑤∃𝑏. (𝑥 ∨𝑢 ∨𝑏) ∧ (¬𝑥 ∨¬𝑢 ∨𝑏) ∧ (𝑢 ∨𝑤 ∨¬𝑏). In both
calculi, applications of the Axiom rule yield (𝑥 ∨ 𝑏0/𝑢), (¬𝑥 ∨ 𝑏1/𝑢), and (¬𝑏0/𝑤,0/𝑢). IR-calc enables
deriving (𝑏0/𝑢 ∨ 𝑏1/𝑢) from the first two clauses. IRM-calc further enables deriving 𝑏∗/𝑢 by merging.

Intuitively, (𝑏0/𝑢 ∨𝑏1/𝑢) means that the existential player must play so that for any assignment to𝑤 it

holds that 𝑏 = 1 if 𝑢 = 0 or if 𝑢 = 1. So for instance, the existential player might choose to play 𝑏 = 1 if

𝑤 = 0, 𝑢 = 1 and if𝑤 = 1, 𝑢 = 0 (and otherwise 𝑏 = 0). The clause 𝑏∗/𝑢 can be seen as a shorthand for

the clause (𝑏0/𝑢 ∨ 𝑏1/𝑢). Note that it would be unsound to derive the clause (𝑏) (with no annotation).

This would mean that 𝑏 must be 1 regardless of the moves of the universal player. However, 𝑏 needs to

be 0 when 𝑢 = 𝑤 = 0 due to the axiom (¬𝑏0/𝑤,0/𝑢).
Example 8. Consider again the QBF ∃𝑥∀𝑢𝑤∃𝑏. (𝑥 ∨𝑢 ∨ 𝑏) ∧ (¬𝑥 ∨ ¬𝑢 ∨ 𝑏) ∧ (𝑢 ∨𝑤 ∨ ¬𝑏) from

Example 7. If the third clause of the formula is changed to ¬𝑏, the formula becomes false, which is

shown by instantiating ¬𝑏 to ¬𝑏0/𝑢
and to ¬𝑏1/𝑢

, using those to obtain 𝑥 and ¬𝑥 by resolution and

deriving the empty clause.

Example 9. Consider the QBF ∃𝑥∀𝑢∃𝑏𝑐. (𝑥∨𝑢∨𝑏) ∧ (¬𝑥∨¬𝑢∨𝑐) ∧ (¬𝑏∨𝑐) ∧ (¬𝑐). The following
derivation is possible in IR-calc. Resolving 𝑥 ∨𝑏0/𝑢

and ¬𝑥 ∨𝑐1/𝑢
yields 𝑏0/𝑢 ∨𝑐1/𝑢

. Instantiating ¬𝑏∨𝑐
by 0/𝑢 gives ¬𝑏0/𝑢 ∨ 𝑐0/𝑢

, resolving this with the previous resolvent yields 𝑐0/𝑢 ∨ 𝑐1/𝑢
. Refutation can

be obtained by instantiation of ¬𝑐 once by 0/𝑢 and once by 1/𝑢 and subseqent two resolution steps. In

IRM-calc it is possible to obtain 𝑐∗/𝑢 by merging and resolve that directly with ¬𝑐 , which yields ⊥.

14 3 EXPANSION CALCULI: DEFINITIONS, STRATEGY EXTRACTION, AND SIMULATIONS

3.3 Soundness and extraction of winning strategies
The purpose of this section is twofold: to show how to obtain a winning strategy for the universal
player from an IR-calc proof, and to show that IR-calc is sound. First we show how to obtain a
winning strategy for the universal player from a proof. From this, the soundness of the calculus
follows because a QBF is false if and only if such a strategy exists. We will then explain how to
extend this technique to IRM-calc.

The approach we follow is similar to the one used for Q-Res [42] or LQ-Res [35]. We first explain
this method informally and then give full details on how this is implemented for IR-calc and
IRM-calc.
Informally, for the approach to work for a QBF proof system 𝑃 we need two properties:
(1) The proof system 𝑃 shall be closed under restrictions, i.e., if 𝜋 is a 𝑃-proof of Q𝑋 .Φ (where

Φ may contain further quantifiers) and 𝛼 is an assignment to the variables 𝑋 , then we can
construct from 𝜋 and 𝛼 a 𝑃-proof 𝜋𝛼 of Φ|𝛼 in polynomial time.

(2) Restricting a proof 𝜋 by an assignment to the leftmost block of existential variables to a proof
𝜋𝛼 as in item 1, we can read off from 𝜋𝛼 a response for the universal player for the next round.

We therefore consider QBFs in the form Γ = ∃𝐸∀𝑈 .Φ, where 𝐸 and𝑈 are sets of variables and Φ is
a QBF (potentially with further quantification beginning with ∃). Suppose 𝜋 is an IR-calc refutation
of Γ, and let 𝜖 be a total assignment to the variable block 𝐸. The assignment 𝜖 represents a move of
the existential player. We restrict 𝜋 to a refutation 𝜋𝜖 of the restricted formula ∀𝑈 .Φ|𝜖 . To obtain a
response of the universal player, we construct from 𝜋𝜖 an assignment 𝜇 to the variables 𝑈 such
that reducing 𝜋𝜖 by 𝜇 gives a refutation of Φ|𝜖∪𝜇 .

Now let 𝜋𝜖,𝜇 be the proof resulting from restricting 𝜋𝜖 by 𝜇. The game continues with Φ|𝜖∪𝜇 and
𝜋𝜖,𝜇 . In each of these steps, two quantifier levels are removed from the given QBF and a refutation
for each of the intermediate formulas is produced. This guarantees a winning strategy for the
universal player because in the end the existential player will be faced with an unsatisfiable formula
without universal variables.

We now implement this approach for IR-calc. We start with item 1, showing closure of IR-calc
under restrictions. This indeed holds for all partial assignments to existential variables (not just
those to the first existential block).

Lemma 10. Let 𝜋 be an IR-calc refutation of Γ and let 𝜖 be a partial assignment of existential

variables from Γ. We can then construct from 𝜋 a refutation 𝜋𝜖 of Γ |𝜖 in polynomial time.

Proof. Let 𝜖 be a partial assignment to the existential variables of Γ and let 𝜋 = (𝐶1, . . . ,𝐶𝑚 = ⊥).
We describe the construction of the restricted proof 𝜋𝜖 and simultaneously argue that it is a valid
refutation. For this we define inductively clauses 𝐶 ′

𝑖 such that
(1) if 𝐶 ′

𝑖 ≠ ⊤ then 𝐶 ′
𝑖 ⊆ 𝐶𝑖 and 𝐶 ′

𝑖 has a valid IR-calc derivation in 𝜋𝜖 .
(2) if 𝐶 ′

𝑖 = ⊤ then 𝜖 satisfies 𝐶𝑖 , i.e., 𝜖 (𝑥) = 1 for some 𝑥𝜏 ∈ 𝐶𝑖 .
We note that from these two conditions it follows that 𝜋𝜖 contains a refutation, because 𝐶𝑚 = ⊥

and hence 𝐶 ′
𝑚 = ⊥, as 𝜖 does not satisfy 𝐶𝑚 .

We now inductively construct 𝐶 ′
𝑖 and show the two items above.

Base case. Let 𝐶𝑖 be derived by the axiom rule. If 𝜖 satisfies a literal 𝑙 with 𝑙𝜏 ∈ 𝐶𝑖 for some
annotation 𝜏 we set 𝐶 ′

𝑖 = ⊤. Otherwise we define 𝐶 ′
𝑖 = 𝐶𝑖 \ {𝑙𝜏 | 𝑙 is a literal falsified by 𝜖 and 𝜏 is

an annotation}.
Instantiation. If 𝐶𝑖 is derived by instantiating 𝐶 𝑗 by 𝜏 and 𝐶 ′

𝑗 ≠ ⊤, then we set 𝐶 ′
𝑖 = inst(𝜏,𝐶 ′

𝑗).
Obviously, 𝐶 ′

𝑖 ⊆ 𝐶𝑖 . If 𝐶 ′
𝑖 = ⊤ then also 𝐶 ′

𝑗 = ⊤ and 𝜖 satisfies 𝐶 𝑗 by inductive hypothesis. Hence 𝜖
also satisfies 𝐶𝑖 in the sense of condition 2.

3.3 Soundness and extraction of winning strategies 15

∃x∀u∃b
𝑥∨𝑢∨𝑏 ¬𝑏 ¬𝑥∨¬𝑢∨𝑏

¬𝑏

𝑥∨𝑏0/𝑢

𝑢

¬𝑏0/𝑢
𝑢

¬𝑏1/𝑢
𝑢

¬𝑥∨𝑏1/𝑢

𝑢

𝑥 ¬𝑥

⊥

(a) IR-calc proof DAG for Example 8

axiom downloads or
instantiation steps

resolution steps

axioms from the matrix

derived clauses

∃x∀u∃b∃c
𝑥∨𝑢∨𝑏 𝑥∨¬𝑢∨𝑐 ¬𝑏∨𝑐 ¬𝑐

𝑥∨𝑏0/𝑢

𝑢

¬𝑥∨𝑐1/𝑢

𝑢

¬𝑏∨𝑐

𝑏0/𝑢∨𝑐1/𝑢 ¬𝑏0/𝑢∨𝑐0/𝑢

𝑢

¬𝑐

𝑐0/𝑢∨𝑐1/𝑢 ¬𝑐0/𝑢

𝑢

𝑐1/𝑢

¬𝑐1/𝑢

𝑢

⊥

(b) IR-calc proof DAG for Example 9

∃x∀u∃b∃c
𝑥∨𝑢∨𝑏 𝑥∨¬𝑢∨𝑐 ¬𝑏∨𝑐 ¬𝑐

𝑥∨𝑏0/𝑢

𝑢

¬𝑥∨𝑐1/𝑢

𝑢

¬𝑏∨𝑐

𝑏0/𝑢∨𝑐1/𝑢 ¬𝑏0/𝑢∨𝑐0/𝑢

𝑢

¬𝑐

𝑐0/𝑢∨𝑐1/𝑢

𝑐∗/𝑢

𝑐0/𝑢𝑐1/𝑢

⊥

(c) IRM-calc proof DAG for Example 9

Fig. 7. Proof DAGs for Examples 8 and 9

16 3 EXPANSION CALCULI: DEFINITIONS, STRATEGY EXTRACTION, AND SIMULATIONS

Resolution. Assume now that 𝐶𝑖 was derived by resolution from 𝐶 𝑗 and 𝐶𝑘 with pivot 𝑥𝜏 ∈ 𝐶 𝑗

and ¬𝑥𝜏 ∈ 𝐶𝑘 . We distinguish four cases.
In the first case we have 𝑥𝜏 ∈ 𝐶 ′

𝑗 and ¬𝑥𝜏 ∈ 𝐶 ′
𝑘
. We perform the resolution step and set

𝐶 ′
𝑖 = (𝐶 ′

𝑗 \ {𝑥𝜏 }) ∪ (𝐶 ′
𝑘
\ {¬𝑥𝜏 }). We then have 𝐶 ′

𝑖 ⊆ (𝐶 𝑗 \ {𝑥𝜏 }) ∪ (𝐶𝑘 \ {¬𝑥𝜏 }) = 𝐶𝑖 , fulfilling
condition 1.
In the second case we have 𝑥𝜏 ∉ 𝐶 ′

𝑗 and 𝐶
′
𝑗 ≠ ⊤, and set 𝐶 ′

𝑖 = 𝐶 ′
𝑗 . Then 𝐶

′
𝑖 ⊆ 𝐶 𝑗 \ {𝑥𝜏 } ⊆ 𝐶𝑖 ,

fulfilling condition 1. (In the case of ¬𝑥𝜏 ∉ 𝐶 ′
𝑘
and 𝐶 ′

𝑘
≠ ⊤ we analogously set 𝐶 ′

𝑖 = 𝐶
′
𝑘
.)

The third case is 𝑥𝜏 ∈ 𝐶 ′
𝑗 and 𝐶

′
𝑘
= ⊤. Then we set 𝐶 ′

𝑖 = ⊤. We have to show condition 2. By
inductive hypothesis, 𝜖 satisfies 𝐶𝑘 , hence 𝜖 satisfies some literal 𝑙 ∈ 𝐶𝑘 . Necessarily, 𝑙 ≠ ¬𝑥𝜏 ,
because otherwise 𝜖 falsifies 𝑥𝜏 and thus 𝑥𝜏 ∉ 𝐶 ′

𝑖 , contradicting our assumption. Thus 𝑙 ∈ 𝐶𝑘 \
{¬𝑥𝜏 } ⊆ 𝐶𝑖 , which satisfies condition 2. (The case 𝐶 ′

𝑗 = ⊤ and ¬𝑥𝜏 ∈ 𝐶 ′
𝑘
is analogous.)

In the last case, 𝐶 ′
𝑗 = 𝐶

′
𝑘
= ⊤. We set 𝐶 ′

𝑖 = ⊤. By inductive hypothesis, 𝜖 satisfies both 𝐶 𝑗 and 𝐶𝑘 ,
hence by soundness of the resolution rule also 𝐶𝑖 . □

Lemma 11. Let 𝜋 be an IRM-calc refutation of Γ and let 𝜖 be a partial assignment of existential

variables from Γ. We can then construct from 𝜋 a refutation 𝜋𝜖 of Γ |𝜖 in polynomial time.

Proof. The proof is similar in structure, but we have to be careful of the following:

• We also need to consider the merge rule.
• IRM-calc has an instantiation part to the resolution rule, so dummy instantiation steps may
have to occur in the restricted proof in place of resolution steps.

• We cannot instantiate ∗ annotations outside of the resolution rule, so we have to instantiate
instead by a constant (e.g. 0). This does not cause any invalid inferences as ∗ is more restrictive
than constants.

• Annotations may differ between the original and restricted proof on ∗, so the clauses in the
restricted proof may not be subsets of the clauses in the original proof. In order to make sure
the clauses in the restricted proof are smaller than the original, we inductively define an
injection from the restricted clause to the original.

• To define such an injection, it will be convenient to treat contraction of two identical literals
to one literal as a separate rule and not perform contraction automatically in the proof system.
This does not affect the complexity of the calculus. Contraction can also be thought of as a
special case of the merging rule.

Firstly, we have to define the restricted proof 𝜋𝜖 and then argue for its validity as an IRM-calc
proof. The restriction is done as follows, each clause 𝐶 in 𝜋 is given a clause 𝐶 ′ in 𝜋𝜖 . However, in
the cases where 𝐶 ′ is derived using the axiom rule but 𝐶 is satisfied by 𝜖 , 𝐶 ′ must be defined as
a tautology ⊤ which will be eventually removed from the proof. Likewise if 𝐷 is derived using a
unary (binary) rule from 𝐶1 (𝐶1 and 𝐶2), if 𝐶 ′

1 (both 𝐶
′
1 and 𝐶

′
2) are ⊤ then 𝐷 must be as well. For

non-tautological clauses 𝐷 ′ in 𝜋𝜖 we can map the literals back to the literals of the original clause
𝐷 injectively. This injection we label as 𝑓𝐷 , and it is important for us showing that our construction
does in fact yield a valid IRM-calc proof.
Details of the restriction and the construction of the injections 𝑓𝐷 are shown in Figure 8. We

omit the tautological cases we have already discussed since we do not give an injection there. By
induction on the derivation depth to derive 𝐷 we show that this restriction yields a valid IRM-calc
refutation 𝜋𝜖 of Φ|𝜖 .

The induction hypothesis states that any derived clause 𝐶 ′ in the restricted proof corresponding
to clause𝐶 in the original proof has a valid derivation 𝜋𝐶′ . Further, if𝐶 ′ is non-tautologous there is
an injection 𝑓𝐶 : 𝐶 ′ → 𝐶 , where 𝑓𝐶 (𝑙𝜎

′) = 𝑙𝜎 and 𝜎 satisfies the following: dom(𝜎 ′) = dom(𝜎) and

3.3 Soundness and extraction of winning strategies 17

Rule Original proof step Proof step restricted by 𝜖 Construction of 𝑓𝐷
leading to clause 𝐷 & case condition

A
∨

𝑙 ∈𝐶,𝑙 ∈∃ 𝑙
[𝜏] ∨

𝑙 ∈𝐶,𝑙 ∈∃,var(𝑙)∉dom(𝜖) 𝑙
[𝜏] 𝑓𝐷 (𝑙𝜏) = 𝑙𝜏

𝐶 is a clause in 𝜙 . when 𝜖 does not satisfy 𝐶 .
𝜏 falsifies all ∀ lit in 𝐶 .

I 𝐶∨
𝑙𝜏 ∈𝐶 𝑙

𝜏◦𝜎
𝐶 ′∨

𝑙𝜏 ∈𝐶′ 𝑙𝜏◦𝜎
𝑓𝐷 (inst(𝜎, 𝑙𝜏))
= inst(𝜎, 𝑓𝐶 (𝑙𝜏))

M1

𝐶 = 𝐾 ∨ 𝑙𝜏 ∨ 𝑙𝜎
𝐾 ∨ 𝑙𝜉

𝐾 ′ ∨ 𝑙𝜏′ ∨ 𝑙𝜎′

𝐾 ′ ∨ 𝑙𝜉′ 𝑓𝐷 (𝑥) =
{
𝑓𝐶 (𝑥), 𝑥 ∈ 𝐾 ′

𝑙𝜉 , 𝑥 = 𝑙𝜉
′

when 𝑓𝐶 (𝑙𝜏
′) = 𝑙𝜏

and 𝑓𝐶 (𝑙𝜎
′) = 𝑙𝜎

M2
𝐶 ′ = 𝐾 ′ ∨ 𝑙𝜏′

𝐾 ′ ∨ 𝑙𝜏 ′ 𝑓𝐷 (𝑥) =
{
𝑓𝐶 (𝑥), 𝑥 ∈ 𝐾 ′

𝑙𝜉 , 𝑥 = 𝑙𝜏
′

when 𝑓𝐶 (𝑙𝜏
′) = 𝑙𝜏

and ∀𝑙𝜎′ ∈ 𝐶 ′, 𝑓𝐶 (𝑙𝜎
′) ≠ 𝑙𝜎

M3
𝐶 ′

𝐶 ′ 𝑓𝐷 (𝑥) = 𝑓𝐶 (𝑥)
∀𝑙𝜎′ ∈ 𝐶 ′, 𝑙𝜏 ≠ 𝑓𝐶 (𝑙𝜎

′) ≠ 𝑙𝜎

R1
𝐶1 𝐶2

inst(𝜉, 𝐾1) ∨ inst(𝜎, 𝐾2)

𝐾 ′
1 ∨ 𝑥𝜏◦𝜎

′
𝐾 ′

2 ∨ ¬𝑥𝜏◦𝜉′

inst(𝜉 ′, 𝐾 ′
1) ∨ inst(𝜎 ′, 𝐾 ′

2)
𝑓𝐷 (inst(𝛽, 𝑙𝛼)) =

𝐶1 = 𝐾1 ∨ 𝑥𝜏◦𝜎

when 𝑓𝐶1 (𝑥𝜏◦𝜎
′) = 𝑥𝜏◦𝜎

{
inst(𝛽, 𝑓𝐶1 (𝑙𝛼)) 𝑙𝛼 ∈ 𝐶 ′

1
inst(𝛽, 𝑓𝐶2 (𝑙𝛼)) 𝑙𝛼 ∈ 𝐶 ′

2

𝐶2 = 𝐾2 ∨ ¬𝑥𝜏◦𝜉

and 𝑓𝐶2 (¬𝑥𝜏◦𝜉
′) = ¬𝑥𝜏◦𝜉

𝜏, 𝜎, 𝜉 pairwise disjointR2

rng(𝜏) = {0, 1}

𝐶 ′
1 𝐶 ′

2
inst(𝜉 ′,𝐶 ′

1)
∀𝑙𝛼 ∈ 𝐶 ′

1, 𝑓𝐶1 (𝑙𝛼) ≠ 𝑥𝜏◦𝜎 𝑓𝐷 (inst(𝜉 ′, 𝑙𝛼))

𝜉 ′(𝑢) =
{

0 𝜉 (𝑢) = ∗
𝜉 (𝑢) else

= inst(𝜉, 𝑓𝐶1 (𝑙𝛼))

R3 𝐾 ′
1 ∨ 𝑥𝜏◦𝜎

′ ⊤
⊤

𝑓𝐶1 (𝑥𝜏◦𝜎
′) = 𝑥𝜏◦𝜎

Fig. 8. Transformation of IRM-calc proof steps under the restriction 𝜖 with conditions and construction
of the injection 𝑓𝐷 : 𝐷 ′ → 𝐷 used in Lemma 11, where D is the clause derived in our line. Each rule also
has tautological cases where the premises are tautologies, which are omitted here. 𝑙 ∈ ∃ denotes that 𝑙 is
existential.

for every 𝑐/𝑢 ∈ 𝜎 ′ there is exactly one 𝑑/𝑢 ∈ 𝜎 where 𝑑 = 𝑐 or 𝑑 = ∗. If 𝐶 ′ is tautologous then 𝐶 is
satisfied by 𝜖 .
The purpose of this injection is to ensure that in the restricted proof the clauses have at most

the number of literals in the original proof. This along with the condition on tautological clauses
ensures that the restricted proof ends in ⊥. The condition on 𝑓𝐶 regarding annotations allows
resolution to occur whenever the pivot literals are present.

18 3 EXPANSION CALCULI: DEFINITIONS, STRATEGY EXTRACTION, AND SIMULATIONS

Base case. In the axiom step (A), the clause in the restricted proof either has some literals
removed, or is set to ⊤ when 𝜖 satisfies the clause. We detail the first case in Figure 8 and define
the injection 𝑓 by mapping identical literals.

Instantiation. An instantiation step (I) keeps the number of literals exactly the same, giving rise
to a bijection between literals in𝐶 and inst(𝜎,𝐶). This allows us to carry over the same injection 𝑓
to the next line.
If 𝐷 ′ is tautologous then 𝐶 ′ is as well. By the induction hypothesis 𝜖 satisfies 𝐶 and since

instantiation does not change the existential literals then 𝜖 satisfies 𝐷 .
Merging. Consider the first merge case (M1) in Figure 8. In the restricted clause the literals 𝑙𝜏

and 𝑙𝜎 become 𝑙𝜏′ and 𝑙𝜎′ , respectively. (M1) is the case where both these literals are present. Some
∗ in the annotations 𝜏 , 𝜎 might be 0 or 1 in 𝜏 ′ or 𝜎 ′. However, the domains of 𝜏 , 𝜏 ′, 𝜎 , and 𝜎 ′ are all
equal. The restricted proof will contain a merge of 𝑙𝜏 ′ and 𝑙𝜎′ .

In order to satisfy the annotation condition, we note that wherever a ∗/𝑢 appears in 𝜉 ′, a ∗/𝑢 will
appear in 𝜉 , since it either comes from a ∗ itself or a 0/1 conflict. Either the 0/1 conflict is present
in the original merge or there is a ∗ there by the condition from the induction hypothesis. This
means our condition is satisfied.
Now consider the second merge case (M2) in Figure 8. If the restricted clause contains only

one of the literals, say 𝑙𝜏 ′ , the merge step is not performed in 𝜋𝜖 . The injection is constructed
straightforwardly: the literal 𝑙𝜏 ′ in the new proof is mapped to the merged literal in the original
proof and all other literals remain the same. The third case (M3) is similar to the second, but simpler.

Merging does not affect the presence of a literal that is satisfied by 𝜖 . If 𝐷 ′ is tautologous then𝐶 ′

is as well. By the induction hypothesis 𝜖 satisfies 𝐶 and since instantiation does not change which
existential literals are present then 𝜖 satisfies 𝐷 .

Contraction. Contraction is a special case of merging, so the same argument applies.
Resolution. Consider the first resolution case (R1) in Figure 8, this is the case where both pivot

literals are present so we perform resolution again. In Figure 8 the way the rule is defined is slightly
different to its definition in Figure 5, using ◦ instead of ∪ to make it clear that the annotations in 𝜏
takes precedent. The induction hypothesis gives us that 𝜏, 𝜎 ′, 𝜉 ′ also are disjoint so this is indeed
the same as Figure 5 once we prove the induction hypothesis.

To show this inductive step for (R1), we can easily see that the function 𝑓𝐷 is an injection as it maps
literals based on whether they are from𝐶 ′

1 or𝐶
′
2 with 𝑓𝐶′

1
and 𝑓𝐶′

2
respectively, which were injections

via the induction hypothesis. As we do not perform contraction in this step each literal is genuinely
only from one of the parents. We need to show the required properties of our inductive claim hold,
that the annotation domains for literals remain the same under 𝑓 , and furthermore that every 𝑐/𝑢
in the annotation of 𝑙 in the restricted proof becomes 𝑑/𝑢 in the annotation of 𝑓𝐷 (𝑙) where 𝑑 = 𝑐 or
𝑑 = ∗. Suppose, without loss of generality, 𝑙𝛼′ ∈ 𝐾 ′

1 and 𝑓𝐶1 (𝑙𝛼
′) = 𝑙𝛼 . Since dom(𝛼) = dom(𝛼 ′) and

dom(𝜉) = dom(𝜉 ′), then dom(𝛼 ◦ 𝜉) = dom(𝛼) ∪ dom(𝜉) = dom(𝛼 ′) ∪ dom(𝜉 ′) = dom(𝛼 ′ ◦ 𝜉 ′).
This shows that the domains remain the same under 𝑓𝐷 , which is one part of the condition. For the
remaining part we consider two cases; either 𝑢 ∈ dom(𝛼) or 𝑢 ∉ dom(𝛼), and we let 𝑐 ∈ {0, 1}.

For 𝑢 ∈ dom(𝛼) we have

𝑐/𝑢 ∈ 𝛼 ⇒ 𝑐/𝑢 ∈ 𝛼 ′ ⇒ 𝑐/𝑢 ∈ 𝛼 ′ ◦ 𝜉 ′ and ∗ /𝑢 ∈ 𝛼 ′ ⇒ ∗/𝑢 ∈ 𝛼 ⇒ ∗/𝑢 ∈ 𝛼 ◦ 𝜉 .

Now suppose 𝑢 ∈ dom(𝛼 ◦ 𝜉) and 𝑢 ∉ dom(𝛼). Then

𝑐/𝑢 ∈ 𝜉 ⇒ 𝑐/𝑢 ∈ 𝜉 ′ ⇒ 𝑐/𝑢 ∈ 𝛼 ′ ◦ 𝜉 ′ and ∗ /𝑢 ∈ 𝜉 ′ ⇒ ∗/𝑢 ∈ 𝜉 ⇒ ∗/𝑢 ∈ 𝛼 ◦ 𝜉 .

Hence the inductive claim holds.
Consider now the second case (R2). Here 𝐶 ′

1 is simply instantiated, crucially the pivot literal
is missing from 𝐶 ′

1, so 𝑓𝐷 is an injection. In order to show the inductive condition, we suppose

3.3 Soundness and extraction of winning strategies 19

again that 𝑙𝛼′ ∈ 𝐾 ′
1 and 𝑓𝐶1 (𝑙𝛼

′) = 𝑙𝛼 . Since dom(𝛼) = dom(𝛼 ′) and dom(𝜉) = dom(𝜉 ′), then
dom(𝛼 ◦ 𝜉) = dom(𝛼 ′ ◦ 𝜉 ′). Now let 𝑐 ∈ {0, 1} and suppose 𝑢 ∈ dom(𝛼). As in (R1) we have
𝑐/𝑢 ∈ 𝛼 ⇒ 𝑐/𝑢 ∈ 𝛼 ′ ⇒ 𝑐/𝑢 ∈ 𝛼 ′ ◦ 𝜉 ′ and ∗/𝑢 ∈ 𝛼 ′ ⇒ ∗/𝑢 ∈ 𝛼 ⇒ ∗/𝑢 ∈ 𝛼 ◦ 𝜉 .

Now suppose 𝑢 ∈ dom(𝛼 ◦ 𝜉) and 𝑢 ∉ dom(𝛼). ∗/𝑢 cannot be in 𝜉 ′ because ∗ annotations
become 0. All 0/1 annotations remain the same. This satisfies the inductive condition.

Finally, consider the third case (R3), which has a tautological resolvent. By induction hypothesis 𝜖
satisfies𝐶2, but 𝜖 cannot satisfy ¬𝑥 since this would prevent any 𝑥 literal from appearing anywhere
in the restricted proof, such as the one we require for 𝑓𝐶1 (𝑥𝜏◦𝜎

′) = 𝑥𝜏◦𝜎 . Hence 𝜖 satisfies 𝐾2 and
thus satisfies 𝐷 .

If 𝜖 satisfies 𝐶1 and 𝐶2 then 𝜖 satisfy 𝐷 . □

We now proceed with property 2 of our general approach to strategy extraction, i.e., we show
that the strategy for the universal player on 𝑈 can be read off from 𝜋𝜖 . In fact, we show a slightly
more general statement for arbitrary IR-calc proofs.

Lemma 12. Let 𝜋 be an IR-calc refutation of a QBF starting with a block of universally quantified

variables𝑈 . Consider the set of annotations 𝜇 on variables𝑈 that appear anywhere in 𝜋 . Then 𝜇 is

non-contradictory.

Proof. Without loss of generality, we can assume that the proof 𝜋 is connected. The proof
proceeds by induction on the derivation depth. Let 𝜇𝐶 denote the set of annotations to variables in
𝑈 appearing anywhere in the derivation of 𝐶 (i.e., we only consider the connected component of
the proof dag with sink 𝐶). The induction hypothesis states:
(i) The set 𝜇𝐶 is non-contradictory.
(ii) For every literal 𝑙𝜎 ∈ 𝐶 , it holds that 𝜇𝐶 ⊆ 𝜎 .
Base case. Condition (i) is satisfied by the axioms, because we are assuming that there are no

complementary literals in clauses in the matrix. Condition (ii) is satisfied because all existential
literals are at a higher level than the variables of𝑈 .
Instantiation. Let 𝑢 ∈ 𝑈 and 𝐶 = inst(𝑐/𝑢,𝐶 ′) in the proof 𝜋 (note that we can split up all

instantiation steps into steps with a single variable). By induction hypothesis, 𝑢 either appears in
the annotations of all the literals 𝑙𝜉 in 𝐶 ′ or it does not appear in any of them. In the first case,
the instantiation step is ineffective. Condition (i) holds since we make no change of 𝜇𝐶 from the
previous case. Condition (ii) holds because no new annotations appear either.

In the second case, 𝑐/𝑢 is added to all literals in𝐶 . By the induction hypothesis, 𝑢 does not appear
in any annotation of any clause in the sub-proof deriving 𝐶 ′ so Condition (i) holds once we add
𝑐/𝑢 to 𝜇𝐶 . Since 𝜇𝐶′ ⊆ 𝜉 then 𝜇𝐶 ⊆ 𝜉 ∪ {𝑐/𝑢} satisfying Condition (ii).

Resolution. Let 𝐶 be derived by resolving 𝑥𝜏 ∨𝐶1 and ¬𝑥𝜏 ∨𝐶2.
No new annotations are introduced in Resolution. 𝜇𝐶 is now the union of 𝜇𝐶1 and 𝜇𝐶2 . Since

both 𝜇𝐶1 and 𝜇𝐶2 are subsets of 𝜏 by the induction hypothesis, they are not contradictory with each
other, hence Condition (i) holds.

Let 𝑢 ∈ 𝑈 . Consider the following cases:
Case 1. 𝑐/𝑢 ∈ 𝜏 . By induction hypothesis, 𝑐/𝑢 appears in all annotations of 𝐶1,𝐶2 and hence in

all annotations of the resolvent.
Case 2. 𝑢 ∉ dom(𝜏). Then 𝑢 does not appear as annotation anywhere in the derivation of either

of the antecedents and neither it will appear in the resolvent nor 𝜇𝐶 .
Hence we show Condition (ii) holds. □

Corollary 13. We can show that Lemma 12 also holds for IRM-calc.

Proof. To do this we add a third condition to the inductive claim.

20 3 EXPANSION CALCULI: DEFINITIONS, STRATEGY EXTRACTION, AND SIMULATIONS

(iii) ∗/𝑢 ∉ 𝜇𝐶 , for any 𝑢 ∈ 𝑈 .
Since ∗ is only introduced by the merging rule, we argue that we do not obtain any annota-

tions involving ∗/𝑢 for 𝑢 ∈ 𝑈 . This holds because by condition (i) there are never contradictory
annotations on 𝑢. □

We are now in a position to efficiently extract winning strategies.

Theorem 14. The systems IR-calc and IRM-calc have efficient strategy extraction, i.e., from a

refutation of a formula we can extract a winning strategy for the universal player in polynomial time.

Proof. Given a QBF ∃𝐸∀𝑈 .Φ, an IR-calc (resp. IRM-calc) refutation 𝜋 of it, and an assignment
𝜖 to the leftmost existential block 𝐸, we use Lemma 10 (resp. Lemma 11) to construct a proof 𝜋𝜖
of ∀𝑈 .Φ|𝜖 . From this we obtain an assignment to the universal variables 𝑈 by collecting all the
assignments 𝜇 to 𝑈 appearing in annotations in 𝜋𝜖 (or instantiations when we have the empty
clause instantiated immediately); any variable not appearing in 𝜋𝜖 is given an arbitrary value.
To obtain 𝜋𝜖,𝜇 , remove occurrences of 𝑈 -variables from the annotations in the proof 𝜋𝜖 . This

yields a valid refutation because by Lemma 12 (respectively Corollary 13) for each variable in 𝑈
only a single-value constant annotation can appear in the entire proof 𝜋𝜖 .
For any QBF Γ = ∃𝐸∀𝑈 .Φ and assignment 𝜖 to 𝐸, the above construction provides an IR-calc

(IRM-calc) refutation 𝜋𝜖,𝜇 of Φ|𝜖∪𝜇 . This process is iterated until no universal variables are left in
the formula. Hence we get an IR-calc (IRM-calc) refutation of whatever was left from the matrix
of Γ. Since an IR-calc (IRM-calc) refutation of a formula with no universal variables is in fact a
classical propositional resolution refutation, we are left with an unsatisfiable formula, i.e. a formula
with no winning move for the existential player. Hence, all the considered assignments correspond
to a game won by the universal player. Since this process works for any assignment made by the
existential player, it yields a winning strategy for the universal player. □

The soundness of IR-calc (IRM-calc) follows directly from Theorem 14.

Corollary 15. The calculi IR-calc and IRM-calc are sound.

We remark that an alternative proof of soundness of IR-calc by simulation has been given in [33].

3.4 Completeness and simulations of known QBF systems
In this section we prove that IR-calc and IRM-calc simulate the main existing resolution-based QBF
proof systems. As a by-product, this also shows completeness of our proof systems IR-calc and
IRM-calc. We start by simulating Q-resolution, which is even possible with our simpler calculus
IR-calc.

Theorem 16. IR-calc p-simulates Q-Res.

Proof. Let 𝐶1, . . . ,𝐶𝑘 be a Q-Res proof. We translate the clauses into 𝐷1, . . . , 𝐷𝑘 , which will
form the skeleton of a proof in IR-calc.

• For an axiom𝐶𝑖 in Q-Res, 𝐷𝑖 is obtained from𝐶𝑖 by the axiom rule of IR-calc, i.e., we remove
all universal variables and add annotations.

• If 𝐶𝑖 is obtained via ∀-reduction from 𝐶 𝑗 , then 𝐷𝑖 = 𝐷 𝑗 .
• Consider now the case that 𝐶𝑖 is derived by resolving 𝐶 𝑗 and 𝐶𝑘 with pivot variable 𝑥 .
Then 𝐷 𝑗 = 𝑥𝜏 ∨ 𝐾 𝑗 and 𝐷𝑘 = ¬𝑥𝜎 ∨ 𝐾𝑘 . We instantiate to get 𝐷 ′

𝑗 = inst(𝜎, 𝐷 𝑗) and 𝐷 ′
𝑘
=

inst(𝜏, 𝐷𝑘). Define 𝐷 ′
𝑖 as the resolvent of 𝐷

′
𝑗 and 𝐷

′
𝑘
. In order to obtain 𝐷𝑖 we must ensure

that there are no identical literals with different annotations. For this consider the set 𝜁 ={
𝑐/𝑢 | 𝑐/𝑢 ∈ 𝜇, 𝑙𝜇 ∈ 𝐷 ′

𝑖

}
and define 𝐷𝑖 = inst(𝜁 , 𝐷 ′

𝑖). This guarantees that 𝐷𝑖 does not contain
more literals than 𝐶𝑖 .

3.4 Completeness and simulations of known QBF systems 21

It remains to show that the resolution steps are valid, i.e., we need to show the following:
Claim. In the last item above, 𝜏 and 𝜎 are not contradictory and 𝜁 does not contain contradictory

annotations.
We will prove inductively on the number of lines the following:
Induction hypothesis. For all existential literals 𝑙 we have 𝑙 ∈ 𝐶𝑖 if and only if 𝑙𝜇 ∈ 𝐷𝑖 for

some annotation 𝜇. Additionally, if 0/𝑢 ∈ 𝜇 for a literal 𝑢, then 𝑢 ∈ 𝐶𝑖 (where for a variable 𝑥 , we
equivalently denote the annotation 1/𝑥 by 0/¬𝑥).

Before proving the induction we argue that this yields the claim above. Assume for a contradiction
that 𝜏 contradicts 𝜎 . This means that for some universal variable 𝑢, both 𝑢 and ¬𝑢 appear in 𝐶𝑖 ,
which is not allowed; similarly if 𝜁 contains contradictory annotations.

We now show the inductive claim by induction on the proof length.
Base case. This concerns the axiom step from the first bullet point above. 𝑙𝜇 ∈ 𝐷𝑖 if and only if

𝑙 ∈ 𝐶𝑖 by definition. As annotations falsify all universal literals in the original clause, 0/𝑢 ∈ 𝜇 for
literal 𝑢 implies 𝑢 ∈ 𝐶𝑖 .

Inductive step. Axioms are handled as in the base case.
∀-reduction. Suppose 𝐶𝑖 is obtained via universal reduction from 𝐶 𝑗 by reducing the universal

literal 𝑢. Then 𝑢 has the highest level among all literals in 𝐶 𝑗 . Using the inductive hypothesis,
𝑢 therefore does not appear in any annotations of 𝐷 𝑗 . As 𝐷𝑖 = 𝐷 𝑗 , 𝑢 also does not appear in
annotations in 𝐷 𝑗 and the inductive claim carries over from the inductive hypothesis on 𝐷 𝑗 .

Resolution. Suppose that𝐶𝑖 is derived by resolving𝐶 𝑗 and𝐶𝑘 over variable 𝑥 , and 𝐷 𝑗 = 𝑥
𝜏 ∨𝐾 𝑗

and𝐷𝑘 = ¬𝑥𝜎 ∨𝐾𝑘 . Then 𝑙 ∈ 𝐶𝑖 if and only if 𝑙 ∈ 𝐶 𝑗 \{𝑥}∪𝐶𝑘 \{¬𝑥}. By construction and inductive
hypothesis, the latter is equivalent to 𝑙𝜇 ∈ 𝐾 𝑗 ∪ 𝐾𝑘 for some annotation 𝜇, which is equivalent to
𝑙𝜇

′ ∈ 𝐷𝑖 for some potentially different annotation 𝜇 ′ obtained by instantiation in the construction
of 𝐷𝑖 .
For the second inductive claim, if 0/𝑢 ∈ 𝜇 then there is some literal 𝑙𝜇′◦𝜎 ∈ 𝐷 ′

𝑖 (with 𝑙
𝜇′ ∈ 𝐷 𝑗)

such that 0/𝑢 ∈ 𝜇 ′ ◦ 𝜎 . If 0/𝑢 ∈ 𝜇 ′ then 𝑢 ∈ 𝐶 𝑗 by inductive hypothesis, and if 0/𝑢 ∈ 𝜎 then 𝑢 ∈ 𝐶𝑘 ,
again by inductive hypothesis; hence 𝑢 ∈ 𝐶𝑖 . □

Corollary 17. The system IR-calc is refutationally complete.

Despite its simplicity, IR-calc is powerful enough to also simulate the expansion proof system
∀Exp+Res from [48].

Theorem 18. IR-calc p-simulates ∀Exp+Res.

Proof. Let 𝐶1, . . . ,𝐶𝑘 be an ∀Exp+Res proof. Transform it into an IR-calc proof 𝐷1, . . . , 𝐷𝑘 as
follows. If𝐶𝑖 is an axiom from clause𝐶 and assignment 𝜏 , construct 𝐷𝑖 by taking the IR-calc axiom
rule for 𝐶 and then the instantiation inst(𝜏,𝐶). If 𝐶𝑖 is a resolvent of 𝐶 𝑗 ,𝐶𝑘 over variable 𝑥𝜏 , derive
𝐷𝑖 by resolving 𝐷 𝑗 , 𝐷𝑘 over variable 𝑥𝜏 . This yields a valid IR-calc proof because 𝑙𝜇 ∈ 𝐷𝑖 iff 𝑙𝜇 ∈ 𝐶𝑖 ,
which is preserved under applications of both rules. □

We now come to the simulation of a more powerful system than Q-resolution, namely LQ-Res
from [3]. We show that this system is simulated by IRM-calc. Compared to Theorem 16, the proof
uses a similar, but more involved technique.

Theorem 19. IRM-calc p-simulates LQ-Res.

Proof. Consider an LQ-Res refutation 𝐶1, . . . ,𝐶𝑛 . We construct clauses 𝐷1, . . . , 𝐷𝑛 , which will
form the skeleton of the IRM-calc proof. The construction will preserve the following four invariants
for 𝑖 = 1, . . . , 𝑛.
(1) For an existential literal 𝑙 , it holds that 𝑙 ∈ 𝐶𝑖 iff 𝑙𝜇 ∈ 𝐷𝑖 for some 𝜇.

22 3 EXPANSION CALCULI: DEFINITIONS, STRATEGY EXTRACTION, AND SIMULATIONS

(2) The clause 𝐷𝑖 has no literals 𝑙𝜇1 and 𝑙𝜇2 such that 𝜇1 ≠ 𝜇2.
(3) If 𝑙𝜇 ∈ 𝐷𝑖 with 0/𝑢 ∈ 𝜇, then 𝑢 ∈ 𝐶𝑖 or 𝑢∗ ∈ 𝐶𝑖 , likewise if 𝑙𝜇 ∈ 𝐷𝑖 with 1/𝑢 ∈ 𝜇, then ¬𝑢 ∈ 𝐶𝑖

or 𝑢∗ ∈ 𝐶𝑖 .
(4) If 𝑙𝜇 ∈ 𝐷𝑖 with ∗/𝑢 ∈ 𝜇, then 𝑢∗ ∈ 𝐶𝑖 .

The actual construction proceeds as follows. If 𝐶𝑖 is an axiom, 𝐷𝑖 is constructed by the axiom
rule of IRM-calc from 𝐶𝑖 . If 𝐶𝑖 is a ∀-Red step or ∀-Red∗ step of 𝐶 𝑗 with 𝑗 < 𝑖 , then we set 𝐷𝑖 equal
to 𝐷 𝑗 . If𝐶𝑖 is obtained by a resolution step from𝐶 𝑗 and𝐶𝑘 with 𝑗 < 𝑘 < 𝑖 , the clause 𝐷𝑖 is obtained
by a resolution step from 𝐷 𝑗 and 𝐷𝑘 , yielding clause 𝐾 , and by performing some additional steps
on 𝐾 . Firstly, we let 𝜃 = {𝑐/𝑢 | 𝑐 ∈ {0, 1}, 𝑐/𝑢 ∈ 𝜇, 𝑙𝜇 ∈ 𝐾} ∪ {0/𝑢 | ∗/𝑢 ∈ 𝜇, 𝑙𝜇 ∈ 𝐾} and perform
instantiation on 𝐾 by substitutions in 𝜃 , in any order, to derive 𝐾 ′. After this all annotations in
𝐾 ′ have the same domain. We merge all pairs of literals 𝑙𝜎 , 𝑙𝜏 ∈ 𝐾 ′ with 𝜏 ≠ 𝜎 (in any order) to
derive 𝐷𝑖 .
To show that this construction yields a valid IRM-calc refutation, we first need to prove the

invariants above. This proceeds by induction on 𝑖 .
Base case. Becausewe do not remove or add any existential literals in the axiom case, condition (1)

holds. Likewise we do not create duplicates, so (2) holds. Any 0/1 annotation corresponds exactly
to the opposite literal appearing in the clause, by definition of the axiom rule, hence (3) holds. As
we do not obtain any ∗ annotations from axioms, (4) holds.

Inductive step. Again, axioms are handled as in the base case.
Reduction. Consider a ∀-Red step (resp. ∀-Red∗ step) from 𝐶 𝑗 to 𝐶𝑖 on universal variable 𝑢

(resp. 𝑢∗). Because we do not alter the existential literals in a reduction step and the corresponding
clause 𝐷𝑖 in the IRM-calc proof remains unchanged, conditions (1) and (2) are satisfied by induction
hypothesis. For conditions (3) and (4) we note that 𝐷 𝑗 cannot contain any annotations involving 𝑢
(resp. 𝑢∗). This holds because 𝑢 (resp. 𝑢∗) would only appear as annotation on existential literals
with level higher than 𝑢. These cannot exist as they would be blocking the reduction by (1).

Resolution step. For this consider 𝐶 𝑗 , 𝐶𝑘 being resolved in LQ-Res to obtain 𝐶𝑖 . Only the pivot
variable is removed from 𝐶 𝑗 and 𝐶𝑘 . By condition (2) of the inductive hypothesis for 𝐷 𝑗 and 𝐷𝑘 ,
the pivot is also completely removed when resolving 𝐷 𝑗 and 𝐷𝑘 . Hence 𝐷𝑖 fulfils (1).
We now argue for (2). By induction hypothesis we know that there can be at most two copies

of each variable when we derive 𝐾 . Their annotations have the same domain in 𝐾 ′, because
instantiation by 𝜃 applies the entire domain of all annotations in the clause to all its literals. It then
follows that all copies of identical literals are merged into one literal in 𝐷𝑖 . Therefore (2) holds
for 𝐷𝑖 .
To prove (3) consider the case where 𝑙𝜇 ∈ 𝐷𝑖 with 0/𝑢 ∈ 𝜇. The case with 1/𝑢 ∈ 𝜇 is analogous.

We know that 0/𝑢 appearing in 𝐷𝑖 means that 0/𝑢 must appear in 𝐾 ′ as merging cannot produce a
new annotation 0/𝑢. Existence of 0/𝑢 in 𝐾 ′ means that either ∗/𝑢 appears in 𝐾 or 0/𝑢 appears in
𝐾 . No new annotations are created in a resolution step, so either ∗/𝑢 or 0/𝑢 must appear in one or
more of 𝐷 𝑗 , 𝐷𝑘 . By induction hypothesis this means that 𝑢 or 𝑢∗ appears in 𝐶 𝑗 ∪𝐶𝑘 , hence also
in 𝐶𝑖 .

To show condition (4), let 𝑙𝜇 ∈ 𝐷𝑖 with ∗/𝑢 ∈ 𝜇. Then either ∗/𝑢 is present in 𝐾 ′, or 0/𝑢 and 1/𝑢
are present in 𝐾 ′ and will be merged. In the first case it is clear that some ∗/𝑢 annotation appears
in 𝐾 and thus in 𝐷 𝑗 or in 𝐷𝑘 , in which case from (4) of the induction hypothesis 𝑢∗ must appear
in 𝐶𝑖 . In the second case it is possible that 0/𝑢 in 𝐾 ′ was obtained from ∗/𝑢 in 𝐾 . Thus as already
argued, 𝑢∗ must appear in 𝐶𝑖 . If instead 1/𝑢, 0/𝑢 are both present in 𝐾 then they must come from
the original clauses 𝐷 𝑗 , 𝐷𝑘 . If they both appear in the same clause 𝐷 𝑗 , then by condition (3) it must
be the case that 𝑢∗ appears in 𝐶 𝑗 and thus in 𝐶𝑖 . If, however, they appear in different clauses, then

4.1 Lower bounds for Q-Res and QU-Res via strategy extraction 23

by (3) either of the clauses 𝐶 𝑗 ,𝐶𝑘 contains 𝑢∗ or they contain literals over 𝑢 of opposite polarity.
Both situations merge the literals to 𝑢∗ ∈ 𝐶𝑖 .
We now show that these invariants imply that we indeed obtain a valid IRM-calc proof. We

only need to consider the resolution steps. Suppose 𝑥𝜇1 ∈ 𝐷 𝑗 and ¬𝑥𝜇2 ∈ 𝐷𝑘 where 𝐶 𝑗 and 𝐶𝑘 are
resolved on 𝑥 to get 𝐶𝑖 in the LQ-Res proof. To perform the resolution step between 𝐷 𝑗 and 𝐷𝑘

we need to ensure that we do not have 𝑐/𝑢 ∈ 𝜇1, 𝑑/𝑢 ∈ 𝜇2 where 𝑐 ≠ 𝑑 or 𝑐 = 𝑑 = ∗. Assume on
the contrary that ∗/𝑢 ∈ 𝜇1 and 𝑐/𝑢 ∈ 𝜇2. By (4) we have 𝑢∗ ∈ 𝐶 𝑗 , and by (3) some literal of 𝑢 is
in 𝐶𝑘 . But as lv(𝑢) < lv(𝑥) the LD-resolution of 𝐶 𝑗 and 𝐶𝑘 on variable 𝑥 is forbidden, giving a
contradiction. Similarly, if there is 0/𝑢 ∈ 𝜇1 and 1/𝑢 ∈ 𝜇2, then either we get the same situation or
we have two opposite literals of 𝑢 in the different clauses 𝐶 𝑗 , 𝐶𝑘 . In either case the resolution of 𝐶 𝑗 ,
𝐶𝑘 is forbidden. Hence the IRM-calc proof is correct.

By the inductive claim, the construction above yields a valid IRM-calc proof. As the clauses 𝐷𝑖

in this proof always have at most the same number of literals as 𝐶𝑖 , we end with the emtpy clause
and hence obtain a refutation. As all steps of the construction can be performed in polynomial time,
we obtain a p-simulation. □

Corollary 20. The system IRM-calc is refutationally complete.

4 THE STRATEGY EXTRACTION TECHNIQUE: LOWER BOUNDS FOR CDCL
RESOLUTION CALCULI

We now proceed towards a proof-complexity analysis of the lattice of QBF resolution systems. Our
first aim is to find formulas easy for expansion systems, but hard for CDCL systems. To do this we
show a new and conceptually interesting lower bound for QU-Res (and thus for Q-Res). This lower
bound constitutes in fact a new lower bound technique that is widely applicable (cf. Section 1.2).
We illustrate this technique here with an exponential lower bound for parity formulas in QU-Res
(Section 4.1). This provides a separation between QU-Res and ∀Exp+Res. We then lift this lower
bound to the long-distance systems LQ-Res and LQU+-Res (Section 4.2).

4.1 Lower bounds for Q-Res and QU-Res via strategy extraction
The lower bound argument hinges on strategy extraction, which is a widely used paradigm in QBF
solving and proof systems. We recall that QU-Res admits strategy extraction via a computationally
very restricted model, namely decision lists.

Definition 21 (decision list [63]). A decision list 𝐷 = (𝑡1, 𝑐1), . . . , (𝑡𝑛, 𝑐𝑛) is a finite sequence of
pairs where 𝑡𝑖 is a term and 𝑐𝑖 ∈ {0, 1} is a Boolean constant. Additionally, the last term is the empty

term (equivalent to true). For an assignment 𝜇, a decision list 𝐷 evaluates to 𝑐𝑖 if 𝑖 is the least index

such that 𝜇 |= 𝑡𝑖 , in such case we say that (𝑡𝑖 , 𝑐𝑖) triggers under 𝜇.

Winning strategies in form of decision lists can be efficiently extracted from QU-Res proofs:

Theorem 22 (Balabanov, Jiang, Widl [3, 5]). Given a Q-Res or QU-Res refutation 𝜋 of QBF 𝜙 ,

there exists a winning strategy for the universal player for 𝜙 , such that each of its strategies for the

universal variables is computable by a decision list of size polynomial in |𝜋 |.

Balabanov et al. use a different form than decision lists, but it is semantically equivalent. We
deem decision lists as more intuitive for our purposes. Note that under our definition, a strategy
for a universal variable may take as input the outputs of strategy functions with a smaller index
(similarly as in the strategy construction by Goultiaeva et al. [42]).

The general idea behind our lower bound technique is as follows. First, we observe that we can
define a family of QBFs Φ𝑓 such that every winning strategy of the universal playermust compute a

24 4 THE STRATEGY EXTRACTION TECHNIQUE: LOWER BOUNDS FOR CDCL RESOLUTION CALCULI

unique Boolean function 𝑓 . If we know that strategy extraction is possible by a weak computational
model, say AC0, we can carefully choose the Boolean formula Φ𝑓 such that the unique winning
strategy 𝑓 cannot be computed by AC0 circuits. As the extracted strategy is polynomial in the proof,
this implies a lower bound on the proof size. Thus we immediately turn circuit lower bounds to
lower bounds for the proof size.

We will now implement this idea for the parity function Parity(𝑥1, . . . , 𝑥𝑛) = 𝑥1 ⊕ · · · ⊕ 𝑥𝑛 . The
parity function determines if the number of true variables is odd (⊕ denotes exclusive-or). This is
the classical example of a function not computable in AC0.

Theorem 23 (Furst, Saxe, Sipser [36], Håstad [43]). Parity ∉ AC0
. In fact, every family of

bounded-depth circuits computing Parity is of exponential size.

To obtain parity formulas, consider the QBF Φ = ∃𝑋∀𝑧∃𝑇 . (𝐹+∧𝐹−) where 𝐹+ is a CNF encoding
of 𝑧 ∨ Parity(𝑋) and 𝐹− encodes ¬𝑧 ∨ ¬Parity(𝑋). Both 𝐹+ and 𝐹− use additional variables in 𝑇 .
More precisely, for 𝑁 > 1 define QParity𝑁 as follows.

Definition 24 (QParity formulas). Let xor(𝑜1, 𝑜2, 𝑜) be the set of clauses
{¬𝑜1 ∨ ¬𝑜2 ∨ ¬𝑜, 𝑜1 ∨ 𝑜2 ∨ ¬𝑜, ¬𝑜1 ∨ 𝑜2 ∨ 𝑜, 𝑜1 ∨ ¬𝑜2 ∨ 𝑜},

which defines 𝑜 to be 𝑜1 ⊕ 𝑜2. Define QParity𝑁 as

∃𝑥1, . . . , 𝑥𝑁 ∀𝑧 ∃𝑡2, . . . , 𝑡𝑁 . xor(𝑥1, 𝑥2, 𝑡2) ∪
⋃𝑁

𝑖=3 xor(𝑡𝑖−1, 𝑥𝑖 , 𝑡𝑖) ∪ {𝑧 ∨ 𝑡𝑁 ,¬𝑧 ∨ ¬𝑡𝑁 }.

Note that since we want to encode parity in CNF, i.e. a bounded-depth formula, and Parity ∉ AC0,
we need to use further existential variables (recall that existential AC0 characterises all of NP).
Choosing existential variables 𝑡𝑖 to encode the prefix sums 𝑥1 ⊕ · · · ⊕ 𝑥𝑖 of the parity 𝑥1 ⊕ · · · ⊕ 𝑥𝑁
provides the canonical CNF formulation of parity. This corresponds to a Tseitin encoding of parity.6

To use the lower bound of Theorem 23 we need to verify that QU-Res enables strategy extraction
in AC0. This holds as decision lists can be turned into bounded-depth circuits.

Lemma 25. If 𝑓𝐷 can be represented as a polynomial-size decision list 𝐷 , then 𝑓𝐷 ∈ AC0
.

Proof. Let 𝑆 = {𝑖 | (𝑡𝑖 , 1) ∈ 𝐷} be the indices of all pairs in 𝐷 with 1 as the second component.
Observe that 𝑓𝐷 evaluates to 1 under 𝜇 iff one of the 𝑡𝑖 with 𝑖 ∈ 𝑆 triggers under 𝜇. For each 𝑡𝑖 with
𝑖 ∈ 𝑆 construct a function 𝑓𝑖 = 𝑡𝑖 ∧

∧𝑖−1
𝑙=1 ¬𝑡𝑙 . Construct a circuit for the function

∨
𝑖∈𝑆 𝑓𝑖 , which is

equivalent to 𝑓𝐷 and is computable in AC0 as all 𝑡𝑖 are just terms. □

We can now put everything together and turn the circuit lower bound of Theorem 23 into a
lower bound for proof size in QU-Res.

Theorem 26. Any QU-Res refutation of QParity𝑁 is of exponential size in 𝑁 .

Proof. The strategy for the universal variable 𝑧 may only depend on the variables 𝑥1, . . . , 𝑥𝑁
and it must be so that the matrix evaluates to false under the given assignment 𝜇 to the 𝑥𝑖 variables.
By inspecting the matrix, 𝑧 must be set equal to 𝑥1 ⊕ · · · ⊕ 𝑥𝑁 , i.e. there is a unique strategy for
the variable 𝑧 in QParity𝑁 , which is the Parity function on 𝑁 variables. From Theorem 22, there
is a polynomial-time algorithm for constructing a decision list 𝐷𝑁 from any QU-Res refutation
of QParity𝑁 . Such decision list can be converted in polynomial time into a circuit with bounded
depth by Lemma 25. Hence, the decision list and therefore the proof must be of exponential size in
𝑁 due to Theorem 23. □

6While we here aim for hard formulas, we remark that the hardness is sensitive to the choice of the encoding and in
particular the quantifier prefix. In [13] it is shown that the use of additional extension variables, which are placed as leftmost
as possible in the quantifier prefix, results in short proofs.

4.2 Extending the lower bound to LQ-Res and LQU+- Res 25

In contrast to this lower bound, the QParity formulas are easy in ∀Exp+Res.

Lemma 27. The formulas QParity𝑁 have polynomial-size ∀Exp+Res refutations.

Proof. Instantiate all clauses in both polarities of 𝑧, which generates the clauses xor(𝑥1, 𝑥2, 𝑡
0/𝑧
2)∪⋃𝑁

𝑖=3 xor(𝑡0/𝑧
𝑖−1, 𝑥𝑖 , 𝑡

0/𝑧
𝑖

) ∪ {𝑡0/𝑧
𝑁

} and xor(𝑥1, 𝑥2, 𝑡
1/𝑧
2) ∪ ⋃𝑁

𝑖=3 xor(𝑡1/𝑧
𝑖−1, 𝑥𝑖 , 𝑡

1/𝑧
𝑖

) ∪ {¬𝑡1/𝑧
𝑁

}.
Inductively, for 𝑖 = 2, . . . , 𝑁 derive clauses representing 𝑡0/𝑧

𝑖
⇔ 𝑡

1/𝑧
𝑖

. This lets us derive a
contradiction using the clauses 𝑡0/𝑧

𝑁
and ¬𝑡1/𝑧

𝑁
. □

Theorem 26 together with Lemma 27 immediately give the following separations.

Corollary 28. Q-Res and QU-Res do not simulate ∀Exp+Res, IR-calc, IRM-calc.

This also has consequences for the complexity of strategy extraction in ∀Exp+Res.

Corollary 29. Winning strategies for ∀Exp+Res cannot be computed in AC0
. This even holds when

the system ∀Exp+Res is restricted to formulas with constant quantifier complexity.

Proof. The formulas QParity𝑁 have polynomial-size∀Exp+Res refutations by Lemma 27. Hence
we cannot extract strategies in AC0 as these would compute parity. □

Note, however, that strategy extraction for ∀Exp+Res and in fact even IRM-calc is in P due to
Theorem 14.

4.2 Extending the lower bound to LQ-Res and LQU+-Res
We now aim to extend the lower bound from the previous section to stronger QBF proof systems
using long-distance resolution. For this we cannot directly use the strategy extraction method
from the last section. However, we will slightly modify the QParity formulas and then reduce the
hardness of those in the stronger systems to the hardness of QParity in Q-Res. As the modified
formulas remain easy for ∀Exp+Res, these lower bounds imply many new separations between the
proof systems involved.
We start by extending the lower bound to LQ-Res, which will provide a separation of LQ-Res

and ∀Exp+Res. While we cannot use the original QParity formulas (which have short proof in
LQ-Res, cf. [29]), we will use a variant of these parity formulas.

Definition 30 (LQParity formulas). Let xor𝑙 (𝑜1, 𝑜2, 𝑜, 𝑧) be the set of clauses {𝑧 ∨ ¬𝑜1 ∨ ¬𝑜2 ∨
¬𝑜, 𝑧 ∨𝑜1 ∨𝑜2 ∨¬𝑜, 𝑧 ∨¬𝑜1 ∨𝑜2 ∨𝑜, 𝑧 ∨𝑜1 ∨¬𝑜2 ∨𝑜} (xor𝑙 defines 𝑜 to be equal to 𝑜1 ⊕ 𝑜2 if 𝑧 = 0).
The formulas LQParity𝑁 are constructed from QParity𝑁 by replacing each occurrence of xor(. . .)
by two copies xor𝑙 (. . . , 𝑧) and xor𝑙 (. . . ,¬𝑧), yielding

∃𝑥1, . . . , 𝑥𝑁∀𝑧∃𝑡2, . . . , 𝑡𝑁 . xor𝑙 (𝑥1, 𝑥2, 𝑡2, 𝑧) ∪
𝑁⋃
𝑖=3

xor𝑙 (𝑡𝑖−1, 𝑥𝑖 , 𝑡𝑖 , 𝑧)

∪ xor𝑙 (𝑥1, 𝑥2, 𝑡2,¬𝑧) ∪
𝑁⋃
𝑖=3

xor𝑙 (𝑡𝑖−1, 𝑥𝑖 , 𝑡𝑖 ,¬𝑧) ∪ {𝑧 ∨ 𝑡𝑁 ,¬𝑧 ∨ ¬𝑡𝑁 }.

It is easy to verify that the same arguments as for QParity in Section 4.1 also apply to LQParity,
yielding:

Proposition 31. The formulas LQParity𝑁 have polynomial-size ∀Exp+Res refutations, but require
exponential-size QU-Res refutations.

26 4 THE STRATEGY EXTRACTION TECHNIQUE: LOWER BOUNDS FOR CDCL RESOLUTION CALCULI

We now want to show that LQParity is hard for LQ-Res by arguing that long-distance steps do
not help to refute these formulas. In the next two lemmas we will show that this actually applies to
all QBFs Φ meeting the following condition.

Definition 32. We say that 𝑧 is completely blocked in a QBF Φ, if all clauses of Φ contain the

universal variable 𝑧 and some existential literal 𝑙 such that lv(𝑧) < lv(𝑙).

Lemma 33. Let Φ be a QBF and 𝑧 be completely blocked in Φ. Let further𝐶 be a clause derived from

Φ by LQ-Res. If 𝐶 contains some existential literal 𝑙 such that lv(𝑧) < lv(𝑙), then 𝑧 ∈ 𝐶 , ¬𝑧 ∈ 𝐶 , or
𝑧∗ ∈ 𝐶 .

Proof. We prove the lemma by induction on the derivation depth.
Base case. This is established by the clauses in the matrix of Φ due to the condition that 𝑧 must

be in all matrix clauses and also that all these clauses contain some existential literal that blocks 𝑧.
Reduction. The hypothesis is preserved by ∀-reduction because a literal over 𝑧 cannot be

∀-reduced if the clause contains an existential literal 𝑙 with lv(𝑧) < lv(𝑙).
Resolution. Consider now two clauses 𝐶1 = 𝐷1 ∨ 𝑥 and 𝐶2 = 𝐷2 ∨ ¬𝑥 resolved into the clause

𝐶3. If 𝐶3 contains some literal 𝑙 such that lv(𝑧) < lv(𝑙), then one of 𝐶1, 𝐶2 must contain 𝑙 and from
induction hypothesis it must also contain the variable 𝑧, which then appears in 𝐶3. □

Lemma 34. Let Φ be a QBF such that 𝑧 is completely blocked in Φ and let 𝜋 be a refutation of Φ
such that the variable 𝑧 is ∀-reduced as early as possible. Then the derivation of the empty clause in 𝜋

does not contain 𝑧∗ in any of its clauses.

Proof. Assume that we have a clause 𝐶 in 𝜋 that contains 𝑧∗. We will argue that 𝐶 is not
necessary to derive the empty clause ⊥, i.e., there is no path in 𝜋 from 𝐶 to ⊥. Since 𝑧∗ does not
appear in any of the matrix clauses, there must be a resolution step where it is introduced. Consider
any such two clauses 𝐶1 = 𝐷1 ∨ 𝑥 ∨ 𝑧 and 𝐶2 = 𝐷2 ∨ ¬𝑥 ∨ ¬𝑧 resolved into 𝐶 = 𝐷3 ∨ 𝑧∗. From
the assumption that ∀-reductions are carried out as soon as possible, in both clauses 𝐶1 and 𝐶2
there must be some literals that block 𝑧 and ¬𝑧, respectively. From the conditions on LQ-Res, 𝑥 or
¬𝑥 cannot be the blocking literal (it must be that lv(𝑥) < lv(𝑧) upon merging). This means that 𝐶
contains at least one literal 𝑏 that blocks 𝑧∗.

Now we argue that 𝑏 cannot be resolved away. For contradiction assume that there is a resolution
step of some 𝐶 ′ and 𝐷 on 𝑏 where there is a path from 𝐶 to 𝐶 ′. Moreover, let that be the first
resolution step on 𝑏, i.e., 𝑏 appears in all clauses on the path between 𝐶 and 𝐶 ′. From Lemma 33,
the clause 𝐷 must contain a literal on the variable 𝑧. But this contradicts the conditions of LQ-Res
because resolution steps are not permitted on literals 𝑏 with lv(𝑧) < lv(𝑏) if one of the antecedents
contains a merged literal 𝑧∗ and the other contains some literal on 𝑧. This means that 𝐶 does not
participate in the derivation of the empty clause ⊥. □

This enables us to prove the hardness of LQParity in LQ-Res.

Theorem 35. Any refutation of LQParity𝑁 in LQ-Res has size exponential in 𝑁 .

Proof. Any LQ-Res refutation 𝜋 can be translated in polynomial time into a refutation 𝜋 ′ such
that ∀-reductions are carried out as soon as possible (such a refutation has clauses that are equal to
the clauses of 𝜋 or some universal literals are missing). From Lemma 34, the derivation of ⊥ in 𝜋 ′

contains no occurrences of the merged literal 𝑧∗, hence any such clauses can be removed from the
refutation. Therefore 𝜋 ′ is in fact also a Q-Res refutation. Hence, 𝜋 must be exponential in 𝑁 due
to Proposition 31. □

4.2 Extending the lower bound to LQ-Res and LQU+- Res 27

From LQParity𝑁 , we can get back the clauses of QParity𝑁 by resolving over the universal pivot
𝑧 using the xor𝑙 clauses. This gives then, together with the short LQ-Res refutations [29], short
LQU+-Res refutations of LQParity𝑁 .
Our next goal is to extend the lower bound for the parity formulas to the system LQU+-Res,

which enables both long-distance and universal resolution. For this we again modify the formula
QParity, using a similar technique as in [5]. The trick is essentially to double the universal literals
so they form tautological clauses when resolved. This way resolution on universal variables does
not give any advantage.

Definition 36 (QUParity formulas). We define formulas QUParity𝑁 from LQParity𝑁 as fol-

lows: replace the universal quantifier ∀𝑧 by two new quantifiers ∀𝑧1∀𝑧2 and replace all occurrences of

the literal 𝑧 by 𝑧1 ∨ 𝑧2 and likewise of ¬𝑧 by ¬𝑧1 ∨ ¬𝑧2. This gives the formulas QUParity𝑁

∃𝑥1, . . . , 𝑥𝑁∀𝑧1, 𝑧2∃𝑡2, . . . , 𝑡𝑁 .xor𝑢 (𝑥1, 𝑥2, 𝑡2, 𝑧1, 𝑧2) ∪
𝑁⋃
𝑖=3

xor𝑢 (𝑡𝑖−1, 𝑥𝑖 , 𝑡𝑖 , 𝑧1, 𝑧2) ∪

xor𝑢 (𝑥1, 𝑥2, 𝑡2,¬𝑧1,¬𝑧2) ∪
𝑁⋃
𝑖=3

xor𝑢 (𝑡𝑖−1, 𝑥𝑖 , 𝑡𝑖 ,¬𝑧1,¬𝑧2) ∪ {𝑧1 ∨ 𝑧2 ∨ 𝑡𝑁 ,¬𝑧1 ∨ ¬𝑧2 ∨ ¬𝑡𝑁 },

where xor𝑢 (𝑜1, 𝑜2, 𝑜, 𝑙1, 𝑙2) is the set of clauses
{𝑙1 ∨ 𝑙2 ∨ ¬𝑜1 ∨ ¬𝑜2 ∨ ¬𝑜, 𝑙1 ∨ 𝑙2 ∨ 𝑜1 ∨ 𝑜2 ∨ ¬𝑜, 𝑙1 ∨ 𝑙2 ∨ ¬𝑜1 ∨ 𝑜2 ∨ 𝑜, 𝑙1 ∨ 𝑙2 ∨ 𝑜1 ∨ ¬𝑜2 ∨ 𝑜}.

It is clear that these formulas are false as the universal player should play both 𝑧1 and 𝑧2 as they
would 𝑧 in LQParity.

We will now assume that in an LQU+-Res refutation we ∀-reduce immediately. It is easy to verify
that this does not increase proof size (cf. also Proposition 1 in [5]). For QUParity we now show an
analogous result to Lemma 33.

Lemma 37. Let𝐶 be a clause in an LQU+-Res refutation of QUParity𝑁 where ∀-reduction steps are

performed as soon as possible. If 𝐶 contains some existential literal 𝑙 such that lv(𝑧2) < lv(𝑙), then
either 𝑧1, 𝑧2 ∈ 𝐶 , or ¬𝑧1,¬𝑧2 ∈ 𝐶 , or 𝑧∗2 ∈ 𝐶 .

Proof. The proof is the same as for Lemma 33, except for the possibility of universal resolution
steps. As ∀-reductions are required to happen as soon as possible, in our induction hypothesis we
know that a 𝑧1 literal can only occur together with the corresponding 𝑧2 literal. Therefore resolving
on 𝑧1 removes this variable and merges the complementary 𝑧2 literals; hence we get the 𝑧∗2 literal.

The merged literals cannot be pivots. Neither can 𝑧2. This holds because we know by induction
hypothesis that when 𝑧2 appears unmerged, then also 𝑧1 appears unmerged with the same polarities.
Hence resolving with 𝑧2 as the pivot would merge 𝑧1, which is illegal due to the index restriction. □

We now argue that neither long-distance resolution steps nor resolution over universal pivots
help to refute QUParity.

Lemma 38. Any LQU+-Res refutation of QUParity𝑁 is a Q-Res refutation.

Proof. We first argue for 𝑧∗2 . Let 𝑧
∗
2 ∈ 𝐶 . As we assume that ∀-reductions are performed immedi-

ately, the literal 𝑧∗2 is blocked by an existential literal 𝑙 when 𝑧∗2 is created in 𝐶 by a long-distance
resolution step. Then 𝑙 cannot be removed from𝐶 by resolution as any clause with ¬𝑙 in it contains
a literal over 𝑧2 by Lemma 37. Also 𝑧∗2 cannot be removed via universal resolution. So the empty
clause can never be derived from any clause containing 𝑧∗2 .
Let us now argue for 𝑧∗1 and assume 𝑧∗1 ∈ 𝐶 . If 𝑧∗1 is introduced into 𝐶 by resolving clauses 𝐷1

and 𝐷2, the literals 𝑧1 and ¬𝑧1 in 𝐷1 and 𝐷2, respectively, must be blocked by existential literals.

28 5 THE STRATEGY EXTRACTION TECHNIQUE: LOWER BOUNDS FOR CDCL RESOLUTION CALCULI

Therefore by Lemma 37, the clauses 𝐷1 and 𝐷2 also contain 𝑧2 and ¬𝑧2, respectively. Hence also 𝑧∗2
is introduced into 𝐶 and we get back to the previous case.
Finally, universal resolution steps cannot be performed when deriving the empty clause. For

universal resolution on 𝑧1, using again Lemma 37 together with the assumption of performing
∀-reductions as early as possible leads to the introduction of 𝑧∗2 , and we again get back to the case
above.

No resolution on 𝑧2 is possible as from Lemma 37 it would cause both literals of 𝑧1 to be merged,
which is illegal due to the index restriction in long-distance resolution over universal variables. □

This immediately implies the hardness of QUParity for LQU+-Res because by the previous
lemma any LQU+-Res refutation of QUParity𝑁 is a Q-Res refutation, which by Theorem 26 is
exponential in size.

Theorem 39. QUParity𝑁 require exponential-size refutations in LQU+-Res.

As QUParity𝑁 still remains easy for ∀Exp+Res in a proof similar to Lemma 27 we get the following
separations.

Corollary 40. LQU+-Res does not simulate ∀Exp+Res, IR-calc, and IRM-calc.

5 LOWER BOUNDS FOR EXPANSION PROOF SYSTEMS
While the strategy extraction technique from the last section is very effective for CDCL systems,
it does not yield lower bounds in expansion systems. Therefore, to obtain such lower bounds we
need to use different techniques — and in fact different types of formulas. We first show a lower
bound for IR-calc (Section 5.1) and then extend this bound to even IRM-calc (Section 5.2).

5.1 A lower bound in IR-calc for the formulas of Kleine Büning et al.
We present a proof complexity analysis of a well-known family of formulas KBKF(𝑡) first defined
by Kleine Büning et al. [51]. Here we prove that the KBKF(𝑡) formulas are hard for IR-calc, which
is stronger than Q-Res (Corollary 28). This provides the first non-trivial lower bound for IR-calc,
and further even separates the system from LQ-Res.

Definition 41 (Kleine Büning, Karpinski and Flögel [51]). The formula KBKF(𝑡) has prefix
∃𝑦0, 𝑦1,0, 𝑦1,1 ∀𝑥1 ∃𝑦2,0, 𝑦2,1 ∀𝑥2 . . .∀𝑥𝑡−1 ∃𝑦𝑡,0, 𝑦𝑡,1 ∀𝑥𝑡 ∃𝑓1 . . . 𝑓𝑡 and matrix clauses

𝐶− = {¬𝑦0} 𝐶0 = {𝑦0,¬𝑦1,0,¬𝑦1,1}
𝐶0
𝑖 = {𝑦𝑖,0, 𝑥𝑖 ,¬𝑦𝑖+1,0,¬𝑦𝑖+1,1} 𝐶1

𝑖 = {𝑦𝑖,1,¬𝑥𝑖 ,¬𝑦𝑖+1,0,¬𝑦𝑖+1,1} for 𝑖 ∈ [𝑡 − 1]
𝐶0
𝑡 = {𝑦𝑡,0, 𝑥𝑡 ,¬𝑓1, . . . ,¬𝑓𝑡 } 𝐶1

𝑡 = {𝑦𝑡,1,¬𝑥𝑡 ,¬𝑓1, . . . ,¬𝑓𝑡 }
𝐶0
𝑡+𝑖 = {𝑥𝑖 , 𝑓𝑖 } 𝐶1

𝑡+𝑖 = {¬𝑥𝑖 , 𝑓𝑖 } for 𝑖 ∈ [𝑡] .

Let us verify that the KBKF(𝑡) formulas are indeed false QBFs and — at the same time — provide
some intuition about them. The existential player starts by playing 𝑦0 = 0 because of clause 𝐶−.
Clause 𝐶0 forces the existential player to set one of 𝑦1,0, 𝑦1,1 to 0. Assume the existential chooses
𝑦1,0 = 0 and 𝑦1,1 = 1. If the universal player tries to win, he will counter with 𝑥1 = 0, thus forcing
the existential player again to set one of 𝑦2,0, 𝑦2,1 to 0. This continues for 𝑡 rounds, leaving in each
round a choice of 𝑦𝑖,0 = 0 or 𝑦𝑖,1 = 0 to the existential player, to which the universal counters by
setting 𝑥𝑖 accordingly. Finally, the existential player is forced to set one of 𝑓1, . . . , 𝑓𝑡 to 0. This will
contradict one of the clauses 𝐶0

𝑡+1,𝐶
1
𝑡+1, . . . ,𝐶

0
2𝑡 ,𝐶

1
2𝑡 , and the universal player wins.

It is clear from this explanation, that the existential player has exponentially many choices and
the universal player likewise needs to uniquely counter all these choices to win. The aim of this
section is to show that IR-calc and therefore Q-Res in some sense need to go through all these

5.1 A lower bound in IR-calc for the formulas of Kleine Büning et al. 29

exponentially many options in order to refute the formula, thus forcing IR-calc and Q-Res proofs
of exponential size.
A similar family KBKFlq (𝑡) was developed in [5]. These defeat the main advantage LQ-Res has

over the original KBKF(𝑡). In fact these can be shown to have exponential size proofs in LQ-Res.

Definition 42 (Balabanov, Widl, Jiang [5]). The formula KBKFlq (𝑡) has quantifier prefix
∃𝑦0, 𝑦1,0, 𝑦1,1 ∀𝑥1 ∃𝑦2,0, 𝑦2,1 ∀𝑥2 . . .∀𝑥𝑡−1 ∃𝑦𝑡,0, 𝑦𝑡,1 ∀𝑥𝑡 ∃𝑓1 . . . 𝑓𝑡 and matrix clauses

𝐶− = {¬𝑦0}
𝐶0 = {𝑦0,¬𝑦1,0,¬𝑦1,1,¬𝑓1, . . . ,¬𝑓𝑡 }
𝐶0
𝑖 = {𝑦𝑖,0, 𝑥𝑖 ,¬𝑦𝑖+1,0,¬𝑦𝑖+1,1,¬𝑓1, . . . ,¬𝑓𝑡 } for 𝑖 ∈ [𝑡 − 1]
𝐶1
𝑖 = {𝑦𝑖,1,¬𝑥𝑖 ,¬𝑦𝑖+1,0,¬𝑦𝑖+1,1,¬𝑓1, . . . ,¬𝑓𝑡 } for 𝑖 ∈ [𝑡 − 1]

𝐶0
𝑡 = {𝑦𝑡,0, 𝑥𝑡 ,¬𝑓1, . . . ,¬𝑓𝑡 } 𝐶1

𝑡 = {𝑦𝑡,1,¬𝑥𝑡 ,¬𝑓1, . . . ,¬𝑓𝑡 }
𝐹 0
𝑖 = {𝑥𝑖 , 𝑓𝑖 ,¬𝑓𝑖+1, . . . ,¬𝑓𝑡 } 𝐹 1

𝑖 = {¬𝑥𝑖 , 𝑓𝑖 ,¬𝑓𝑖+1, . . . ,¬𝑓𝑡 } for 𝑖 ∈ [𝑡] .

Syntactically, KBKF(𝑡) and KBKFlq (𝑡) are existential Horn formulas, i.e., they contain at most one
positive existential literal per clause. In fact, they even have a stronger property: 𝐶− is the only
clause without a head (a positive existential literal). We will strengthen this in the next lemma by
a simple modification such that now all clauses have a head. This invariant will be useful in our
proof of hardness as it allows us to keep track of the annotation of the head of each derived clause.
The reader may also note that other authors have simplified these formulas by restricting it with
𝑦0 = 0. We keep the original definition of KBKF(𝑡) in order to give our considered formulas such
invariants as the one discussed.

Lemma 43. We can transform every IR-calc refutation 𝜋 of KBKF(𝑡) (or KBKFlq (𝑡)) into an IR-calc
proof 𝜋 ′

of 𝑦0 from 𝐺 (𝑡) = KBKF(𝑡) \ {¬𝑦0} (or 𝐺 (𝑡) = KBKFlq (𝑡)\{¬𝑦0}). We perform this by:

(1) deleting every instance of the axiom {¬𝑦0}, and removing the steps where 𝑦0 is a pivot;

(2) replicating all other steps, using the same rules, same pivots and same annotations when instan-

tiating.

Proof. The proof is immediate, observing that 𝑦0 cannot gain annotations and the only rules
applicable on 𝑦0 are resolution rules between the axiom {¬𝑦0} and clauses containing 𝑦0. Thus
instead of the empty clause we derive {𝑦0}. □

After this transformation, which preserves proof length, we can focus on proofs of 𝑦0 from
𝐺 (𝑡) = KBKF(𝑡) \ {¬𝑦0} (or 𝐺 (𝑡) = KBKFlq (𝑡)\{¬𝑦0}). Exploiting that all axioms now contain
exactly one positive literal we show six invariants, which hold for all clauses in all IR-calc proofs of
the formulas (in both the KBKF and KBKFlq setting).

Let 𝐶 be an annotated clause in an IR-calc proof of 𝑦0 from 𝐺 (𝑡). Then the following invariants
hold for 𝐶 . All invariants are shown by induction on the structure of the directed acyclic graph of
the proof. We can assume the induction hypothesis is the statement of invariant in each proof.

Invariant 1. 𝐶 has exactly one positive literal 𝑦𝛼
ℎ,𝑎

or 𝑓 𝛼
ℎ

for ℎ ≤ 𝑡 , 𝑎 ∈ {0, 1} (or 𝑦0 with no

annotation). We call this unique literal the head of 𝐶 and use the indices ℎ and 𝑎 also in the following

invariants to denote its position as well as 𝛼 for its annotation.

Proof. We use induction on the number of proof steps.
Base case. Invariant 1 holds when inspecting the axioms of 𝐺 (𝑡).
For the inductive step we only need to consider the resolution case as annotations do not affect

the polarities of the literals.

30 5 LOWER BOUNDS FOR EXPANSION PROOF SYSTEMS

Resolution. Suppose 𝐶 is derived from resolving 𝐷1 and 𝐷2 with pivot 𝑧. Without loss of
generality let 𝑧 be positive in 𝐷2. Then Invariant 1 holds for 𝐶 as there are exactly two positive
literals between 𝐷1 and 𝐷2, but the head 𝑧 of 𝐷2 gets removed by resolution. □

The next invariant states that when we order the literals in the clause by the prefix, the head
appears leftmost.

Invariant 2. Let 𝑗 ∈ {1, . . . , 𝑡}, 𝑏 ∈ {0, 1}, and 𝛽 be some annotation.

(1) If 𝑦𝛼
ℎ,𝑎

is the head of 𝐶 and ¬𝑦𝛽
𝑗,𝑏

∈ 𝐶 then 𝑗 > ℎ.

(2) If 𝑓 𝛼
ℎ

is the head of 𝐶 then there is no ¬𝑦𝛽
𝑗,𝑏

∈ 𝐶 .
(3) If 𝑓 𝛼

ℎ
is the head of 𝐶 and ¬𝑓 𝛽

𝑗
∈ 𝐶 then 𝑗 > ℎ.

Proof. Again we show this by induction.
Base case. Invariant 2 holds in all axioms of 𝐺 (𝑡).
For the inductive step we only need to consider the resolution case as annotations do not affect

the indices of the literals. Let 𝐶 be derived from resolving 𝐷1 and 𝐷2.
Resolution. Let 𝐶 be derived from resolving 𝐷1 and 𝐷2. Assume first that the resolved variable

is 𝑦𝜖
𝑘,𝑒

in 𝐷2. By induction hypothesis we know that 𝑦𝛼
ℎ,𝑎

or 𝑦0 of𝐶 is the head of 𝐷1. We can ignore
the case of 𝑦0, since it already appears leftmost and will not be resolved away. If we have a negative
literal ¬𝑦𝛽

𝑗,𝑏
∈ 𝐶 , then ¬𝑦𝛽

𝑗,𝑏
∈ 𝐷1 or ¬𝑦𝛽𝑗,𝑏 ∈ 𝐷2. If in 𝐷1 then 𝑗 > ℎ by Invariant 2 for 𝐷1. If in 𝐷2

then 𝑗 > 𝑘 by Invariant 2 for 𝐷2. As ¬𝑦𝜖𝑘,𝑒 ∈ 𝐷1 we get 𝑘 > ℎ again by Invariant 2 for 𝐷1. Therefore
𝑗 > ℎ and Invariant 2 holds for 𝐶 .
If the resolved variable is 𝑓 𝜖

𝑘
∈ 𝐷2 then by induction hypothesis we only add negative literals

¬𝑓 𝛽
𝑏
from 𝐷1 with 𝑏 > 𝑘 . In order to falsify the invariant we would need 𝑓 𝛼

ℎ
∈ 𝐷1 as the head, but

then we know ℎ < 𝑘 < 𝑏, satisfying the invariant. □

The next two invariants explain how the annotation of the head determines all further annotations
in the clause.

Invariant 3. If positive literal 𝑓𝑖𝜏 ∈ 𝐶 then the following two conditions hold: 𝑥𝑖 ∈ dom(𝜏) and all
literals in 𝐶 have exactly the same annotations.

Proof. By induction.
Base case. This is true in all axioms, and these annotations cannot be removed in the inductive

step. We can only alter the annotations uniformly by instantiation.
Resolution. Suppose we have that 𝐶 is the resolvent of 𝐷1 and 𝐷2. Suppose 𝐷1 contributes our

head 𝑓𝑖𝜏 ∈ 𝐶 . Using Invariant 2, any resolved variable is ¬𝑓𝑗 𝜖 ∈ 𝐷1 and must resolve with a clause
where all literals have the same annotations as well, hence 𝐶 has the same annotation in every
literal.
(Note that when 𝐺 (𝑡) = KBKF(𝑡)\{𝑦0} we only ever have one literal in a clause with head

𝑓𝑖
𝜏 ∈ 𝐶 , the invariant that the annotation is the same for all literals is mostly relevant for when

𝐺 (𝑡) = KBKFlq (𝑡)\{𝑦0}.) □

Invariant 4. If 𝑦𝛼
ℎ,𝑎

is the head of𝐶 and if ¬𝑦𝛽
𝑗,𝑏

∈ 𝐶 (or ¬𝑓 𝛽
𝑗
∈ 𝐶), then 𝛼 ∪ {𝑎/𝑥ℎ} ⊆ 𝛽 , where all

extra annotations in 𝛽 are of the form 𝑐𝑘/𝑥𝑘 for 𝑘 > ℎ. In other words the head literal 𝑦𝛼
ℎ,𝑎

determines

all annotations up to 𝑥ℎ .

Proof. By induction.
Base case. For the base case we only need to consider the axioms 𝐶𝑐

𝑖 with negative existential
literals. The head of 𝐶𝑐

𝑖 is 𝑦𝑖,𝑐 and there are no universal variables in the clause of lower level than

5.1 A lower bound in IR-calc for the formulas of Kleine Büning et al. 31

the head, hence its annotation 𝛼 = ∅. The axiom is instantiated so that 𝑐/𝑥𝑖 is added to the negative
literals, hence we satisfy the invariant.

Instantiation. For the inductive step, suppose first that𝐶 is derived from instantiation of clause
𝐷 . By Invariant 2 we know that 𝑦𝛼

ℎ,𝑎
is the lowest level literal in the clause 𝐷 . Any annotation

involving 𝑥𝑙 with 𝑙 < ℎ is therefore both added to 𝛼 and to the annotations of all other literals.
Resolution. Now suppose𝐶 is derived from resolving 𝐷1 and 𝐷2. Without loss of generality the

pivot appears positively in 𝐷2. We again use the fact that the head 𝑦𝛼
ℎ,𝑎

of𝐶 is also the head of 𝐷1. If
negative literal ¬𝑧𝛽 ∈ 𝐶 comes from 𝐷1 then 𝛼 ∪ {𝑎/𝑥ℎ} ⊆ 𝛽 by Invariant 4 for 𝐷1. If, on the other
hand, negative literal ¬𝑧𝛽 ∈ 𝐶 comes from 𝐷2, then we consider the nature of the resolved variable.
We first let the resolved variable be 𝑦𝜖

𝑘,𝑒
in 𝐷2. Then 𝜖 ∪ {𝑒/𝑥𝑘 } ⊆ 𝛽 by Invariant 4 for 𝐷2.

However, as ¬𝑦𝜖
𝑘,𝑒

∈ 𝐷1 then 𝛼 ∪ {𝑎/𝑥ℎ} ⊆ 𝜖 ⊆ 𝜖 ∪ {𝑒/𝑥𝑘 } ⊆ 𝛽 . Likewise for an annotation in 𝛽 of
level lower than lv(𝑦ℎ,𝑎), it must be in 𝜖 and hence in 𝛼 .

If the resolved variable is 𝑓 𝜖
𝑘
then 𝜖 = 𝛽 by Invariant 3, but since 𝛼 ∪ {𝑎/𝑥ℎ} ⊆ 𝜖 we are done. □

Invariant 5. If ¬𝑦𝛽
𝑗,𝑏

∈ 𝐶 then for all 𝑘 , ℎ ≤ 𝑘 < 𝑗 there is 𝑐𝑘 ∈ {0, 1} such that 𝑐𝑘/𝑥𝑘 ∈ 𝛽 .

Proof. By induction.
Base case and instantiation. Invariant 5 holds in the axiom case and is unaffected by instantia-

tion.
Resolution. Now suppose𝐶 is derived from resolving 𝐷1 and 𝐷2. Without loss of generality the

resolved variable is 𝑧𝜖 in 𝐷2. All literals in 𝐶 that come from 𝐷1 already fulfil Invariant 5. Now we
can branch on the nature of variable 𝑧.
If 𝑧𝜖 = 𝑦𝜖

𝑘,𝑒
then for the literals coming from 𝐷2 we use Invariant 4. Since ¬𝑦𝜖

𝑘,𝑒
∈ 𝐷1 the

annotation 𝜖 already contains all the necessary assignments for head 𝑦𝛼
ℎ,𝑎

. But since 𝜖 ∪ {𝑒/𝑥𝑘 } ⊆ 𝛽

for any¬𝑦𝛽
𝑗,𝑏

∈ 𝐷2, then together with Invariant 5 for𝐷2, these literals have the required annotations
for the new head 𝑦𝛼

ℎ,𝑎
.

If the resolved variable is 𝑓 𝜖
𝑘
, then we do not add or remove any 𝑦 literals. Hence the induction

hypothesis is preserved. □

Invariant 6. If ¬𝑦𝛽
𝑗,𝑏

∈ 𝐶 with 𝑗 ≤ 𝑡 , then there is no ¬𝑦𝛿
𝑘,𝑑

∈ 𝐶 such that 𝛽 ∪ {𝑏/𝑥 𝑗 } ⊆ 𝛿 .

Proof. By induction.
Base case. We start with the base case for which we consider the axioms. Invariant 6 holds,

because 𝐶0 and all 𝐶𝑐
𝑗 with 𝑗 ≤ 𝑡 are the only clauses with negative existential 𝑦 literals, these are

all of the same level.
Instantiation. Suppose first that 𝐶 is derived by instantiation of clause 𝐷 . We know from

Invariants 2 and 5 and induction hypothesis that for any ¬𝑦𝛽
𝑗,𝑏

∈ 𝐷 and ¬𝑦𝜖
𝑘,𝑒

∈ 𝐷 with 𝑘 > 𝑗 ,
where 𝑗 and 𝑘 are indices in {0, . . . 𝑡}, there is some 𝑐/𝑥𝑙 ∈ 𝛽 ∪ {𝑏/𝑥 𝑗 } such that (1 − 𝑐)/𝑥𝑙 ∈ 𝜖 and
this conflict does not change by instantiation.
Resolution. Now suppose 𝐶 is derived from resolving 𝐷1 and 𝐷2. The important case is when

the resolved variable is 𝑦𝜖
𝑘,𝑒

in 𝐷2. We need to check that if ¬𝑦𝛽
𝑗,𝑏

∈ 𝐷1 and ¬𝑦𝛿𝑘,𝑑 ∈ 𝐷2, then there is
some conflict in the annotations (by using Invariants 2 and 5 for𝐶). By Invariant 6 for 𝐷1 we know
that there is some 𝑐/𝑥𝑙 ∈ 𝛽 ∪{𝑏/𝑥 𝑗 } such that (1−𝑐)/𝑥𝑙 ∈ 𝜖 . By Invariant 4 we have 𝜖 ∪{𝑒/𝑥𝑘 } ⊆ 𝛿 ,
hence (1 − 𝑐)/𝑥𝑙 ∈ 𝛿 .

The case where the resolved variable is 𝑓 𝜖
𝑘
is simpler. We do not add or remove any 𝑦 literals so

the induction hypothesis is preserved. □

32 5 LOWER BOUNDS FOR EXPANSION PROOF SYSTEMS

𝑦
0/𝑥2,1/𝑥4

5,0

¬𝑦0/𝑥2,1/𝑥4,0/𝑥5

6,0

¬𝑦0/𝑥2,1/𝑥4,0/𝑥5,1/𝑥6,1/𝑥7

8,1

¬𝑦0/𝑥2,1/𝑥4,0/𝑥5,1/𝑥6,1/𝑥7

8,0

¬𝑦0/𝑥2,1/𝑥4,0/𝑥5,1/𝑥6,0/𝑥7

8,1
¬𝑓 0/𝑥2,1/𝑥4,0/𝑥5,1/𝑥6,0/𝑥7,0/𝑥8

3

¬𝑓 0/𝑥2,1/𝑥4,0/𝑥5,1/𝑥6,0/𝑥7,0/𝑥8

1

Fig. 9. Structure of an example clause in an IR-calc refutation of KBKF(8). The literals are labelling a tree
that branches on the variable index and annotations. Invariant 4 is highlighted by the underlined annotations
and indices.

In order to provide some intuition on the proofs of KBKF(𝑡)\{¬𝑦0}, we will illustrate how the
invariants allow us to study clauses as binary trees.

Example 44. Consider Figure 9. By Invariant 1 there is only one head of the clause and we place it at
the root of the tree. We branch by increasing the index 𝑖 of the literals 𝑦𝑖,𝑐 , which will make all negative

literals descendants of the root by Invariant 2. We underline to highlight Invariant 4. The remaining

annotations must be present by Invariant 5, but we have two choices for each annotation, plus a choice

of 𝑐 for 𝑦𝑖,𝑐 . We use these choices to construct a binary tree. Notice that none of the internal nodes

produces a literal: this is prevented by Invariant 6.

Hence the positive literal is the root and the negative literals are the leaves. We can imagine

instantiation of clauses to increase the bold part of the annotations and resolution on 𝑦 literals to merge

two different trees on leaf and root to form a new tree.

We will now give the overall idea of our lower bound argument. For a clause 𝐶 we define a
set Σ(𝐶) of annotations associated with 𝐶 . Our lower bound argument then rests on counting the
set Σ(𝐶) as we progress through the proof. More precisely, we show that axioms have empty Σ
(Lemma 49) and that instantiation steps do not add any new elements to Σ at all (Lemma 52). In
a resolution step 𝐷1 𝐷2

𝐶
, the set Σ(𝐶) either equals Σ(𝐷1) ∪ Σ(𝐷2) or grows by exactly one new

element (Lemma 53). In some sense, we only make progress in the proof in the latter case, and we
need exponentially many resolution steps of this kind. Putting everything together, we find that
by the end of the proof we must have collected all the exponentially many annotations in Σ(𝑦0),
implying an exponential lower bound to the proof length (Theorem 54).

We now give the details of the formal argument. We start with the definition of Σ, which we will
first define for annotated variables and then for clauses.

Definition 45 (Σ for variables).
(1) We define Σ(𝑦0) as the set of all complete assignments to variables 𝑥1, . . . , 𝑥𝑡 .

(2) For 𝑦
𝛽

𝑗,𝑏
with dom(𝛽) = {𝑥𝑖 | 𝑖 < 𝑗} we define Σ(𝑦𝛽

𝑗,𝑏
) = {𝜎 ∈ Σ(𝑦0) | 𝛽 ∪ {𝑏/𝑥 𝑗 } ⊆ 𝜎}.

Invariant 6 ensures that if ¬𝑦𝐵
𝑗,𝑏

and ¬𝑦𝐷
𝑘,𝑑

appear together in a clause, then Σ(𝑦𝐵
𝑗,𝑏
)∩Σ(𝑦𝐷

𝑘,𝑑
) = ∅.

(3) For 𝑓 𝐵𝑗 with a complete assignment 𝛽 , we define Σ(𝑓 𝛽
𝑗
) = {𝛽}, otherwise if 𝛽 is not complete we

set Σ(𝑓 𝛽
𝑗
) = ∅.

We now extend this definition to clauses, which we first classify into three types.

5.1 A lower bound in IR-calc for the formulas of Kleine Büning et al. 33

Definition 46. We class 𝐶 a clause in the proof of 𝐺 (𝑡) as follows:
• Type 1 clause: The head of the clause is 𝑓 𝛼

𝑖
.

• Type 2 clause: The head of the clause is 𝑦𝛼
ℎ,𝑎

and there is some 𝑥 𝑗 with 𝑗 < ℎ where 𝑥 𝑗 ∉ dom(𝛼).
• Type 3 clause: Any other clause. These will have head𝑦0 or𝑦

𝛼
ℎ,𝑎

where for all 𝑗 < ℎ, 𝑥 𝑗 ∈ dom(𝛼).

Definition 47 (Σ for clauses). Let 𝐶 be a clause in an IR-calc proof of 𝑦0 from 𝐺 (𝑡).
(1) When 𝐶 is a type-1 or type-2 clause we set Σ(𝐶) = ∅.
(2) For a type-3 clause 𝐶 with head 𝑦 we set Σ(𝐶) = Σ(𝑦) \ (⋃¬𝑙 ∈𝐶 Σ(𝑙)).

Remark 48. For a type-3 clause 𝐶 we have the following properties of Σ(𝐶):
• An annotation is only in (⋃¬𝑙 ∈𝐶 , Σ(𝑙)) (and thus removed from Σ(𝐶)) (or Σ(𝑦0)) when it was

originally included in Σ(𝑦𝛼
ℎ,𝑎

) from the presence of the head𝑦𝛼
ℎ,𝑎

(or𝑦0). This is true by Invariant 4.

• For different ¬𝑙1,¬𝑙2 ∈ 𝐶 Σ(𝑙1) and Σ(𝑙2) are disjoint provided that 𝑙1 and 𝑙2 are both 𝑦 variables.

In other words unless for some 0 ≤ 𝑗 ≤ 𝑡 we have ¬𝑓 𝜎
𝑗
∈ 𝐶 , we only remove an annotation 𝜎 at

most once from our construction of Σ(𝐶). This holds by Invariant 6. If ¬𝑓 𝜎
𝑗
∈ 𝐶 for 0 ≤ 𝑗 ≤ 𝑡 ,

then 𝜎 can be removed in our construction of Σ up to 𝑡 times in total by ¬𝑓 𝜎
𝑙

∈ 𝐶 .

An important fact is that for axioms we get empty Σ as we verify in the next lemma.

Lemma 49. For each clause 𝐶 ∈ KBKF(𝑡) \ {¬𝑦0}, instantiated as an IR-calc axiom 𝐶𝛽
, we get

Σ(𝐶𝛽) = ∅.

Proof. For axiom 𝐶0 we first add all annotations to Σ, but then due to the presence of ¬𝑦1,0 and
¬𝑦1,0 remove all annotations starting with 0/𝑥1 and 1/𝑥1, respectively. This results in Σ(𝐶0) = ∅.

Using 𝐶0
1 = {𝑦1,0, 𝑥1,¬𝑦2,0,¬𝑦2,1} as an IR-calc axiom results in {𝑦1,0,¬𝑦0/𝑥1

2,0 ,¬𝑦0/𝑥1
2,1 }. Computing

Σ of this clause, we first add all annotations starting with 0/𝑥1, but then remove all annotations
starting with (0/𝑥1, 0/𝑥2) and (0/𝑥1, 1/𝑥2), yielding again empty Σ. Analogous reasoning applies
to 𝐶1

1 .
When using clauses 𝐶0

𝑖 ,𝐶
1
𝑖 with 2 ≤ 𝑖 ≤ 𝑡 as IR-calc axioms, we obtain type-2 clauses, which

have empty Σ by definition. The remaining clauses 𝐶0
𝑡+𝑖 ,𝐶

1
𝑡+𝑖 give rise to type-1 clauses, again with

empty Σ. □

It will be crucial for our lower bound argument to understand how Σ(𝐶) changes when we go
through the clauses 𝐶 in the proof. For this we first need two technical lemmas on the structure of
IR-calc proofs of KBKF(𝑡) \ {¬𝑦0}.

Lemma 50. In an IR-calc proof from 𝐺 (𝑡), a type-2 clause cannot be resolved with a type-3 clause.

Proof. Suppose we have a resolution step between a type-2 and a type-3 clause. We can deduce
that the resolved variable is 𝑦𝜖

𝑘,𝑒
, otherwise one of the clauses is a type-1 clause.

The resolved variable has a complete annotation as, by Invariants 4 and 5, type-3 clauses have
them for literals ¬𝑦𝜖𝑗,𝑒 . However, this means that, by Invariants 4 and 5, the head of the type-2
clause also must have a complete annotation, contradicting our assumption. □

Lemma 51. Let𝐶 be a type-2 or type-3 clause in an IR-calc proof from𝐺 (𝑡). If ¬𝑓 𝛽
𝑗
∈ 𝐶 and ¬𝑓 𝛽

𝑙
∉ 𝐶

with 𝑗, 𝑙 > 0, then there is an annotation of 𝑥𝑙 in 𝛽 .

Proof. We proceed by induction on the number of lines to derive 𝐶 .
Base case. This is vacuously true as all ¬𝑓𝑗 literals get introduced in the same axioms.
Instantiation. If 𝐶 is derived by instantiation of 𝐷 we do not lose any annotation, so the

hypothesis remains true.

34 5 LOWER BOUNDS FOR EXPANSION PROOF SYSTEMS

Resolution. If𝐶 is derived by resolving 𝐷1 and 𝐷2, the claim still holds if the resolved variable is
different from any 𝑓 𝛽

𝑙
. If we resolve on 𝑓 𝛽

𝑙
then 𝐷2 is a type-3 clause and by Invariant 3, 𝑥𝑙 appears

in 𝛽 and any other annotation of a literal introduced by 𝐷2. □

The next two lemmas are the key to our lower bound. We show first that the set Σ does not gain
elements in instantiation steps. In Lemma 53 we will then analyse how Σ changes in a resolution
step.

Lemma 52. Suppose in an IR-calc proof from 𝐺 (𝑡) we instantiate clause 𝐷 to get clause 𝐷 ′
. Then

Σ(𝐷) ⊇ Σ(𝐷 ′).

Proof. If𝐷 is a type-1 clause it remains a type-1 clause under instantiation. Hence Σ(𝐷 ′) remains
empty.
If 𝐷 is a type-3 clause it has complete annotations in its head, and this is unchanged by in-

stantiation. Moreover, by Invariant 5, every ¬𝑦𝛽
𝑗,𝑏

∈ 𝐷 has a complete annotation, which again
is unaffected by instantiation. The only possible effect of the instantiation on type-3 clauses is
therefore that negative literals ¬𝑓 𝛽

𝑗
∈ 𝐷 receive a complete annotation, which means that the

assignment 𝛽 is deleted from Σ(𝐷 ′), thus Σ(𝐷 ′) ⊆ Σ(𝐷).
If𝐷 is a type-2 clause then the only problem arises when instantiation makes the head annotation

complete, i.e., the clause turns into a type-3 clause. In this case we will show that Σ(𝐷 ′) is empty,
hence Σ(𝐷 ′) = Σ(𝐷) = ∅. We can show that Σ(𝐷 ′) = Σ(𝐷) = ∅ by induction over the dag-structure
of the proof starting at the axioms and working our way to 𝐷 .

Induction hypothesis. Let 𝐷 be a type-2 clause with head 𝑦𝛼
ℎ,𝑎

that can be instantiated by 𝜎 to
get a type-3 clause 𝐷 ′. Then Σ(𝐷 ′) is empty.

Base case. We observe that instantiating any type-2 axiom always gives empty Σ by Lemma 49.
Instantiation. For the inductive argument we can ignore the case where 𝐷 is derived by

instantiation as that instantiation could have been incorporated into 𝜎 .
Resolution. Let 𝐷 now be derived by resolving two clauses 𝐷1 and 𝐷2. Assume without loss of

generality that 𝐷1 is a type-2 clause. By Lemma 50 the other clause 𝐷2 must be type 1 or type 2.
Suppose first that 𝐷2 is a type-1 clause with head 𝑓 𝛽

𝑗
. Let 𝐷 ′

1 be the instantiation of 𝐷1 by 𝜎 .
Since 𝜎 gives a complete assignment to the annotations of ¬𝑦𝛽

𝑗,𝑏
in 𝐷 it must also do so in 𝐷1, since

it gives an annotation to the head of 𝐷 which is the head of 𝐷1. We also observe that ¬𝑓 𝛽
𝑗
∈ 𝐷1

becomes ¬𝑓 𝜉
𝑗
∈ 𝐷 ′

1 under 𝜎 .
Suppose 𝜉 is not complete then Σ(𝐷 ′

1) is the same as Σ(𝐷 ′
1\{¬𝑓

𝜉

𝑗
}) therefore as 𝐷 ′ contains the

same positive literals and no fewer negative literals than 𝐷 ′
1\{¬𝑓

𝜉

𝑗
}.By inductive hypothesis we

have Σ(𝐷 ′
1) = ∅, Σ(𝐷 ′) ⊂ Σ(𝐷 ′

1\{¬𝑓
𝜉

𝑗
}) = Σ(𝐷 ′

1) = ∅. So we now consider the case where 𝜉 is
complete.
When considering the change from Σ(𝐷1) to Σ(𝐷) the only result of the resolution step with

𝐷2 is the removal of the literal ¬𝑓 𝛽
𝑗
and its replacement with all the negative literals of 𝐷2. By

Invariants 2 and 3 these negative literals are of the form ¬𝑓 𝛽
𝑘
for 𝑘 > 𝑗 . If 𝐷2 contains any negative

literals at all then Σ(𝐷 ′) = Σ(𝐷1\{𝑓 𝜉𝑗 })\Σ(𝑓
𝜉

𝑘
). Because Σ(𝑓 𝜉

𝑗
) = {𝜉} = Σ(𝑓 𝜉

𝑘
) this would mean that

Σ(𝐷 ′) = Σ(𝐷1) ∪ {𝜉}\{𝜉} = Σ(𝐷1) which by our induction hypothesis was empty. Furthermore if
𝐷1 has any other negative literals of the form ¬𝑓 𝛽

𝑙
,𝑙 ≠ 𝑗 then this will have the same effect, Σ(𝐷 ′)

will not gain the annotation 𝜉 due to 𝑓 𝜉
𝑗
’s absence. This is also true if ¬𝑦𝛿

𝑙,𝑢
∈ 𝐷1 such that 𝛿 ⊂ 𝛽 .

5.1 A lower bound in IR-calc for the formulas of Kleine Büning et al. 35

So, in order for this to have any effect on the inductive claim, there can be no other ¬𝑓 𝛽
𝑙
(for

1 ≤ 𝑙 ≤ 𝑡 , 𝑙 ≠ 𝑗) in 𝐷1 or 𝐷2, nor can there be ¬𝑦𝛿
𝑙,𝑢

∈ 𝐷 ′ such that 𝛿 ⊂ 𝛽 . Hence, if we are to
refute our induction claim at this stage, then by Lemma 51, 𝛽 contains annotations for all 𝑥𝑙 with
1 ≤ 𝑙 ≤ 𝑡 , 𝑙 ≠ 𝑗 . Further 𝛽 contains an annotation of 𝑥 𝑗 as 𝐷2 must contain such an annotation by
Invariant 3. Therefore 𝛽 is a complete assignment to 𝑥1, . . . , 𝑥𝑛 . By Invariant 4 this can only happen
when 𝐷1 is a type-3 clause rather than a type-2 clause.

We have argued for when 𝐷2 is a type-1 clause, now suppose instead, 𝐷2 is a type-2 clause, and
without loss of generality the resolved variable 𝑦𝜖

𝑘,𝑒
is positive in 𝐷2, i.e., it is the head of 𝐷2 and

the resolved variable. By the induction hypothesis if we instantiate 𝐷2 into a type-3 clause 𝐷 ′
2 then

Σ(𝐷 ′
2) is empty. This can only happen if 𝐷 ′

2 contains a negative literal so we can safely assume 𝐷2
has at least one negative literal.
Let 𝐷 ′

2 now be the instantiation of 𝐷2 by 𝜎 specifically. Under 𝜎 the resolved variable is 𝑦𝜖′
𝑘,𝑒
.

Since we choose 𝜎 so that it gives a complete assignment to the annotations of the 𝑦 𝑗,𝑏 literals
in 𝐷 it must also do so in 𝐷2, i.e., 𝐷 ′

2 is type 3. This holds since 𝐷2 has a negative literal and that
negative literal is in 𝐷 ; with Invariant 4 this implies that 𝐷 ′

2 is type 3. By inductive hypothesis we
therefore have Σ(𝐷 ′

2) = Σ(𝑦𝜖′
𝑘
) \

(⋃
¬𝑙 ∈𝐷2 Σ(𝑙)

)
= ∅. This means Σ(𝑦𝜖′

𝑘
) ⊆ ⋃

¬𝑙 ∈𝐷2 Σ(𝑙).
Similarly let 𝐷 ′

1 be the instantiation of 𝐷1 by 𝜎 . Under 𝜎 the head variable is called 𝑦𝛼′

ℎ,𝑎
, and

𝐷 ′
1 must also be type 3 as this is also the head of 𝐷 ′. Again by our induction hypothesis Σ(𝐷 ′

1) =
Σ(𝑦𝛼′

ℎ,𝑎
) \

(⋃
¬𝑙 ∈𝐷1 Σ(𝑙)

)
= ∅.

We have

Σ(𝐷 ′) = Σ(𝑦𝛼′

ℎ,𝑎
) \

(⋃
¬𝑙 ∈𝐷

Σ(𝑙)
)
= Σ(𝑦𝛼′

ℎ,𝑎
) \

©­­«
⋃

¬𝑙 ∈𝐷,𝑙≠𝑦𝜖
′

𝑘

Σ(𝑙) ∪
⋃

¬𝑙 ∈𝐷2

Σ(𝑙)
ª®®¬ ,

but since Σ(𝑦𝜖′
𝑘
) ⊆ ⋃

¬𝑙 ∈𝐷2 Σ(𝑙), then the removed elements
(⋃

¬𝑙 ∈𝐷1 Σ(𝑙)
)
from Σ(𝐷 ′

1), are a subset
of the removed elements

⋃
¬𝑙 ∈𝐷,𝑙≠𝑦𝜖

′
𝑘

Σ(𝑙) ∪ ⋃
¬𝑙 ∈𝐷2 Σ(𝑙) from Σ(𝐷 ′) and thus Σ(𝐷 ′) ⊆ Σ(𝐷 ′

1) = ∅.
In other words when computing Σ(𝐷 ′), the lack of the negative literal on the resolved variable

means we may have additional elements only from Σ(𝑦𝜖′
𝑘
) in Σ(𝐷 ′). However, these were exactly

the assignments that were added by the head 𝑦𝜖′
𝑘
in 𝐷 ′

2 and so we know — as Σ(𝐷 ′
2) is empty —

that we have the sufficient literals in 𝐷 ′ to remove all elements in Σ(𝐷 ′). We do not lose any ¬𝑓 𝛽
𝑗

literals in this case, so the inductive claim holds. □

The next lemma is crucially important for the lower bound, it explains the conditions of new
elements being added to Σ.

Lemma 53. Let ⊔ denote the union of two disjoint sets. Suppose in an IR-calc proof from 𝐺 (𝑡) we
resolve 𝐷1 with 𝐷2 to get clause 𝐷 , where the resolved variable is positive in 𝐷2.

If𝐷1 is a type-3 clause that is resolved with the type-1 clause𝐷2 with head 𝑓
𝛽

𝑗
for 𝑗 > 0 and there is no

𝑘 > 0, 𝑘 ≠ 𝑗 such that ¬𝑓 𝛽
𝑘

∈ 𝐷1 nor ¬𝑦𝜖𝑘,𝑒 ∈ 𝐷1 such that 𝜖 ⊆ 𝛽 , then Σ(𝐷) = Σ(𝐷1) ⊔Σ(𝐷2) ⊔{𝛽} =
Σ(𝐷1) ⊔ {𝛽}. Otherwise Σ(𝐷) = Σ(𝐷1) ⊔ Σ(𝐷2).

Proof. In the first case, 𝐷1 is a type-3 clause and 𝐷2 is a type-1 clause. Then the resolution step
removes ¬𝑓 𝛽

𝑗
from the clause 𝐷1. The resolvent 𝐷 must be a type-3 clause as all annotations remain.

Because there is no 𝑘 > 0, 𝑘 ≠ 𝑗 such that ¬𝑓 𝛽
𝑘

∈ 𝐷1, we infer by Lemma 51 that 𝛽 is complete and
𝛽 ∈ Σ(𝐷). All other annotations remain in Σ(𝐷).

36 5 LOWER BOUNDS FOR EXPANSION PROOF SYSTEMS

If we otherwise resolve a type-3 clause 𝐷1 with a type-1 clause 𝐷2, but there is another ¬𝑓 𝛽𝑘 ∈ 𝐷1,
¬𝑦𝜖

𝑘,𝑒
∈ 𝐷1 such that 𝜖 ⊆ 𝛽 , or ¬𝑓 𝛽

𝑘
∈ 𝐷2 (by Invariant 3 this will necessarily occur if 𝐷2 is

not a singleton), then the same assignments are added and deleted in Σ(𝐷) as in Σ(𝐷1) hence
Σ(𝐷) = Σ(𝐷1) = Σ(𝐷1) ⊔ Σ(𝐷2).
Consider now the remaining cases. If we resolve a type-1 clause with a type-2 clause, then we

obtain a type-2 clause, hence Σ remains empty. Likewise, resolving two type-2 clauses results in a
type-2 clause and therefore again empty Σ. By Lemma 50, we cannot resolve type-2 with type-3
clauses.
Therefore the last case is when two type-3 clauses are resolved. Let 𝐷2 provide the positive

resolved literal 𝑦𝜖
𝑘,𝑒

. Because 𝑦𝜖
𝑘,𝑒

is the head of 𝐷2, every annotation 𝜎 ∈ Σ(𝐷2) has 𝜖 ∪ {𝑒/𝑥𝑘 } ⊆ 𝜎 .
As ¬𝑦𝜖

𝑘,𝑒
∈ 𝐷1, the sets of assignments Σ(𝐷1) and Σ(𝐷2) are disjoint. But also there is no annotation

𝜉 ∈ Σ(𝐷1) with 𝜖 ∪ {𝑒/𝑥𝑘 } ⊆ 𝜉 because of the presence of ¬𝑦𝜖
𝑘,𝑒

in 𝐷1 and Invariant 6.
We can show that Σ(𝐷) is the union of Σ(𝐷1) and Σ(𝐷2). We start by showing that Σ(𝐷) ⊆

Σ(𝐷1) ⊔ Σ(𝐷2) Suppose we have an assignment 𝜎 in Σ(𝐷) then it is necessarily in Σ(𝑦𝛼
ℎ,𝑎

), where
𝑦𝛼
ℎ,𝑎

is the head of 𝐷 . 𝑦𝛼
ℎ,𝑎

must also be the head of 𝐷1.𝜎 cannot be in Σ(𝑙) for any negative literal
¬𝑙 in 𝐷 , hence 𝜎 cannot be in Σ(𝑙) for any negative literal in 𝐷2. Therefore if 𝜎 ∈ Σ(𝑦𝜖

𝑘,𝑒
) it must

be in 𝜎 (𝐷1). Now if 𝜎 ∉ Σ(𝑦𝜖
𝑘,𝑒
) then 𝜎 cannot be in any Σ(𝑙) for any negative literal ¬𝑙 in 𝐷1 and

thus 𝜎 ∈ Σ(𝐷1).
To show Σ(𝐷1) ⊔ Σ(𝐷2) ⊆ Σ(𝐷) we suppose we have an assignment 𝜉 in Σ(𝐷1), then per

Definition 47, 𝜉 is in Σ(𝑦𝑘
ℎ,𝑎

) and cannot be in any Σ(𝑙) for any negative literal ¬𝑙 in 𝐷1. 𝜉 is also
not in Σ(𝐷2) so not in Σ(𝑦𝜖

𝑘,𝑒
), since all remaining negative literals in 𝐷 come from 𝐷2 this means

via Invariant 4 that for all the literals in ¬𝑙 in 𝐷 , 𝜉 ∉ Σ(𝑙) thus it must be in Σ(𝐷) . Now suppose
we have an assignment 𝜉 in Σ(𝐷2), this assignment must be in Σ(𝑦𝜖

𝑘,𝑒
) and thus by Invariant 4 in

Σ(𝑦𝛼
ℎ,𝑎

). It will not be in Σ(𝑙) for any ¬𝑙 in 𝐷2. By Invariant 6 it will also not be in Σ(𝑙) for any ¬𝑙
in 𝐷1 except for Σ(𝑦𝜖𝑘,𝑒). Therefore 𝜉 is in Σ(𝐷). □

We can now deduce that all proofs of KBKF(𝑡) in IR-calc are of at least exponential size.

Theorem 54. All proofs of KBKF(𝑡) in IR-calc have length at least 2𝑡 .

Proof. We will show that all IR-calc proofs of 𝑦0 from KBKF(𝑡) \ {¬𝑦0} are of exponential size.
By Lemma 43 each refutation of KBKF(𝑡) can be transformed into one of these while preserving
size. Hence each refutation of KBKF(𝑡) must be of exponential size.

Consider now an IR-calc proof 𝜋 = (𝐷1, 𝐷2, . . . , 𝐷𝑚) of𝑦0 from𝐺 (𝑡) and define 𝑠𝑖 = |⋃𝑖
𝑗=1 Σ(𝐷 𝑗) |.

By Lemma 49, the axioms all have empty Σ, hence 𝑠1 = 0. By Definition 47, the set Σ(𝑦0) contains
all 2𝑡 complete annotations, therefore 𝑠𝑚 = 2𝑡 . Progressing in the proof from the axioms to 𝑦0, we
therefore build up the set Σ from an empty to an exponential-size set. If the clause 𝐷𝑖+1 is an axiom
or derived by instantiation, then 𝑠𝑖 = 𝑠𝑖+1 by Lemmas 49 and 52. For a resolution step, we have
𝑠𝑖+1 ≤ 𝑠𝑖 + 1 by Lemma 53. Therefore the proof 𝜋 contains at least 2𝑡 resolution steps. □

Since IR-calc simulates Q-Res (Theorem 16), we get as a corollary the hardness of KBKF(𝑡) for
Q-Res as already stated in [51].

Corollary 55. All proofs of KBKF(𝑡) in Q-Res are of at least exponential size in 𝑡 .

As the formulas KBKF(𝑡) are easy for long-distance and universal resolution [35, 71] we obtain
the following exponential separations.

Corollary 56. IR-calc neither simulates LQ-Res nor QU-Res.

5.2 Extending the lower bound to IRM-calc 37

Proof. The formulas KBKF(𝑡) admit polynomial-size proofs in LQ-Res [35] and QU-Res [71],
and therefore by the known simulations (including those shown here) also in LQU-Res, LQU+-Res,
and IRM-calc. □

5.2 Extending the lower bound to IRM-calc
In the previous section we showed that IR-calc neither simulates LQ-Res nor QU-Res. The stronger
calculus IRM-calc simulates LQ-Res by Theorem 19 (and thus has short proofs of KBKF). Therefore,
in terms of the simulation order (cf. Figure 1) the only question still open by now is whether IRM-
calc also simulates QU-Res (We know that QU-Res does not simulate IRM-calc by Corollary 28).
We will show here that this simulation does not hold. To do this we need formulas that are hard for
IRM-calc, but easy for QU-Res.
For this we need the modification of the KBKF(𝑡) formulas known as KBKFlq (𝑡) from the last

section. They are shown to be hard for LQ-Res. We will show here that they are indeed hard for
the stronger system IRM-calc.
We first observe that these formulas remain hard for IR-calc.

Lemma 57. KBKFlq (𝑡) require exponential-size (in 𝑡) proofs in IR-calc.

Proof. We define 𝐺 (𝑡) as KBKFlq (𝑡)\{¬𝑦0} and use exactly the same chain of arguments as in
the previous section to show that KBKFlq (𝑡)\{¬𝑦0} require exponential proofs of {𝑦0}. We remark
that in the previous section the Invariants 1 to 6 and Lemmas 49 to 53 hold for 𝐺 (𝑡), which was
allowed to be KBKFlq (𝑡)\{¬𝑦0}.

Consider now an IR-calc proof 𝜋 = (𝐷1, 𝐷2, . . . , 𝐷𝑚) of𝑦0 from𝐺 (𝑡) and define 𝑠𝑖 = |⋃𝑖
𝑗=1 Σ(𝐷 𝑗) |.

By Lemma 49, the axioms all have empty Σ, hence 𝑠1 = 0. By Definition 47, the set Σ(𝑦0) contains
all 2𝑡 complete annotations, therefore 𝑠𝑚 = 2𝑡 . Progressing in the proof from the axioms to 𝑦0, we
therefore build up the set Σ from an empty to an exponential-size set.
Lemma 43 showed us that any IR-calc refutation of KBKFlq (𝑡) is transformed into an IR-calc

proof of of 𝑦0 from𝐺 (𝑡) while preserving size. We get that KBKFlq (𝑡) must require exponential-size
(in 𝑡) proofs in IR-calc from the exponential lower bound of Σ. □

Now consider proofs of ¬𝑦0 from KBKFlq (𝑡)\{¬𝑦0} in IRM-calc.

Remark 58. Note that Invariant 1 from Section 5 still holds as there are never two positive literals.

Invariant 3 still holds in IRM-calc since merging does not disrupt annotations as they are all identical.

Invariant 4 also holds because the role of the head does not change under merging.

We also introduce two new invariants specifically for IRM-calc proofs.
For any clause 𝐶 in an IRM-calc proof of KBKFlq (𝑡) the following holds:

Invariant 7. If positive literal 𝑦𝜏
𝑖,𝑐

∈ 𝐶 then for all 𝑗 < 𝑖 either 𝑥 𝑗 ∈ dom(𝜏) or ¬𝑓 𝜎
𝑗
∈ 𝐶 for some

annotation 𝜎 .

Invariant 8. If 𝑓 𝜏
𝑖

∈ var(𝐶) then for all 𝑗 > 𝑖 either 𝑥 𝑗 ∈ dom(𝜏) or ¬𝑓 𝜎
𝑗

∈ 𝐶 with dom(𝜏) =
dom(𝜎) and 𝜏 and 𝜎 differ only where ∗ appears.

Proof. We prove these claims by induction on the number of lines.
Base case. It is sufficient to observe that all the axioms have these properties.
Instantiation and merging. For the inductive step, we first consider instantiation and merging

steps. These keep literals and elements already in the annotation domains, thus preserving Invari-
ant 7. For Invariant 8, merging may turn a constant value into ∗, but this is allowed and preserves
the invariant.

38 5 LOWER BOUNDS FOR EXPANSION PROOF SYSTEMS

Resolution.We next consider resolution steps. For Invariant 7, assume the head of one of the
parent clauses is 𝑦𝜏

𝑖,𝑐
. We only have to consider the case when 𝑓𝑗 with 𝑗 < 𝑖 is the pivot. This

means that we resolve with a clause that contains a positive literal 𝑓 𝜎
𝑗
. From Invariant 3 we infer

𝑥 𝑗 ∈ dom(𝜎). During the resolution step the head of the clause 𝑦𝑖,𝑐 will be instantiated by 𝑥 𝑗 which
will give it an annotation as 𝑗 < 𝑖 .

For Invariant 8, we only need to consider a loss of an 𝑓𝑗 literal for 𝑗 > 𝑖 , which is the pivot when
a literal of variable 𝑓 𝜏

𝑖
is otherwise present. In this case we must resolve with a clause that contains

a positive 𝑓 𝜎
𝑗
. By Invariant 3 we get 𝑥 𝑗 ∈ dom(𝜎). During the resolution step var(𝑓𝑖)𝜏 will therefore

get annotated with the correct value for 𝑥 𝑗 . □

We can now show the lower bound for IRM-calc.

Theorem 59. KBKFlq (𝑡) require exponential-size proofs in IRM-calc.

Proof. The proof uses the same technique as in [5]. There they showed that any LQ-Res
refutation of KBKFlq can be transformed in polynomial time into a Q-Res refutation. Instead we
show here that any IRM-calc refutation of KBKFlq can be transformed in polynomial time into an
IR-calc refutation.

To do this we consider the ∗ annotations and the merge rule. Without applications of the merge
rule in IRM-calc we essentially have an IR-calc proof (the slight change in the resolution rule will
not matter). We therefore now consider exhaustively all the possible literals that can be produced
by merging.
(1) A positive literal 𝑙𝜏 with ∗/𝑥 𝑗 ∈ 𝜏 is introduced.
(2) A negative literal ¬𝑓 𝜏

𝑖
with ∗/𝑥 𝑗 ∈ 𝜏 is introduced, where ∀𝑗 ≥ 𝑖, ∗/𝑥 𝑗 ∉ 𝜏 .

(3) A negative literal ¬𝑓 𝜏
𝑖
is introduced, where ∗/𝑥𝑖 ∈ 𝜏 .

(4) A negative literal ¬𝑓 𝜏
𝑖
is introduced, where ∃ 𝑗 > 𝑖, ∗/𝑥 𝑗 ∈ 𝜏 .

(5) A negative literal ¬𝑦𝜏
𝑖,𝑐

is introduced where ∃ 𝑗 < 𝑖 with ∗/𝑥 𝑗 ∈ 𝜏 .
We will either show, that these are impossible or are not essential and can be removed in a

polynomial number of IR-calc steps.
(1) It is impossible that there is a positive literal 𝑙𝜏 with ∗/𝑥 𝑗 ∈ 𝜏 .
It is not possible to introduce a ∗ by merging as there are never two positive literals in a clause.

It is also impossible by resolution as we would already need a positive pivot with a ∗/𝑥 𝑗 annotation.
Since the proof is a DAG, or sequence of lines, there must be (by the well-ordering of natural
numbers) an earliest line in the proof where this occurs. This cannot have gained such a ∗/𝑥 𝑗
annotation via Resolution as it would imply the existence of an earlier line with a ∗/𝑥 𝑗 annotation.
(2) Literals ¬𝑓 𝜏1

𝑖
and ¬𝑓 𝜏2

𝑖
are merged in clause 𝐶 to get ¬𝑓 𝜏

𝑖
where ∀𝑗 ≥ 𝑖, ∗/𝑥 𝑗 ∉ 𝜏 .

This is possible, but here we show that we can transform this step into a number of steps that do
not require merging. If we start and repeat from the first time this appears, we can deal with (2) by
resolving ¬𝑓 𝜏1

𝑖
and ¬𝑓 𝜏2

𝑖
away before the merging. This is done by resolving twice with clause 𝐷

(which we will construct below) with 𝑓 𝜏1
𝑖

and 𝑓 𝜏2
𝑖

as pivots. The purpose of 𝐷 is to resolve while
only adding literals that are there already and not introducing any new annotations. To construct
𝐷 we first observe that by Invariant 3,𝐶 has head 𝑦𝐴

ℎ,𝑏
(or 𝑦0). For any 𝑗 < 𝑖 such that 𝑐/𝑥 𝑗 ∈ 𝜏1 and

(1 − 𝑐)/𝑥 𝑗 ∈ 𝜏2, either ∗/𝑥 𝑗 ∈ 𝐴, which is excluded by case 1, or ℎ ≤ 𝑗 . Therefore since one ∗ must
be created for merging to occur, ℎ ≤ 𝑗 < 𝑖 . Now consider all 𝑗 ≥ 𝑖: there may exist 𝑐 𝑗 such that
𝑐 𝑗/𝑥 𝑗 ∈ 𝜏 , 𝑐 𝑗 ∈ {0, 1} because we are not merging on these annotations. 𝐷 is created by repeatedly
resolving axiom 𝐹

𝑐𝑖
𝑖

with the set of axioms Δ = {𝐹𝑐 𝑗
𝑗

| 𝑗 > 𝑖, 𝑐 𝑗/𝑥 𝑗 ∈ 𝜏}, in order of increasing 𝑗 .
After this 𝐷 will be a clause with a 𝑓 𝜎

𝑖
head, which will be our pivot and contains some literals

39

¬𝑓 𝜎
𝑗
, which will later be merged with literals from 𝐶 . The fact that 𝜎 ⊂ 𝜏1 and 𝜎 ⊂ 𝜏2 means we

can use 𝑓 𝜎
𝑖
as a pivot literal resolve with ¬𝑓 𝜏1

𝑖
and ¬𝑓 𝜏2

𝑖
, and in fact we do both by reusing 𝐷 .

After resolving twice with 𝐷 we remove ¬𝑓 𝜏1
𝑖

and ¬𝑓 𝜏2
𝑖

without instantiating the clause𝐶 . There
may be some additional literals ¬𝑓 𝜏1

𝑗
and ¬𝑓 𝜏2

𝑗
for 𝑗 > 𝑖 from resolving with 𝐷 , but similar literals

must have previously existed in 𝐶 by Invariant 8. These possibly had ∗ annotations in 𝐶 , but 0, 1
values from 𝐷 , so merging can make these the same as they were in 𝐶 (but we will see below that
this is not needed as the remaining cases exclude this possibility). Thus we end up with a subclause
of 𝐶 and thus shorten the remaining proof.
We repeat this until all literals of this form have been removed. We will look at the remaining

cases to observe that we actually already have an IR-calc refutation, as all the remaining cases are
impossible.
(3) There cannot be a negative literal ¬𝑓 𝜏

𝑖
where ∗/𝑥 𝑗 ∈ 𝜏 and 𝑗 = 𝑖 .

(4) There cannot be a negative literal ¬𝑓 𝜏
𝑖
where there is some 𝑗 > 𝑖 with ∗/𝑥 𝑗 ∈ 𝜏 .

(5) There cannot be a negative literal ¬𝑦𝜏
𝑖,𝑐

where there is some 𝑗 < 𝑖 with ∗/𝑥 𝑗 ∈ 𝜏 .
In all the cases consider that later in the proof we must resolve this negative literal as part of

clause 𝐶 with a clause 𝐷 to remove that literal. 𝐷 must now have the positive version of the literal,
but it must contain no annotation on 𝑥 𝑗 .
For case (3), this is impossible as by Invariant 3 it must contain an annotation on 𝑥𝑖 . In case (4)

we must have 𝑓 𝜎
𝑗
∈ 𝐷 by Invariant 8 and so in the resolvent we have 𝑓 𝜎′

𝑗
. But since we instantiate

when we resolve and 𝑥 𝑗 ∉ dom(𝜎), we get ∗/𝑥 𝑗 ∈ 𝜎 ′ which takes us to case (3) again. In case (5)
we must have 𝑓 𝜎

𝑗
∈ 𝐷 by Invariant 8 and so in the resolvent we have 𝑓 𝜎′

𝑗
. By Invariant 2 we have

that 𝑥 𝑗 ∉ dom(𝜎), hence ∗/𝑥 𝑗 ∈ 𝜎 ′ which takes us to case (3) again.
Therefore every IRM-calc proof of KBKFlq can be transformed in polynomial time to an IR-calc

proof. Hence IRM-calc inherits an exponential lower bound from Lemma 57. □

In contrast, KBKFlq admits polynomial-size refutations in QU-Res as shown in [5]. Therefore we
obtain the following separation.

Corollary 60. IRM-calc does not simulate QU-Res.

6 CONCLUSION
We have shown new lower bounds for Q-Res, IR-calc, IRM-calc, LQ-Res, and LQU+-Res, and
thereby settled the relative complexity of the main resolution-based QBF calculi. This reveals the
complete picture of the simulation order of these proof systems (cf. Figure 1). Most importantly, our
results show striking separations between all proof systems modelling CDCL-based QBF solving
vs. proof systems modelling expansion-based solving. This provides theoretical evidence that these
two paradigms for QBF solving are indeed complementary and should enhance the power of the
solvers when carefully used in conjunction.

Acknowledgments. We thank the anonymous reviewers for their careful reading and helpful
suggestions.

Part of the results of this paper are included (without full proofs) in the proceedings of MFCS’14
[11] and STACS’15 [12].
The work was supported by the European Regional Development Fund under the project

AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466), by funds through FCT – Fundao para a
Cincia e a Tecnologia with reference UID/CEC/50021/2019, the project INFOCOS with reference
PTDC/CCI-COM/32378/2017, grant no. 60842 from the John Templeton Foundation, and a grant
from the Carl Zeiss Foundation. The second author is supported by an EPSRC Doctoral Prize
Fellowship.

40 6 CONCLUSION

REFERENCES
[1] Sanjeev Arora and Boaz Barak. 2009. Computational Complexity – A Modern Approach. Cambridge University Press.

I–XXIV, 1–579 pages.
[2] Albert Atserias and Sergi Oliva. 2014. Bounded-width QBF is PSPACE-complete. J. Comput. Syst. Sci. 80, 7 (2014),

1415–1429. https://doi.org/10.1016/j.jcss.2014.04.014
[3] Valeriy Balabanov and Jie-Hong R. Jiang. 2012. Unified QBF certification and its applications. Formal Methods in

System Design 41, 1 (2012), 45–65.
[4] Valeriy Balabanov, Jie-Hong Roland Jiang, Mikoláš Janota, and Magdalena Widl. 2015. Efficient Extraction of QBF

(Counter)models from Long-Distance Resolution Proofs. In Proceedings of the Twenty-Ninth AAAI Conference on

Artificial Intelligence. AAAI Press, 3694–3701.
[5] Valeriy Balabanov, MagdalenaWidl, and Jie-Hong R. Jiang. 2014. QBF Resolution Systems and Their Proof Complexities.

In SAT. Springer, 154–169.
[6] Eli Ben-Sasson and Avi Wigderson. 2001. Short proofs are narrow - resolution made simple. J. ACM 48, 2 (2001),

149–169.
[7] Marco Benedetti. 2004. Evaluating QBFs via Symbolic Skolemization. In LPAR, Franz Baader and Andrei Voronkov

(Eds.), Vol. 3452. Springer, 285–300.
[8] Marco Benedetti and Hratch Mangassarian. 2008. QBF-Based Formal Verification: Experience and Perspectives. JSAT

5, 1-4 (2008), 133–191.
[9] Olaf Beyersdorff and Joshua Blinkhorn. 2016. Dependency Schemes in QBF Calculi: Semantics and Soundness. In

Principles and Practice of Constraint Programming - CP. 96–112.
[10] Olaf Beyersdorff, Ilario Bonacina, and Leroy Chew. 2016. Lower Bounds: From Circuits to QBF Proof Systems. In Proc.

ACM Conference on Innovations in Theoretical Computer Science (ITCS). ACM, 249–260.
[11] Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. 2014. On Unification of QBF Resolution-Based Calculi. In Interna-

tional Symposium on Mathematical Foundations of Computer Science (MFCS). Springer, 81–93.
[12] Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. 2015. Proof Complexity of Resolution-based QBF Calculi. In Proc.

Symposium on Theoretical Aspects of Computer Science (STACS). LIPIcs series, 76–89.
[13] Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. 2016. Extension Variables in QBF Resolution. In Beyond NP, Papers

from the 2016 AAAI Workshop.
[14] Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. 2017. Feasible Interpolation for QBF Resolution

Calculi. Logical Methods in Computer Science 13 (2017). Issue 2.
[15] Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. 2018. Are Short Proofs Narrow? QBF Resolution is

not so Simple. ACM Transactions on Computational Logic 19 (2018). Issue 1.
[16] Olaf Beyersdorff, Leroy Chew, Renate A. Schmidt, and Martin Suda. 2016. Lifting QBF Resolution Calculi to DQBF. In

SAT.
[17] Olaf Beyersdorff, Leroy Chew, and Karteek Sreenivasaiah. 2019. A game characterisation of tree-like Q-Resolution size.

J. Comput. System Sci. 104 (2019), 82–101.
[18] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. 2010. A Lower Bound for the Pigeonhole Principle in Tree-like

Resolution by Asymmetric Prover-Delayer Games. Inform. Process. Lett. 110, 23 (2010), 1074–1077.
[19] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. 2013. A Characterization of Tree-Like Resolution Size. Inform.

Process. Lett. 113, 18 (2013), 666–671.
[20] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. 2013. Parameterized Complexity of DPLL Search Procedures.

ACM Transactions on Computational Logic 14, 3 (2013).
[21] Olaf Beyersdorff and Ján Pich. 2016. Understanding Gentzen and Frege systems for QBF. In Proc. ACM/IEEE Symposium

on Logic in Computer Science (LICS).
[22] Armin Biere. 2004. Resolve and Expand. In SAT. 238–246.
[23] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.). 2009. Handbook of Satisfiability. Frontiers in

Artificial Intelligence and Applications, Vol. 185. IOS Press.
[24] Armin Biere, Florian Lonsing, and Martina Seidl. 2011. Blocked Clause Elimination for QBF. In International Conference

on Automated Deduction CADE-23. 101–115.
[25] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. 2000. On the Relative Complexity of Resolution

Refinements and Cutting Planes Proof Systems. SIAM J. Comput. 30, 5 (2000), 1462–1484. https://doi.org/10.1137/
S0097539799352474

[26] Uwe Bubeck and Hans Kleine Büning. 2007. Bounded Universal Expansion for Preprocessing QBF. In Theory and

Applications of Satisfiability Testing - SAT. 244–257.
[27] Samuel R. Buss. 2012. Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic 163, 7 (2012), 906–917.
[28] Hubie Chen. 2017. Proof Complexity Modulo the Polynomial Hierarchy: Understanding Alternation as a Source of

Hardness. TOCT 9, 3 (2017), 15:1–15:20.

https://doi.org/10.1016/j.jcss.2014.04.014
https://doi.org/10.1137/S0097539799352474
https://doi.org/10.1137/S0097539799352474

41

[29] Leroy Chew. 2017. QBF proof complexity. Ph.D. Dissertation. University of Leeds.
[30] Judith Clymo and Olaf Beyersdorff. 2018. Relating size and width in variants of Q-resolution. Inf. Process. Lett. 138

(2018), 1–6.
[31] Stephen A. Cook and Phuong Nguyen. 2010. Logical Foundations of Proof Complexity. Cambridge University Press.
[32] Stephen A. Cook and Robert A. Reckhow. 1979. The relative efficiency of propositional proof systems. The Journal of

Symbolic Logic 44, 1 (1979), 36–50.
[33] Uwe Egly. 2016. On Stronger Calculi for QBFs. In SAT.
[34] Uwe Egly, Martin Kronegger, Florian Lonsing, and Andreas Pfandler. 2017. Conformant planning as a case study of

incremental QBF solving. Ann. Math. Artif. Intell. 80, 1 (2017), 21–45.
[35] Uwe Egly, Florian Lonsing, and Magdalena Widl. 2013. Long-Distance Resolution: Proof Generation and Strategy

Extraction in Search-Based QBF Solving, See [57], 291–308.
[36] Merrick L. Furst, James B. Saxe, and Michael Sipser. 1984. Parity, Circuits, and the Polynomial-Time Hierarchy.

Mathematical Systems Theory 17, 1 (1984), 13–27.
[37] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. 2009. Reasoning with Quantified Boolean Formulas. See

[23], 761–780.
[38] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. 2010. sQueezeBF: An Effective Preprocessor for QBFs Based

on Equivalence Reasoning. In SAT, Ofer Strichman and Stefan Szeider (Eds.), Vol. 6175. Springer, 85–98.
[39] E. Giunchiglia, M. Narizzano, and A. Tacchella. 2006. Clause/term resolution and learning in the evaluation of quantified

Boolean formulas. Journal of Artificial Intelligence Research 26, 1 (2006), 371–416.
[40] Alexandra Goultiaeva and Fahiem Bacchus. 2013. Recovering and Utilizing Partial Duality in QBF. In Theory and

Applications of Satisfiability Testing - SAT, M. Järvisalo and A. Van Gelder (Eds.). Springer, 83–99. https://doi.org/10.
1007/978-3-642-39071-5_8

[41] Alexandra Goultiaeva, Martina Seidl, and Armin Biere. 2013. Bridging the gap between dual propagation and CNF-based
QBF solving. In Design, Automation and Test in Europe, DATE. 811–814.

[42] Alexandra Goultiaeva, Allen Van Gelder, and Fahiem Bacchus. 2011. A Uniform Approach for Generating Proofs and
Strategies for Both True and False QBF Formulas. In IJCAI. 546–553.

[43] Johan Håstad. 1987. Computational Limitations of Small-depth Circuits. MIT Press, Cambridge, MA, USA.
[44] Marijn J. H. Heule, Martina Seidl, and Armin Biere. 2017. Solution Validation and Extraction for QBF Preprocessing. J.

Autom. Reasoning 58, 1 (2017), 97–125.
[45] Mikoláš Janota. 2017. An Achilles’ Heel of Term-Resolution. CoRR abs/1704.01071 (2017). https://arxiv.org/abs/1704.

01071 https://arxiv.org/abs/1704.01071.
[46] Mikoláš Janota, Radu Grigore, and Joao Marques-Silva. 2013. On QBF Proofs and Preprocessing, See [57], 473–489.
[47] Mikoláš Janota, William Klieber, Joao Marques-Silva, and Edmund Clarke. 2016. Solving QBF with Counterexample

Guided Refinement. Artificial Intelligence 234 (2016), 1–25. https://doi.org/10.1016/j.artint.2016.01.004
[48] Mikoláš Janota and Joao Marques-Silva. 2015. Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci.

577 (2015), 25–42.
[49] Toni Jussila, Armin Biere, Carsten Sinz, Daniel Kröning, and Christoph M. Wintersteiger. 2007. A First Step Towards a

Unified Proof Checker for QBF. In Theory and Applications of Satisfiability Testing - SAT. 201–214.
[50] Hans Kleine Büning and Uwe Bubeck. 2009. Theory of Quantified Boolean Formulas. See [23], 735–760.
[51] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. 1995. Resolution for Quantified Boolean Formulas. Inf.

Comput. 117, 1 (1995), 12–18.
[52] Hans Kleine Büning, K. Subramani, and Xishun Zhao. 2007. Boolean Functions as Models for Quantified Boolean

Formulas. J. Autom. Reasoning 39, 1 (2007), 49–75.
[53] William Klieber, Samir Sapra, Sicun Gao, and Edmund M. Clarke. 2010. A Non-prenex, Non-clausal QBF Solver with

Game-State Learning. In Theory and Applications of Satisfiability Testing - SAT. 128–142.
[54] Jan Krajíček. 1997. Interpolation theorems, lower bounds for proof systems and independence results for bounded

arithmetic. The Journal of Symbolic Logic 62, 2 (1997), 457–486.
[55] Florian Lonsing and Armin Biere. 2010. Integrating Dependency Schemes in Search-Based QBF Solvers. In Theory and

Applications of Satisfiability Testing - SAT. 158–171.
[56] Florian Lonsing, Uwe Egly, and Allen Van Gelder. 2013. Efficient Clause Learning for Quantified Boolean Formulas via

QBF Pseudo Unit Propagation. In Theory and Applications of Satisfiability Testing - SAT. 100–115.
[57] Kenneth L. McMillan, Aart Middeldorp, and Andrei Voronkov (Eds.). 2013. Logic for Programming, Artificial Intelligence,

and Reasoning, LPAR. Springer.
[58] Christos H. Papadimitriou. 1994. Computational Complexity. Addison-Wesley.
[59] Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. 2016. Long Distance Q-Resolution with Dependency Schemes. In

SAT. 500–518.

https://doi.org/10.1007/978-3-642-39071-5_8
https://doi.org/10.1007/978-3-642-39071-5_8
https://arxiv.org/abs/1704.01071
https://arxiv.org/abs/1704.01071
https://arxiv.org/abs/1704.01071
https://doi.org/10.1016/j.artint.2016.01.004

42 6 CONCLUSION

[60] Pavel Pudlák. 1997. Lower bounds for resolution and cutting planes proofs and monotone computations. The Journal
of Symbolic Logic 62, 3 (1997), 981–998.

[61] Pavel Pudlák and Russell Impagliazzo. 2000. A lower bound for DLL algorithms for SAT. In Proc. 11th Symposium on

Discrete Algorithms. 128–136.
[62] Jussi Rintanen. 2007. Asymptotically Optimal Encodings of Conformant Planning in QBF. In AAAI. AAAI Press,

1045–1050.
[63] Ronald L. Rivest. 1987. Learning Decision Lists. Machine Learning 2, 3 (1987), 229–246.
[64] John Alan Robinson. 1965. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12, 1 (1965), 23–41.
[65] Marko Samer. 2008. Variable Dependencies of Quantified CSPs. In Logic for Programming, Artificial Intelligence, and

Reasoning - LPAR. 512–527.
[66] Marko Samer and Stefan Szeider. 2009. Backdoor Sets of Quantified Boolean Formulas. J. Autom. Reasoning 42, 1

(2009), 77–97.
[67] Horst Samulowitz and Fahiem Bacchus. 2006. Binary Clause Reasoning in QBF. In SAT, Armin Biere and Carla P.

Gomes (Eds.), Vol. 4121. Springer, 353–367.
[68] Nathan Segerlind. 2007. The Complexity of Propositional Proofs. Bulletin of Symbolic Logic 13, 4 (2007), 417–481.
[69] Friedrich Slivovsky and Stefan Szeider. 2016. Soundness of Q-resolution with dependency schemes. Theor. Comput. Sci.

612 (2016), 83–101.
[70] Allen Van Gelder. 2011. Variable Independence and Resolution Paths for Quantified Boolean Formulas. In Principles

and Practice of Constraint Programming - CP. 789–803.
[71] Allen Van Gelder. 2012. Contributions to the Theory of Practical Quantified Boolean Formula Solving. In CP, Michela

Milano (Ed.), Vol. 7514. Springer, 647–663.
[72] Allen Van Gelder. 2013. Primal and Dual Encoding from Applications into Quantified Boolean Formulas. In CP. 694–707.

https://doi.org/10.1007/978-3-642-40627-0_51
[73] H. Vollmer. 1999. Introduction to Circuit Complexity – A Uniform Approach. Springer Verlag, Berlin Heidelberg.
[74] Lintao Zhang and Sharad Malik. 2002. Conflict Driven Learning in a Quantified Boolean Satisfiability Solver. In ICCAD.

442–449.
[75] Lintao Zhang and Sharad Malik. 2002. Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified

Boolean Formula Evaluation. In Principles and Practice of Constraint Programming - CP. 200–215. http://link.springer.
de/link/service/series/0558/bibs/2470/24700200.htm

https://doi.org/10.1007/978-3-642-40627-0_51
http://link.springer.de/link/service/series/0558/bibs/2470/24700200.htm
http://link.springer.de/link/service/series/0558/bibs/2470/24700200.htm

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Relations to further work
	1.3 Organisation

	2 Preliminaries
	3 Expansion calculi: Definitions, strategy extraction, and simulations
	3.1 Introducing the expansion calculi IR-calc and IRM-calc
	3.2 Proof examples
	3.3 Soundness and extraction of winning strategies
	3.4 Completeness and simulations of known QBF systems

	4 The strategy extraction technique: Lower bounds for CDCL resolution calculi
	4.1 Lower bounds for Q-Res and QU-Res via strategy extraction
	4.2 Extending the lower bound to LQ-Res and LQU+- Res

	5 Lower bounds for expansion proof systems
	5.1 A lower bound in IR-calc for the formulas of Kleine Büning et al.
	5.2 Extending the lower bound to IRM-calc

	6 Conclusion
	References

