
On Unordered BDDs
and Quantified Boolean Formulas

Mikoláš Janota

IST/INESC-ID, Lisbon, Portugal

Abstract. This paper proposes to study the synthesis of unordered bi-
nary decision diagrams (BDDs) using solvers for Quantified Boolean For-
mulas (QBF). The synthesis of a BDD falls naturally in the realm of
quantified formulas as we are typically looking for a BDD satisfying a
certain specification. This means that we ask whether there exists a BDD
such that for all inputs the specification is satisfied. We show that this
query can be encoded naturally into QBF and experimentally evaluate
these queries for the minority function.
The short paper should be seen as a challenge for further research on
QBF solving.

1 Introduction

Reduced and ordered BDD (ROBDDs) [2,1] are well studied and appear often
in practice due to their canonicity and ease of manipulation. At the same time,
exponential lower bounds for ROBDDs are well-known [17]. In that aspect, BDDs
(also called branching programs) are interesting because there are no known
exponential lower bounds.1 This means that BDDs are likely to give us small
representations of Boolean functions while preserving some of the advantageous
properties of ROBDDs. Namely, they can be naturally represented in hardware,
where each node corresponds to a 2 to 1 multiplexer.
This short paper has the following two contributions.

1. We show that synthesizing a BDD can be naturally formulated as a quanti-
fied Boolean formula (QBF).

2. We perform preliminary evaluation of state-of-the-art QBF solvers on this
formulation.

The preliminary evaluation shows that the nowadays solvers scale poorly. In
some sense this is not surprising because synthesis of functions is inherently a
hard problem. Already in the case of the synthesis of the disjunctive normal form
(DNF) minimization is ΣP

2 -complete [18]. It is only to be expected to be harder
for BDDs. Limitations of QBF solvers have also been observed in other related
works on synthesis of circuits or reactive systems [7,11,4,10,3].

We believe that these poor results should not be seen as a deterrent but
rather as a challenge for further QBF research.

1 For existing lower bounds for BDD see a survey by Razborov [14].

2 Preliminaries

Standard concepts from propositional logic are assumed. Propositional formulas
are built from variables, negation (¬), and conjunction (∧). For convenience
we also consider the constants 0, 1 representing false and true, respectively. The
results immediately extend to other connectives, e.g., (φ⇒ ψ) = ¬(φ∧¬ψ), (φ∨
ψ) = ¬(¬φ∧¬ψ). A literal is either a variable or its negation. An assignment is a
mapping from variables to {0, 1}. Assignments are represented as sets of literals,
i.e., {x,¬y} corresponds to {x 7→ 1, y 7→ 0}. For a formula φ and an assignment σ,
the expression φ|σ denotes substitution, i.e., the simultaneous replacement of
variables with their corresponding value.

Quantified Boolean Formulas (QBF). QBFs [9] extend propositional logic by
quantifiers over Boolean variables. Any propositional formula φ is also a QBF
with all variables free. If Φ is a QBF with a free variable x, the formulas ∃x. Φ
and ∀x. Φ are QBFs with x bound, i.e. not free. Note that we disallow expressions
such as ∃x.∃x. x. Whenever possible, we write ∃x1 . . . xk instead of ∃x1 . . . ∃xk;
analogously for ∀. Semantically a QBF corresponds to a compact representation
of a propositional formula. In particular, the formula ∀x. Ψ is satisfied by the
same truth assignments as Ψ |{¬x} ∧ Ψ |{x} and ∃x. Ψ by Ψ |{¬x} ∨ Ψ |{x}. Since
∀x∀y. Φ and ∀y∀x. Φ are semantically equivalent, we allow writing ∀X for a set
of variables X; analogously for ∃. A QBF with no free variables is false (resp.
true), iff it is semantically equivalent to the constant 0 (resp. 1).

Binary Decision Diagrams (BDD). A BDD [2] is a rooted directed acyclic graph
where each node has two outgoing edges except for two sinks. Each node is la-
beled by a Boolean variable and the outgoing edges are labeled by 1 and 0,
respectively. The two sinks are labeled by 1 and 0, respectively. A BDD un-
equivocally represents a Boolean function: starting at the root take the 1 edge
if the variable labeling the current node is true and take the 0 edge otherwise.
Respond “true”, if the 1-sink is reached; respond “false”, if the 0-sink is reached.

3 Encoding

We assume that we are given N nodes N = {n1, . . . , nN} and additionally the
sink nodes sink1, sink0. Further, there is a finite set of input variables I. The
desired semantics of the resulting BDD is assumed to be specified as a Boolean
formula on the input variables. Hence, the objective is to construct a BDD of size
N representing the same function as the given Boolean formula. For the purpose
of this paper we focus on the minority function, i.e. the formula φ(i1, . . . , im)
that is true if and only if a minority of the input variables are set to 1.2

2 The majority function is obtained by swapping the semantics of 0 and 1, which is
easy to do in BDDs.

2

We present the encoding in three conceptually separate steps: (1) encoding
of topology (Section 3.1), (2) encoding of BDD’s semantics (Section 3.2), (3) en-
coding of specification (Section 3.3). This section is concluded by Section 3.3,
which discusses some of the technical details of the encoding.

3.1 Topology

To avoid cycles in the constructed BDD we apply the following trick. Without
a loss of generality, we assume that a node ni can be only connected to a node
m if m = nj for j < i or m is one of the sinks. Like so we ensure there is
a topological ordering on the resulting graph and at the same time, we are
not losing any graphs because a topological ordering has to exist (there are no
cycles). For convenience, we define the notation neighbors(ni) to denote the set
{nj | j ∈ 1..i− 1} ∪ {sink0, sink1}.

The space of BDDs is modeled by two sets of Boolean variables. The variables
ln,x represent that the node n ∈ N is labeled by the input variable x ∈ I. The
variables cen,m represent that there is an edge from n to m labeled by e ∈ {0, 1}.
To ensure that each node is labeled by one and only one input variable and that
each edge goes into one and only one node we output the following constraints.

∑
x∈I

ln,x = 1, for each n ∈ N∑
m∈neighbors(n)

cen,m = 1, for each n ∈ N , e ∈ {0, 1}

These constraints together with the restriction that a node can only connect
to a sink or one of the preceding nodes yield BDDs with the correct topology.

3.2 Semantics

The semantics of the BDD under a given input is captured by assigning a value
to each sub-BDD. This is done recursively as follows. The sink0 is false, the sink1
is true. A node n labeled by x is true iff the corresponding neighbor is true.

We introduce the following auxiliary formulas. For a node n ∈ N the formula
Vn represents the value of the labeled variable, i.e. the formula is true if the node
is labeled by one of the variables x and that variable is true at the same time.
Formally defined as:

Vn ,
∨
x∈I

(ln,x ∧ x)

For each sub-BDD rooted in some node n ∈ N ∪{sink0, sink1} the formula Tn
represents the truth value of that sub-BDD. For each node n ∈ N the formula

3

Ben represents the truth value of the neighbor of n on the edge e.

Tsink0 , 0

Tsink1 , 1

Ben ,
∨

m∈neighbors(n)

(cen,m ∧ Tm)

Tn , (¬Vn ∧ B0n) ∨ (Vn ∧ B1n)

3.3 Specification

We assume that we are given a formula φ on the input variables I that specifies
the behavior of the BDD that we wish to construct, i.e. the constructed BDD
should be true if and only if φ is true on any given input. This is now easily
expressed as a QBF with two levels of quantification where the first level is
over the labeling and connecting variables and the second level is over the input
variables. In the parlance of the above-defined concepts, we need to ensure that
the truth value of the root node is equal to the truth value of φ for any input.

To formalize, let C be the set of variables cen,m and let L be the set of vari-
ables ln,x. The resulting QBF is defined as follows.

∃ C L∀I . TnN
⇔ φ

In particular, to obtain the minority function over the inputs, we output the
following QBF.

∃ C L∀I . TnN
⇔

(∑
x∈I

x ≤ b| I |/2c

)

3.4 Technical Details of The Encoding

The above-defined formulas contain some constructs that are typically not sup-
ported by QBF solvers. In the implementation, we use the circuit-like language
QCIR supported by a number of tools [8]. QCIR supports only typical Boolean
connectives. This means that the language does not have native support for the
constructs

∑
x∈s x = 1 or

∑
x∈s x ≤ k. These constraints can be converted to a

circuit form in a number of ways. Since we are dealing with rather modest num-
bers we use the pairwise (quadratic) encoding for “exactly one” and sequential
counter [15] for at-mostk().∑

x∈x1,...,xn

x = 1 ,
∨
i

xi ∨
∧
i<j

¬xi ∨ ¬xj

at-most0(S) ,
∧
x∈S
¬xi

at-mostk(x1, . . . , xn) ,x1 ∧ at-mostk−1(x2, . . . , xn) ∨ ¬x1 ∧ at-mostk(x2, . . . , xn)

4

| I |/k rareqs qfun qute quabs

3/1 0.04 0.02 0.18 0.32

4/2 0.11 0.11 2.28 3.34

5/2 22.55 17.35 T/O T/O

6/3 T/O T/O T/O T/O

(a) Times in seconds

| I |/k rareqs qfun qute quabs

3/1 4 4 4 4

4/2 6 6 6 6

5/2 9 9 7 8

6/3 10 10 6 7

(b) Lowerbounds for #nodes

Fig. 2. Results and example BDD

3.5 Experimental Evaluation

TF

n1:i4

1 n0:i1

0

01

n3:i4

0

1

n2:i2

1

0

n5:i2

0

1

n4:i2

1 0

n7:i3

1 0

n6:i3

01

n8:i0

1 0

Fig. 1. Example
BDD

The encoding to QBF was implemented as a Python script
allowing for different QBF solvers to be used as the back-end.
The script uses encoding given in Section 3 with an increasing
N (the number of nodes). Consequently, the majority of the
QBF calls are UNSAT and the synthesized BDD is guaranteed
to be the smallest in number of nodes (if found).

The targeted function was the minority function, in fact
a special case of at-mostk() constraint, with k = b| I |/2c.3
Figure 1 shows one of the synthesized BDDs for | I | = 5,
k = 2 with 9 BDD nodes (plus the sinks). Interestingly, this
BDD is in fact ordered, but to our best knowledge, it is not
known whether the smallest BDD for the minority function
can be always ordered.

The following QBF solvers were used: Qute [12]; QFUN [5];
QuAbS [16]; and RAReQS [6]. The tables in Figure 2 summa-
rize the results. Figure 2(a) shows the running times (with the
timeout 30 minutes). Figure 2(b) shows the lower bound for
number of nodes. The solvers QFUN and RAReQS go up to
5 inputs while the solvers Qute and QuAbS stop already on
4 inputs. Interestingly enough, QFUN and RAReQS are still
quite fast on 5 inputs.

4 Future Work

We hope that this study will motivate the investigation of other methods for
QBF solving; possibly based on more stochastic approaches. The study should
also be carried out for other types of functions. Functions from real world, which
are typically not symmetrical, might give better picture of the performance and
also might be a better target for BDDs.

Acknowledgments. This work was supported by national funds through FCT -
Fundao para a Cincia e a Tecnologia with reference UID/CEC/50021/2019 and
the project INFOCOS with reference PTDC/CCI-COM/32378/2017.

3 Pudlák gives a Ω(n lgn) lower-bound for this function [13].

5

References

1. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,
Somenzi, F.: Algebraic decision diagrams and their applications. In: Proceedings
International Conference on Computer-Aided Design. pp. 188–191 (1993)

2. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. Com-
puters, IEEE Transactions on 100(8), 677–691 (1986)

3. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded
synthesis. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). pp. 354–370 (2017). https://doi.org/10.1007/978-3-662-54577-5 20

4. Gascón, A., Subramanyan, P., Dutertre, B., Tiwari, A., Jovanovic, D., Malik, S.:
Template-based circuit understanding. In: Formal Methods in Computer-Aided
Design (FMCAD) (2014)

5. Janota, M.: Towards generalization in QBF solving via machine learning. In: AAAI
Conference on Artificial Intelligence (2018)

6. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. Artificial Intelligence 234, 1–25 (2016)

7. Jo, S., Matsumoto, T., Fujita, M.: SAT-based automatic rectification and debug-
ging of combinational circuits with LUT insertions. In: Asian Test Symposium. pp.
19–24 (2012)

8. Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: Pro-
ceedings of BNP (Workshop) (2016)

9. Kleine Büning, H., Bubeck, U.: Theory of quantified boolean formulas. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Fron-
tiers in Artificial Intelligence and Applications, vol. 185, pp. 735–760. IOS Press
(2009)

10. Maksimovic, D., Le, B., Veneris, A.G.: Multiple clock domain synchronization in
a QBF-based verification environment. In: International Conference on Computer-
aided Design (ICCAD) (2014)

11. Narodytska, N., Legg, A., Bacchus, F., Ryzhyk, L., Walker, A.: Solving games
without controllable predecessor. In: Computer Aided Verification (CAV). pp. 533–
540 (2014)

12. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Theory and
Applications of Satisfiability Testing (SAT). pp. 298–313 (2017)

13. Pudlák, P.: A lower bound on complexity of branching programs. In: Chytil, M.,
Koubek, V. (eds.) Mathematical Foundations of Computer Science. vol. 176, pp.
480–489. Springer (1984). https://doi.org/10.1007/BFb0030331

14. Razborov, A.A.: Lower bounds for deterministic and nondeterministic branching
programs. In: Fundamentals of Computation Theory, 8th International Sympo-
sium, FCT. pp. 47–60 (1991). https://doi.org/10.1007/3-540-54458-5 49

15. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In:
Principles and Practice of Constraint Programming (CP). pp. 827–831. Springer
(2005), https://doi.org/10.1007/11564751_73

16. Tentrup, L.: Non-prenex QBF solving using abstraction. In: Theory and Applica-
tions of Satisfiability Testing (SAT). pp. 393–401 (2016)

17. Tveretina, O., Sinz, C., Zantema, H.: An exponential lower bound on OBDD refu-
tations for pigeonhole formulas. In: Athens Colloquium on Algorithms and Com-
plexity, ACAC. pp. 13–21 (2009). https://doi.org/10.4204/EPTCS.4.2

18. Umans, C., Villa, T., Sangiovanni-Vincentelli, A.L.: Complexity of two-level logic
minimization. IEEE Trans. on CAD of Integrated Circuits and Systems 25(7),
1230–1246 (2006). https://doi.org/10.1109/TCAD.2005.855944

6

https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/BFb0030331
https://doi.org/10.1007/3-540-54458-5_49
https://doi.org/10.1007/11564751_73
https://doi.org/10.4204/EPTCS.4.2
https://doi.org/10.1109/TCAD.2005.855944

	On Unordered BDDs and Quantified Boolean Formulas

