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Abstract. The importance and impact of the Boolean satisfiability (SAT)
problem in many practical settings is well-known. Besides SAT, a num-
ber of computational problems related with Boolean formulas find a wide
range of practical applications. Concrete examples for CNF formulas in-
clude computing prime implicates (PIs), minimal models (MMs), mini-
mal unsatisfiable subsets (MUSes), minimal equivalent subsets (MESes)
and minimal correction subsets (MCSes), among several others. This pa-
per builds on earlier work by Bradley and Manna and shows that all
these computational problems can be viewed as computing a minimal
set subject to a monotone predicate, i.e. the MSMP problem. Thus, if
cast as instances of the MSMP problem, these computational problems
can be solved with the same algorithms. More importantly, the insights
provided by this result allow developing a new algorithm for the general
MSMP problem, that is asymptotically optimal. Moreover, in contrast
with other asymptotically optimal algorithms, the new algorithm per-
forms competitively in practice. The paper carries out a comprehensive
experimental evaluation of the new algorithm on the MUS problem, and
demonstrates that it outperforms state of the art MUS extraction algo-
rithms.

1 Introduction

The theoretical and practical significance of Boolean Satisfiability (SAT) cannot
be overstated. This is illustrated by the ever increasing number of practical ap-
plications of SAT solvers (see [23,16] for recent overviews). Besides SAT, other
computational problems related with Boolean formulas are of interest, both from
theoretical and practical perspectives. These include computing prime implicates
(PIs) (given an original implicate), minimal models (MMs), minimal unsatisfi-
able subsets (MUSes), minimal equivalent (or irredundant) subsets (MESes),
and minimal correction subsets (MCSes), among several others. Some of these
problems find applications in verification. For example, prime implicates have
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been used in inductive strengthening [8,9], whereas MUSes and MCSes find ap-
plication in proof-based abstraction [26] and counterexample-guided abstraction
refinement [1]. Besides verification, the range of applications include knowledge
representation [12], non-monotonic reasoning [25], and description logics [30].

Over the years, many different algorithms have been proposed for the above
computational problems. Thus, there are dedicated algorithms for computing
PIs [8,9,24], MUSes [5,17], MCSes [2,21,15,27], among others. The approach for
computing PIs proposed in [8,9] is described using a general framework for com-
puting a minimal set subject to a monotone predicate. We refer to this problem
as the minimal set over a monotone predicate (MSMP) problem. This paper ex-
ploits this insight [8,9], and shows that all of the above computational problems
(i.e. PIs, MMs, MUSes, MCSes, etc.) can be represented as instantiations of the
MSMP problem. This result immediately implies that algorithms for MSMP can
be used for solving any of the computational problems listed above, including
PIs, MMs, MUSes, MCSes, among others. In addition, existing algorithms for
any of these computational problems can be abstracted to the general framework
of the MSMP problem. More importantly, the insights provided by these obser-
vations allow developing a new algorithm for the MSMP, that is in some sense
optimal (i.e. it is asymptotically as efficient as the most efficient algorithms), but
that performs well in practice (in contrast with other optimal algorithms devel-
oped for specific computational problems, e.g. PIs and MUSes [19,8,9]). This
new algorithm is specialized for the case of MUS extraction, thus illustrating
how existing pruning techniques (and new ones) can be integrated into the gen-
eral MSMP algorithm. Experimental results, obtained on well-known practically-
relevant problem instances, demonstrate that the new algorithm outperforms the
current state of the art MUS extraction algorithm [5,6].

The paper is organized as follows. The next section introduces the definitions
used throughout the paper. Section 4 presents the MSMP problem, and shows
that the computational problems listed above can be formulated as instantiations
of the MSMP problem. Afterwards, Section 5 develops a new algorithm for the
MSMP problem (and so it is applicable to PIs, MMs, MUSes, MCSes, etc.).
Section 6 presents and analyzes the experimental results for the case of MUS
extraction. Finally, Section 7 concludes the paper.

2 Preliminaries

This section briefly introduces the definitions used throughout. Additional stan-
dard definitions can be found elsewhere (e.g. [16,23,7]). Boolean formulas are
represented in calligraphic font, F , M, U , T , etc. A Boolean formula in con-
junctive normal form (CNF) is defined as a finite set of finite sets of literals.
Where appropriate, a CNF formula will also be understood as a conjunction of
disjunctions of literals. The variables of formula F are denoted by var(F). An
assignment is a map µ : var(F)→ {0, 1}. A clause is satisfied by an assignment
if one of its literals is assigned value 1. A model of F is an assignment that
satisfies all clauses in F .
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When manipulating CNF formulas, it will often be necessary to consider the
clauses in a given range. Given CNF formula F and range i..j, where F is viewed
as a sequence 〈c1, c2, . . . , c|F|〉, the notation Fi..j represents the clauses in the
range i..j, i.e. {ci, ci+1, . . . , cj} for j ≥ i, or ∅ if j < i. This same notation will be
used for other sets. The following definitions will be used throughout [10,8,21,5].

Definition 1 (Prime Implicate given Implicate). A prime implicate π of
F given an implicate c is a minimal subset of the literals in c such that F �π.

Definition 2 (Minimal Model). A minimal model is a model µ of F such
that the set of true variables is minimal with respect to set containment.

Definition 3 (MU). F is Minimally Unsatisfiable (MU) iff F is unsatisfiable
and ∀c∈F ,F \ {c} is satisfiable.

Definition 4 (MUS). M is a Minimally Unsatisfiable Subformula (MUS) of
F iff M⊆ F and M is minimally unsatisfiable.

Definition 5 (MCS). C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C
is satisfiable and ∀c∈C ,F \ (C \ {c}) is unsatisfiable.

The definition of other computational problems, mentioned in the paper but
not explicitly addressed, can be found in the references [21,5,4]. Finally, although
the paper focuses on CNF formulas, the results can be extended to disjunctive
normal form (DNF) formulas, provided the computational problems of interest
are modified accordingly.

3 Related Work

This section overviews work on PIs (subject to an implicate), MMs, MUSes,
and MCSes. There is a large body of work on computing prime implicates, e.g.
see [24] for an overview. However, the problem this paper addresses focuses on
computing a prime implicate starting from an implicate. This problem is studied
in [8,9] (also see references therein). A key insight of Bradley&Manna’s work is in
representing the problem of computing a prime implicate in terms of computing
a minimal set subject to a monotone predicate. This insight is extensively used in
our work. Another contribution of [8,9] is an optimal (when there exists a single
unique minimal set) algorithm for computing a prime implicate. As highlighted
later, this optimal algorithm for computing a prime implicate corresponds to
the QuickXPlain algorithm for MUS extraction [19]. Minimal models find a
wide range of applications in Artificial Intelligence. A concrete example is non-
monotonic reasoning [25]. A recent example of applying minimal models is [31].

Recent years have seen a large body of work on computing MUSes (see [5,17]
and references therein). A wealth of algorithms have been proposed, of which
the most efficient in practice is the so-called hybrid algorithm [22,5]. Essential to
modern algorithms are techniques to reduce the number of calls to a SAT oracle.
The most effective are clause set refinement [14,22] and model rotation [22,5].
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A theoretically optimal algorithm for MUS extraction is the QuickXPlain
algorithm [19], which in practice performs poorly on CNF formulas. MCSes
find a large number of applications, an example of which is in using hitting set
duality for enumerating MUSes [28,21]. Recent algorithms for computing MCSes
include the use of Maximum Satisfiability [21], iterative clause analysis [27], and
a modified QuickXPlain algorithm [15].

To our best knowledge, there is no work relating these computational prob-
lems (and the ones mentioned in Section 1), and showing that all can be solved
with the same algorithms. This is the focus of the next section.

4 Minimal Sets over Monotone Predicates

This section introduces the minimal model subject to a monotone predicate
(MSMP) problem, using the framework developed in [8,9], and shows that sev-
eral computational problems on CNF formulas can be mapped to the MSMP
problem. This section also illustrates how some of the existing MUS extraction
algorithms can be adapted to the MSMP problem. Finally, the section analyzes
how well-known pruning techniques used in MUS extraction can be used in al-
gorithms for the MSMP problem.

4.1 The General Framework

This section revisits the approach presented in [8,9]. Let F be a CNF formula.
Moreover, let R be a set of elements (in some way related with F), i.e. the
reference set. A predicate p : 2R → {0, 1}, defined on R, is said to be monotone
if it has the following properties:

1. p(R) holds.
2. If p(R0) holds, and R0 ⊆ R1 ⊆ R, then p(R1) also holds.

As shown below, the set of elements R can represent different objects related
with F , e.g. set of clauses or literals.

Definition 6. (MSMP) The Minimal Set over a Monotone Predicate (MSMP)
problem consists in finding a subset M of R such that p(M) holds, and for any
M′ ⊂M, p(M′) does not hold, i.e. M is minimal.

In [8,9], Bradley&Manna show that the problem of computing a prime implicate
(from an existing implicate) can be represented as an instantiation of the MSMP
problem. In addition, an algorithm for the MSMP problem is proposed, which is
argued to be optimal (at least for the case when there exists one minimal set).

In this section we show that several other computational problems can be
cast as instances of the MSMP problem.

Theorem 1. Given a CNF formula F , there exists an instantiation of the
MSMP problem for each of the following problems:
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Table 1. Mappings to the MSMP Problem

R p(W), W ⊆ R

PI given c {l | l ∈ c} ¬SAT(F ∧ ∧l∈W¬l)
MM var(F) SAT(F ∧ ∧x∈var(F)\W(¬x))

MUS F ¬SAT(W)

MCS F SAT(F \W)

1. Computing a prime implicate (PI) of F given an implicate c of F .
2. Computing a minimal model (MM) of F .
3. Computing a minimal unsatisfiable subset (MUS) of F .
4. Computing a minimal correction subset (MCS) of F .

Proof. Let F be a CNF formula. We consider each case separately.
1. For the case of a prime implicate of F given implicate c, the reference set is
R = {l | l ∈ c}. For W ⊆ R, define p(W) , ¬SAT(F ∧ ∧l∈W¬l). Clearly, p(R)
holds, because c is an implicate of F . A minimal set M ⊆ R such that p(M)
holds is a prime implicate of F .
2. For the case of a minimal model, the reference set is R = var(F). ForW ⊆ R,
define p(W) , SAT(F ∧∧x∈var(F)\W(¬x)). Clearly, p(R) holds if F is satisfiable,
because no negated literals will be added to the formula. A minimal set M ⊆
R such that p(M) holds is a minimal model of F . Observe that var(F) \ M
represents a maximal set of literals that can be assigned value 0 while still
satisfying the formula, and so the remaining literals represent a minimal model.
3. For the case of an MUS, the reference set is R = F (or a subset known to be
unsatisfiable). For W ⊆ R, define p(W) , ¬SAT(W). Clearly, p(R) holds if F
is unsatisfiable. A minimal set M ⊆ R such that p(M) holds is an MUS of F ,
since any subset will be satisfiable.
4. For the case of an MCS, the reference set is R = F . For W ⊆ R, define
p(W) , SAT(F \W). Clearly, p(R) holds, because removing all clauses from a
clause makes the (empty) formula satisfiable. A minimal set M ⊆ R such that
p(M) holds is an MCS of F , because then F \ M is satisfiable, and for any
M′ ⊂M, F \M′ is unsatisfiable, particularly when M′ =M\ {c} for c ∈ M.
To conclude the proof we note that the monotonicity of the predicate p in all
cases above follows from the basic properties of CNF formulas and their models.
2

Table 1 summarizes the mappings of the above computational problems to
the MSMP problem. Theorem 1 can easily be extended to other computational
problems. Concrete examples are minimal equivalent (or irredundant) subsets
(MESes) and minimal distinguishing subsets (MDSes) [4]. Other immediate ex-
tensions are the problems studied above but for the case where clauses are han-
dled as groups [21,26], e.g. group MUS, group MES, etc.
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Algorithm 1: QuickXplain algorithm for the MSMP problem

Input: B; T , has set
Output: Elements in the minimal set

1 if has set ∧ p(B) then return ∅
2

3 if |T | = 1 then return T
4

5 m← b |T |
2
c

6 (T1, T2)← (T1..m, Tm+1..|T |)
7 M2 ← QuickXplain(B ∪ T1, T2, |T1| > 0)
8 M1 ← QuickXplain(B ∪M2, T1, |M2| > 0)
9 returnM1 ∪M2

4.2 Algorithms for MSMP

Given the results of the previous section, and the algorithms proposed over the
years for each of the above problems, one can conclude that many algorithms
can be developed for the MSMP problem by adapting any existing algorithm to
the framework of computing a minimal set over a monotone predicate. Clearly,
some algorithms proposed for different problems correspond to the same al-
gorithm in this framework. For example, the optimal algorithm proposed for
Bradley&Manna for computing a prime implicate [8,9] corresponds to the well-
known QuickXplain algorithm [19] for MUS extraction.

Given the wealth of algorithms proposed for MUS extraction [5,17], one can
develop the following types of algorithms for the MSMP problem: (i) Insertion-
based [13,32,22]; (ii) Deletion-based [11,3,22]; (iii) Dichotomic [18,17]; and (iv)
QuickXplain [19]. Let m is the number of elements in the initial set of ele-
ments, and k is the size of the largest minimal set. In terms predicate tests,
insertion-based algorithms require a number of tests that ranges from O(m) [22]
to O(mk) [13,32]. Deletion-based algorithms require O(m) predicate tests. Di-
chotomic algorithms require O(k logm) predicate tests. In the context of com-
puting a prime implicate, [8,9] develop a QuickXplain-like algorithm. Algo-
rithm 1 presents QuickXplain [19] adapted to the MSMP problem. B and T
denote sets of elements, and the algorithm minimizes T with respect to a base
B. The initial values for B and T are, respectively, the ∅ and the original set of
elements. The QuickXplain algorithm for MSMP iteratively splits the target
set of elements (T ), and recursively calls itself. The predicate is tested when
there exists another set of elements besides the current target. If the predicate
is true, then the current target set is irrelevant and can be discarded. The base
case corresponds to target sets of size 1, in which case the set is returned. As
shown independently in [19] and in [8,9], the asymptotic number of predicate
tests is O(k + k log m

k ).
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Algorithm 2: QuickXplain CR MSMP with certificate refinement

Input: B; T , has set
Output:M; C

1 if has set then
2 (st, C) = p(B)
3 if st then return (∅, C)
4

5 if |T | = 1 then return (T ,B)
6

7 m← b |T |
2
c

8 (T1, T2)← (T1..m, Tm+1..|T |)
9 (M2, C1)← QuickXplain CR(B ∪ T1, T2, |T1| > 0)

10 (M1, C2)← QuickXplain CR(B ∪M2, T1 ∩ C1, |M2| > 0)
11 return (M1 ∪M2, (C1 ∪ C2) ∩ B)

4.3 Pruning Predicate Tests

Recent work on MUS extraction is characterized by the development of several
techniques to reduce the number of calls to a SAT oracle. Examples include
clause set refinement [14], redundancy removal [32] and model rotation [22,5,33].
Regarding these techniques, we state a few results for clause set refinement and
model rotation, without proof; due to space restrictions this is beyond the scope
of this paper. Clause set refinement for the MSMP problem can be used for PIs
(given implicate c) and MUSes. For the case of MMs and MCSes, the equivalent
notion is to keep only the clauses falsified by models. We refer to the generalized
concept as certificate refinement. Certificate refinement requires the predicate
test to return a certificate for the tested property being true. More precisely, p(S)
returns a pair (st, C) where st is true iff the tested property holds, and, C ⊆ S
is such that that the property holds for C whenever st is true. If the property
consists in CNF unsatisfiability (e.g. PIs and MUSes), then the certificate is an
unsatisfiable core. In contrast, for CNF satisfiability (e.g. MMs and MCSes) the
certificate is a set of falsified clauses.

Model rotation can be used for the PIs and MUSes. There is no equivalent
concept for MMs and MCSes. The use of certificate refinement is illustrated for
the case of QuickXplain in Algorithm 2. Although the algorithm may seem
rather asymmetric in how it handles certificate refinement, recursion guarantees
that certificates are used in most of the partitions made.

For the concrete cases of MUS extraction and PI computation, model rotation
can also be integrated into the QuickXplain algorithm. Whenever the predicate
does not hold (i.e. formula B is satisfiable), if the number of clauses in T is 1, or if
the number of falsified clauses is 1, then a transition clause has been identified,
and so model rotation can be applied. As shown in Section 6 for the case of
MUSes, clause set refinement and model rotation serve to improve the basic
algorithm. However, for the case of MUS extraction, QuickXplain performs
significantly worse than most of the other algorithms considered.
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5 Progression-Based Algorithms

This section describes a new algorithm for the MSMP problem, which is also spe-
cialized for the case of MUS extraction. Recent work on MUS extraction showed
that the most efficient algorithms are based on iteratively deciding with a SAT
oracle whether each clause is in an MUS. This approach is referred to as deletion-
based [11] MUS extraction and (more recently) as the hybrid approach [22]. In
addition, a number of techniques are used to reduce the number of calls to a SAT
oracle, namely clause set refinement [14], redundancy removal [32] and model ro-
tation [22,5,33]. However, algorithms that in the worst case analyze all clauses
are not optimal. As illustrated by the work of Junker [19] with the QuickX-
Plain algorithm for MUSes and Bradley&Manna [8,9] on PIs, algorithms can be
developed that guarantee better worst-case asymptotic performance in terms of
the number of SAT solver calls. Unfortunately, these algorithms perform poorly
in practice. As shown by recent results [5,6], the algorithms with good theoretical
properties tend to perform poorly when compared with recent high-performance
algorithms [5]. (The experimental results in Section 6 confirm this observation.)

For MUS extraction, techniques such as clause set refinement allow dropping
many clauses that are not included in an MUS. Similarly, model rotation often
allows finding many clauses that must be in an MUS. Thus, in practice, the
theoretical advantages of QuickXPlain are not observed. Moreover, in many
settings, most of the clauses MUS algorithms end up analyzing are in the MUS.
When the size of the MUS is close to the number of clauses that need to be
analyzed, then QuickXPlain performs worse than approaches like the hybrid
algorithm. Another drawback of an algorithm like QuickXPlain is that only a
restricted version of model rotation can be integrated (see Section 4.3).

This section develops an algorithm for the MSMP problem that addresses
all the drawbacks of the Bradley&Manna and QuickXPlain algorithms. The
algorithm is shown to be correct, and the worst case number predicate tests is
shown to be asymptotically equivalent to that of Bradley&Manna’s and Quick-
XPlain algorithms. Afterwards, this section specializes the algorithm for the
concrete case of MUS extraction, integrating techniques known to be essential
for good performance [5].

5.1 A Progression Algorithm for the MSMP Problem

Algorithm 3 shows the organization of the new progression-based approach for
the MSMP problem. The algorithm uses a geometric progression to define a
subset of elements to drop from the set of elements on which the predicate is
tested. If the predicate holds for the reduced set of elements, then the dropped
elements are discarded, and the value of the progression is increased. Once the
predicate does not hold, the algorithm invokes a binary search function (see
Algorithm 4) to identify a transition element to include in the set of elements
representing the minimal set. Similarly to the MUS case, a transition element
is an element that, if dropped, the predicate does not hold. After identifying
a transition element, the geometric progression is reset to 1, and the process
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Algorithm 3: Progression-based computation of a minimal set

Input: Working set W
Output: Minimal set M

1 (M, i)← (∅, 0)
2 while W 6= ∅ do
3 ν ← min(2i, |W|)
4 if p(M∪W \W1..ν) then
5 W ←W \W1..ν

6 i← i+ 1

7 else
8 j ← BinSearchTransElem(M,W, ν)
9 W ←W \W1..j

10 M←M∪Wj..j

11 i← 0

12 returnM

Algorithm 4: Binary search for a transition element

function BinSearchTransElem(M,W, ν)
Input:M; W; ν
Output: Index of transition element r

1 (l, r)← (0, ν)
2 while l < r − 1 do // Inv: p(M∪W \W1..l) ∧ ¬p(M∪W \W1..r)
3 m← b l+r

2
c

4 if p(M∪W \W1..m) then
5 l← m
6 else
7 r ← m

8 return r

end

continues. As will be shown after specializing Algorithm 3, standard pruning
techniques are easily integrated in the progression-based algorithm. Some of the
insights of the new algorithm include the following. First, dropping more than
one element is achieved by the geometric progression. Second, identification of
the transition element is achieved using binary search. The progression is reset
to 1, to simplify the complexity analysis; heuristics could be used to decide how
to reset the progression after a transition element is identified.

5.2 Analysis of the Progression-Based Algorithm

This section analyzes Algorithm 3. The purpose is to show that the algorithm
terminates, that it is correct (i.e. it computes a minimal set), and to prove
the asymptotic complexity in terms of the number of times the predicate is
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tested. (Observe that, as illustrated in the previous section, the predicate is
tested through a SAT solver call.) Before that, we need to analyze Algorithm 4.

Lemma 1. Algorithm 4 terminates.

Proof. If l ≥ r − 1, then the while loop is not executed, and the algorithm
terminates. If l < r− 1, then at each iteration of the while loop, either l or r are
updated — the update would either increase l, or decrease r. 2

Analysis of the pseudo-code allows concluding that the invariant p(M∪W \
W1..l) ∧ ¬p(M∪W \W1..r) holds while executing BinSearchTransElem.

Lemma 2. The value r returned by Algorithm 4 is the smallest index in the
range 1..ν such that p(M∪ (W \W1..r−1)) holds and p(M∪ (W \W1..r)) does
not hold.

Proposition 1. Algorithm 3 terminates.

Proof. By precondition (see Section 2), the sets considered are finite, and so
is W. At each execution of the while loop, either the predicate p holds or is
does not. If the predicate holds, the set W is reduced by ν ≥ 1 elements. If the
predicate does not hold, then the call to BinSearchTransElem (line 8) returns
a value 1 ≤ j ≤ ν. Thus, set W is reduced by j ≥ 1 elements. Therefore, the
size of set W is reduced in each iteration of the while loop and so the algorithm
terminates. 2

Correctness requires conditions on set W, besides being finite. Concretely,
we require p(W) to hold.

Proposition 2. Algorithm 3 is correct, i.e. if p(W) holds, then p(M) holds and
M is a minimal such subset of W.

Proof. Let Wo denote the original set given to the algorithm. We will show the
invariant thatM is a minimal subset ofWorW s.t. p(M∪W) holds. This invari-
ant is sufficient to show the functional correctness since the algorithm terminates
iff W = ∅ and thusM is a minimal subset of Wo s.t. p(M). The invariant holds
upon initialization asM = ∅ and thus p(M∪W) holds by precondition andM
is minimal. If p(M∪W \W1..ν), then W1..ν is removed from W and thus at the
end of the iteration p(M∪W) still holds andM remains minimal since it has not
been updated and at the same time W was shrunk. In the else branch of the if
statement, j is computed s.t. p(M∪(W\W1..j−1)) holds but p(M∪(W\W1..j))
does not hold (by Lemma 2). Thus, removing W1..j from W and adding Wj..j to
M preserves p(M∪W). Moreover, it preserves the minimality ofM since if Wj..j

were not inserted intoM, p(M∪W) would not hold afterW1..j is removed from
W; and any other element cannot be removed fromM sinceM was minimal by
induction hypothesis, Wj..j was part of the original W , and p is monotone. 2

The complexity of the algorithm is measured in terms of the number of
predicate tests (which correspond to calls to an NP, in our case SAT, oracle).
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Proposition 3. Let the size of W be m = |W| and the size of the largest min-
imal subset M be k = |M|. If k = 0, Algorithm 3 requires O(log(1 + m)) tests
of predicate p, and if k > 0, it requires O(k log(1 + m

k )) tests of predicate p.

Proof. If k = 0, then the algorithm executes a simple geometric progression,
and this gives the result. If k > 0, let M = {τ1, τ2, . . . , τk}. Since Algorithm 3
analyzes the elements of W in order, the elements of M will also be discovered
in order, first τ1, then τ2, and so on. For i = 2, . . . , k, let αi denote the number
of elements of W between τi−1 and τi, plus 1 due to τi. For i = 1, α1 denotes
the number of elements of W not in M before τ1, plus 1 due to τ1. We con-
sider there are no elements above τk, since this gives the worst case (i.e. more
elements located to the left of τk). Next consider the workings of Algorithm 3.
While the predicate holds, the algorithm considers increasingly large subsets of
elements of W, starting with size 1 and progressing by powers of 2. For each i,
the number of tests until the predicate does not hold (because the removed set
contains τi) is log(1+αi), and the number of elements that need to be considered
after τi is at most αi. (We should use dlog(1 + αi)e, but this does not change
the asymptotic result.) Binary search will then require O(log(1 + αi)) predicate
tests to locate τi. (Again, we should use O(dlog(1 + αi)e), but this does not
change the asymptotic result.) Thus, for each τi, the number of predicate tests
is log(1 + αi), i = 1, . . . , k. (Observe that for k = i we are counting predicate
tests that have been discarded, but this is correct in terms of computing an up-
per bound.) Summing over all i, we get

∑k
i=1 log(1 + αi)

2 ≡ 2 logΠk
i=1(1 + αi).

Taking into consideration that
∑k
i=1 αi = m, the worst case corresponds to hav-

ing sets of equal size, i.e. αi = m
k . Thus the worst case number of predicate tests

is 2 k log(1 + m
k ) = O(k log(1 + m

k )). 2

The asymptotic number of predicate tests can be shown to correspond to
those of QuickXplain [19] and the optimal algorithm of Bradley&Manna [8,9],
for both of which the number of predicate tests is O(k + k log(mk )). If m is
much larger than k, then the asymptotic number of tests is O(k log(mk )). If m
is of the order of k, then the asymptotic number of tests is O(k). Moreover, the
progression-based algorithm incurs smaller constants for the case when m = k,
i.e. when the reference set is a minimal set. In this situation, it is a factor of two
better than either QuickXplain [19] or the optimal algorithm in [8,9].

5.3 Specialization for MUSes

This section shows how to specialize the progression-based MSMP algorithm
to the case of MUS extraction. Observe that Algorithm 3 could be used, but
it is possible to improve its performance in practice. The objective is to illus-
trate how two important pruning techniques can be integrated, namely clause-set
refinement [14,22] and model rotation [22,5]. Other optimizations are also high-
lighted. Algorithm 5 shows the progression-based MUS extraction algorithm,
whereas Algorithm 6 shows the binary search step. Several techniques to im-
prove performance can be considered. Clause set refinement is applied each time
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Algorithm 5: Progression-based computation of an MUS

Input: Unsatisfiable set U ⊆ F , viewed as sequence U = 〈c1, . . . , c|U|〉
Output: MUS M

1 (M, i)← (∅, 0)
2 while U 6= ∅ do
3 ν ← min(2i, |U|)
4 (st, µ, C)← SAT(M∪U \ U1..ν)
5 if not st then
6 U ← U ∩ C // Refine U
7 i← i+ 1

8 else
9 T ← FalsifiedClauses(µ,U1..ν})

10 (cj , µ,U)← BinSearchTransCl(M,U \ T , T , µ)
11 M←M∪ {cj}
12 U ← ModelRotate(M,U , µ)
13 i← 0

14 returnM

the SAT solver call returns false. This is shown in line 6 in Algorithm 5 and
lines 7 and 8 in Algorithm 6. Model rotation is applied each time a clause is
added to the MUS set M. This is shown in line 12 in Algorithm 5. Another
improvement is to exploit each model computed by the SAT solver to reduce the
number of target clauses. For each computed model, the algorithms just need to
subsequently search the transition clause over the clauses falsified by the model.
This is achieved with function FalsifiedClauses. Observe that in Algorithm 6 the
indices need to be corrected when the sets of clauses are changed. The additional
functions ensure the correct indices are computed.

6 Experimental Results

This section presents the results of an experimental evaluation of a number
of MUS extraction algorithms, including the progression-based algorithm pre-
sented in Section 5 3. Recent experimental results [5,6] have established the
so-called hybrid algorithm, with clause set refinement and model rotation, to
be the most efficient MUS extraction algorithm for practically-relevant bench-
mark sets. This section compares an implementation of the hybrid algorithm,
with implementations of the progression-based algorithm (cf. Section 5) and the
QuickXPlain algorithm [19] with various optimizations, as well as a number
of additional state-of-the-art MUS extractors. The algorithms were evaluated on
the benchmark instances from the MUS track of SAT Competition 2011 4. The

3 Given the results in this paper, we could have also considered PIs, MMs, MCSes,
MESes, etc. but opted to focus on MUS extraction.

4 http://www.satcompetition.org/.

http://www.satcompetition.org/
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Algorithm 6: Binary search for transition clause

function BinSearchTransCl(M,U , T , µ)
Input:M; U ; T ⊆ U ; µ
Output: Index of transition clause r; µR; U

1 µR ← µ
2 (l, r)← (0, |T |)
3 while l < r − 1 do
4 m← b l+r

2
c

5 (st, µ, C)← SAT(M∪U ∪ T \ T1..m)
6 if not st then
7 U ← U ∩ C // Refine U
8 (l, r, T )← DropNonCoreClauses(C, T , l, r)
9 else

10 (l, r, T )← FalsifiedClauses(µ, T , l, r)
11 µR ← µ // Save model for model rotation later

12 return (cr, µR, T ∪ U)

end

experiments were performed on an HPC cluster, where each node is dual quad-
core Intel Xeon E5450 3 GHz with 32 GB of RAM. Each algorithm was run with
a timeout of 3600 seconds and a memory limit of 4 GB per input instance.

Figure 1 presents a cactus plot comparing the performance of the following
MUS extractors: (i) our implementation of the QuickXPlain algorithm (Al-
gorithm 1, denoted QuickXPlain in the plot), additionally with the certificate
refinement for MUSes (Algorithm 2, denoted QuickXPlain+UC), and also with
specialized version of model rotation (denoted QuickXPlain+UC+ROT); (ii) the
top three MUS extractors from SAT Competition 2011, namely MoUsSaka [20]
and Haifa-MUC [29] with and without preprocessing; (iii) the implementation of
the hybrid and the dichotomic algorithms in the state-of-the-art MUS extractor
MUSer2 [6], denoted as HYB and DICH, respectively; (iv) the implementation of
the progression-based algorithm (Algorithm 3, denoted PROG), also in MUSer2.

A number of conclusions can be drawn from the plot in Figure 1. First we
note that the progression-based algorithm outperforms the hybrid algorithm,
which, to our knowledge, is the best performing MUS extraction algorithm to
date [5,6]. This latter claim is additionally supported by the fact that the top
three MUS extractors from the SAT Competition 2011 trail significantly behind
both HYB and PROG in Figure 1. This result is significant, since it implies that
the progression-based algorithm is the first algorithm that is both asymptotically
optimal, and that also performs well in practice. The experimental results are
also very clear about the significant performance difference between the new
algorithm and QuickXplain, even with the addition of the certificate refinement
and model rotation. As a side note, we point out that these optimizations, which
have not been proposed in previous work, have a notable positive impact on the
performance of QuickXplain.
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Fig. 1. Cactus plot: CPU runtimes of selected extractors on the benchmarks from the
MUS track of SAT Competition 2011. Time limit 3600 sec, memory limit 4 GB.

The scatter plots in Figure 2 provide additional insights into performance pro-
file of the progression-based algorithm. Comparing the algorithm with QuickX-
plain (left plot), we conclude that the new algorithm is a clear win, even when
QuickXplain is augmented with the proposed optimizations. This suggests that
the new algorithm captures the optimal behavior of the recursive partitioning
scheme employed by QuickXplain, while at the same time avoiding the un-
favorable for QuickXplain cases of instances with few non-MUS clauses. The
comparison with the hybrid algorithm (right plot) confirms the overall positive
trend towards the progression-based algorithm, but also shows that the perfor-
mance of the two algorithms might be complementary, suggesting a possible
integration of the algorithms into a portfolio.

7 Conclusions & Research Directions

This paper shows that several computational problems on Boolean formulas can
be formulated as computing a minimal set subject to a monotone predicate,
i.e. the MSMP problem. Examples include prime implicates, minimal models,
minimal unsatisfiable subsets, minimal correction subsets, among others. This
result allows using the same algorithms to solve all of these problems. In addi-
tion, the paper summarizes how standard pruning techniques can be adapted
to each concrete computational problem. The insights provided by this result
motivate the development of a new optimal algorithm for the MSMP problem,
which is asymptotically as efficient as the asymptotically best algorithms. More
importantly, the new algorithm has smaller constants than other algorithms,
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Fig. 2. CPU runtime of MUS extraction. Left: progression-based vs QuickXPlain
with optimizations. Right: progression-based algorithm vs hybrid.

and is amenable to the integration of well-known pruning techniques. The paper
also shows how the new algorithm for the MSMP problem can be specialized
for the case of MUS extraction. Experimental results, obtained on representa-
tive MUS problem instances, demonstrate that the new progression-based algo-
rithm outperforms another optimal algorithm, namely an optimized version of
QuickXPlain [19], that includes clause set refinement and model rotation. The
experimental results also demonstrate that the new algorithm outperforms the
current state of the art hybrid algorithm [5,6].

The results in this paper open several research directions. For example, how
does the new algorithm for the MSMP problem perform on other problems, e.g.
prime implicates, minimal models, minimal correction subsets among others?
How to apply the results in this paper to the case of group MUS, etc.?
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