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Abstract

There are well known cases of Quantified Boolean Formulas (QBFs) that have short win-
ning strategies (Skolem/Herbrand functions) but that are hard to solve by nowadays solvers.
This paper argues that a solver benefits from generalizing a set of individual wins into a strat-
egy. This idea is realized on top of the competitive RAReQS algorithm by utilizing machine
learning, which enables learning shorter strategies. The implemented prototype QFUN has
won the first place in the non-CNF track of the most recent QBF competition.

1 Introduction

Against all odds posed by computational complexity, logic-based problem solving had a remarkable
success at research but also at industrial level. One of the impressive success stories is the Boolean
satisfiability problem (SAT). Quantified Boolean formulas (QBF) go one step further and extend
SAT with quantification. This enables targeting a larger class of problems [6,14,41,43]. However,
success of QBF solvers comparable to SAT still seems quite far. Nevertheless, we have recently
seen a significant progress in the area almost every year, e.g. [5,8,15,16,20,22,34,38,39,45,46,53].
This paper aims to make a case for the use of machine learning during QBF solving.

It has been observed that search is often insufficient. A well-known example is the formula
∀X∃Y.

∧
xi ↔ yi with X = {x1, . . . , xn} and Y = {y1, . . . , yn} [30]. Traditional search will easily

find an assignment (valuation) to X and Y satisfying the matrix (the propositional part). However,
to prove that there is an assignment for Y given any assignment to X is difficult. Traditional
search, even with various extensions, will try exponentially many assignments. A human can easily
see why the formula is true. Indeed, given an arbitrary assignment to X, setting each yi to xi
gives a witness for the validity of the formula.

It is useful to see QBFs as two-player games, where the existential player tries to make the
formula true and the universal false. A winning strategy for the existential player shows that it
is true. The formula above is a good example of a small winning strategy—the strategy for yi
is the function syi(x1, . . . , xn) , xi. The million dollar question here is, where do we get the
strategies? This paper builds on the following idea: Observe a set of assignments and learn
from them strategies using machine learning. In another words, rather than looking at individual
assignments, collect a set of them and generalize them into a strategy.

Learning a strategy is not enough—it must also be incorporated into a solving algorithm. A
straightforward approach would be to test for the learned strategy whether it is a winning one
(that is possible with a SAT call [28]). However, this would put a lot of strain on the learning
since we would have to be quite lucky to learn the right strategy and eventually we would have to
deal with large training sets.
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The algorithm presented in this paper takes inspiration in the existing algorithm RAReQS,
which gradually expands the given formula by plugging in the encountered assignments [21]. In-
stead of plugging in assignments, we will be plugging in the learned strategies. This forms the
second main idea of the paper: Expand the formula using strategies learned from collected samples
and then start collecting a new set of samples.

2 Preliminaries

A literal is a Boolean variable or its negation; complementary literal is denoted as l̄, i.e. x̄ = ¬x,
¬x = x. For a literal l = x or l = ¬x, we write var(l) for x. Analogously, vars(φ) is the set of all
variables in formula φ. An assignment is a mapping from variables to Boolean constants 0, 1. For
a formula φ and an assignment τ , we write φ[τ ] for the application of the assignments to φ.

2.1 Quantified Boolean Formulas

Quantified Boolean Formulas (QBFs) [27] extend propositional logic by enabling quantification
over Boolean variables. Any propositional formula φ is also a QBF with all variables free. If Φ
is a QBF with a free variable x, the formulas ∃x.Φ and ∀x.Φ are QBFs with x bound, i.e. not
free. Note that we disallow expressions such as ∃x.∃x. x, i.e., each variable is bound at most
once. Whenever possible, we write ∃x1 . . . xk instead of ∃x1 . . . ∃xk; analogously for ∀. For a QBF
Φ = ∀x.Ψ we say that x is universal in Φ and is existential in ∃x.Ψ. Analogously, a literal l is
universal (resp. existential) if var(l) is universal (resp. existential).

Assignments also can be applied to QBF with (Qx.Φ)[τ ] defined as Φ[τ ] if x is in the domain
of τ with Q ∈ {∀,∃}.

A QBF corresponds to a propositional formula: ∀x.Ψ corresponds to Ψ[x�0] ∧ Ψ[x�1] and
∃x.Ψ to Ψ[x�0] ∨Ψ[x�1]. Since ∀x∀y.Φ and ∀y∀x.Φ are semantically equivalent, we allow QX
for a set of variables X, Q ∈ {∀,∃}. A QBF with no free variables is false (resp. true), iff it is
semantically equivalent to the constant 0 (resp. 1).

A QBF is closed if it does not contain any free variables. A QBF is in prenex form if it is
of the form Q1X1 . . .QkXk. φ, where Qi ∈ {∃,∀}, Qi 6= Qi+1, φ propositional, and Xi pairwise
disjoint sets of variables. The propositional part φ is called the matrix and the rest prefix. For a
variable x ∈ Xi we say that x is at level i and write lv(x) = i; we write lv(l) for lv(var(l)). Unless
specified otherwise, QBFs are assumed to be closed and in prenex form.

2.2 Games and Strategies

For most of the paper, QBFs are seen as two-player games. The existential player tries to make the
matrix true and the universal player to make it false. A player assigns value only to variables that
belong to the player and may assign a variable only once all variables that precede it in the prefix
are assigned. In other words, the two players assign values following the order of the prefix. The
game semantic perspective has the advantage that mostly we do not need to distinguish between
the player ∃ and ∀. Instead, we will be talking about a player and its opponent. Notation: We
write Q for either of the players, and, Q̄ for its opponent.

Given a QBF Q1X1, . . . ,QnXn. φ the domain dom(x) of a variable x ∈ Xk are all the variables
in the preceding blocks, i.e. dom(x) =

⋃
i∈1..k−1Xi. A play is a sequence of assignments τ1, . . . , τn

where τi is an assignment to Xi.

Definition 1 For a QBF Q1X1, . . . ,QnXn. φ a strategy for a variable x ∈ Xk is a Boolean
function sx whose arguments are the variable’s domain, i.e. dom(x).

A strategy for a player Q is a set of strategies sx for each of the variables x ∈ QXi. Whenever
clear from the context, we simply say strategy for either of the concepts.

Notation. For the sake of succinctness, a strategy for a variable x is conflated with a Boolean
formula whose truth value represents the value of the strategy. In another words, a strategy
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represents both some function sx : 2dom(x) 7→ {0, 1} and some formula ψx with vars(ψx) ⊆ dom(x).
This convention lets us also treat a set of strategies S for some variablesX as a substitution. Hence,
ξ[S] represents the formula that results from simultaneously replacing in ξ each variable x ∈ X
with its strategy ψx.

Definition 2 (winning strategy) Let Ψ be a closed QBF (QX . . . φ) with φ propositional. A
strategy S for ∃ is winning in Ψ if φ[S] is a tautology. A strategy S for ∀ is winning in Ψ if φ[S]
is unsatisfiable.

In particular, for a formula ∃X.φ a winning strategy for ∃ corresponds to a satisfying assign-
ment of φ.

Observation 1 A closed QBF Φ is true iff ∃ has a winning strategy; it is false iff ∀ has a winning
strategy.

Definition 3 (winning/counter move) For a closed QBF QX.Φ an assignment τ to X is a
winning move if there exists a winning strategy for Q in Φ[τ ].

For a closed QBF QXQ̄Y.Φ and an assignment τ to X, an assignment µ to Y is a counter-
move to τ if µ is a winning move for Q̄Y.Φ[τ ].

Observation 2 There exists some winning move for QX in a formula QX.Φ, if and only if there
exists a winning strategy for Q in the formula.

Observation 3 For a formula QXQ̄Y.Φ, an assignment to X is a winning move iff there is not
a counter-move to it.

3 Algorithm QFUN

As to make it a more pleasant read, this section comes in three installations, each bringing in more
detail. The first part quickly overviews the existing algorithm (R)AReQS and sketches the main
ideas of the proposed approach, which we will simply call the algorithm QFUN. The second part
presents QFUN for the two-level case, i.e., formulas with one quantifier alternation. Finally, the
third part details out the algorithm for the general case, i.e., formulas with arbitrary number of
quantifier alternations.

3.1 Exposition

Let us quickly review the existing algorithm RAReQS [21]. For a formula QXQ̄Y.Φ RAReQS
aims to decide whether there exists a winning move for Q. To that end, the algorithm keeps on
constructing a sequence of pairs (τ1, µ1), . . . , (τk, µk). Each τi is an assignment to X and µi is a
counter-move to τi (see Def. 3). In each iteration, RAReQS constructs a partial expansion (called
abstraction) of the original QBF such that no existing µi is a counter-move in the original formula
to any winning move of the abstraction. In another words, if Q draws the next move so that it
wins the abstraction, he is guaranteed not to be beaten by any of the existing counter-moves.

If there is no winning move for the abstraction, there isn’t one for the original formula either
and therefore there is no winning strategy for Q (we are done). If there is some winning move
τk+1 for the abstraction, check whether the opponent still comes up with a counter-move µk+1. If
he does not, τk+1 is a winning move for Q and we are done (see Observation 2). If a counter-move
is found, the pair (τk+1, µk+1) is added to the sequence and the process repeats.

This setup inspires the use of machine learning. Since each µi is a counter-move to τi, the
constructed sequence of pairs (τi, µi) can be conceived as a training set for the strategies for the
variables Y (belonging to the player Q̄). More specifically, for each variable y ∈ Y , the pair (τi,µi)
represents a training sample for the function sy prescribing that sy(τi) = µi(y). Observe that
there might be other good strategies for the opponent Q̄. However, the pairs (τi, µi) have already
proven to be good for Q̄ and therefore we will stick to them.
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Algorithm 1: Playing 1-move multi-game

Function Wins1 (QX. {φ1, . . . , φn})
input : All φi propositional.
output: win. move for all QX.φi, if exists; ⊥ otherwise.

1 α← (Q = ∃) ?
∧

i∈1..n φi :
∧

i∈1..n ¬φi
2 return SAT(α)

It is tempting to learn a strategy for Q̄Y from such samples and then verify that it is a winning
one. If it is a winning one, we would be done. If it is not a winning one, we could just learn a
better one once we have more samples. However, this approach is unlikely to work. The problem
with this approach is twofold. Firstly, it is overly optimistic to hope to hit the right strategy
given a set of samples whose number is likely to be much smaller than the full truth table of the
strategy. Secondly, it is putting too much strain on machine learning because the set of samples
keeps on growing. Instead, this paper proposes the following schema.

1. Collect some suitable set of samples E .

2. Learn strategies S for the opponent variables.

3. Strengthen the current abstraction using the strategies S.

4. Reset the set of samples E

5. Repeat.

3.2 QFUN2: 2-level QBF

Let us look at the two-level case, i.e., a QBF of the form QXQ̄Y. φ. This form is particularly
amenable to analysis since both the abstraction and candidate-checking is solvable by a SAT
solver. Also, 2-level QBF has a number of interesting applications (cf. [6, 41,43]).

A slight generalization of a game called a multi-game [21] is useful in the following presentation.
A multi-game is a set of sub-games where the top-level player must find a move that is winning
for all these sub-games at once. Note that a multi-game can be converted to a standard QBF by
prenexing. However, it is useful to maintain this form (see [21, Sec. 4.1]).

Definition 4 (multi-game) A multi-game is written as QX. {Φ1, . . . ,Φk}. An assignment τ to
X is a winning move for it iff it is a winning move for all QX.Φi. Each Φi is called a sub-game
and is either propositional or begins with Q̄.

When all sub-games are propositional, the multi-game is solvable by a single SAT call. For
such we introduce a function Wins1 (Algorithm 1). The function calculates a winning move for
the multi-game or returns ⊥ if it does not exist (the function SAT has the same behavior). Observe
that if the set of sub-games is empty, the formula α in Wins1 is the empty conjunction, which is
equivalent to true, i.e., the SAT call then returns an arbitrary assignment.

Just as the existing algorithm AReQS, QFUN2 (Algorithm 2) maintains an abstraction α.
The abstraction corresponds to a partial expansion of the inner quantifier. Hence, for a formula
QXQ̄Y.φ, the abstraction has the form QX. {Φ[S] | S ∈ ω}, where ω is some set of strategies.
Observe that the abstraction is trivially equivalent to the original formula if ω contains all possible
constant functions. For instance, ∀u∃e. φ is equivalent to ∀u. φ[e�0] ∨ φ[e�1], which is equivalent
to the multi-game ∀u. {φ[e�0], φ[e�1]}.

Example 1 Consider the formula ∀uw∃xy. φ with φ = (u⇒ (¬w ⇔ x ∧ w ⇔ y)) ∧ (¬u⇒ (w ⇔
x∧¬w ⇔ y)). The following abstractions of this formula are both losing for ∀. With two sub-games:
∀uw. {φ[x�¬w, y�w], φ[x�w, y�¬w]}; with single sub-game: ∀uw. {φ[x�(u ?¬w : w), y�(u ?w : ¬w)]}.
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Algorithm 2: QFUN2: 2-level QBF Refinement with Learning

Function QFUN2(QXQ̄Y. φ)
input : φ is propositional.
output: a win. move for QX if exists, ⊥ otherwise

1 E ← ∅ // start with no samples

2 α← ∅ // empty abstraction

3 while true do
4 τ ← Wins1(QX.α) // candidate

5 if τ = ⊥ then return ⊥ // loss

6 µ← Wins1(Q̄Y. {φ[τ ]}) // countermove

7 if µ = ⊥ then return τ // win

8 E ← E ∪{(τ, µ)} // record sample

9 if ShouldLearn() then
10 S ← Learn(E) // learn

11 α← α ∪ {φ[S]}
12 E ← ∅ // reset samples

13 else
14 α← α ∪ {φ[µ]} // refine

The abstraction α is refined with every play losing for Q, which effectively means adding a
subgame to the current abstraction. Additionally, QFUN2 maintains a set of samples E . The
samples are pairs (τi, µi) such that τi, µi is a losing play for Q, i.e., a winning play for Q̄. So for
instance, if Q = ∀ then Q̄ = ∃ and τi ∪µi |= φ.

Both the abstraction α and samples E are initialized as empty. In each iteration, QFUN2 calls
Wins1 to calculate a candidate for a winning move τ . Subsequently, another call to Wins1 is issued
to calculate a counter-move µ. If either candidate or counter-move does not exist, one of the player
has lost without recovery.

Machine learning is invoked only ever so often. To decide when, the pseudo-code queries the
function ShouldLearn. Whenever ShouldLearn is true, new strategies are learned for Y -variables
based on the samples E . These strategies are plugged into the formula φ and recorded in the
abstraction. Then, and that is crucial, the set of samples is reset back to the empty set.

In terms of soundness, the set of samples E need not be reset after each learning. However, it is
crucial in terms of performance. If the set is always augmented, learning will become overly time
consuming. Recall that a strategy needs to be learned for each opponents’ variable and further,
the number of iterations can go to millions.

So what does the abstraction represent and what is the role of the learned strategies? The
original AReQS adds a sub-game φ[µi] for each existing counter-move µi. Intuitively, this means
that the player Q never plays before making sure that he can successfully defend himself against all
the existing counter-moves. Once strategies are also included, the player Q also defends himself
against all the strategies devised so far. Strategy-based refinement is a generalization of the
traditional one—the traditional refinement corresponds to a set of strategies comprising constant
functions.

What do we require from the strategy learning? The good news is that in fact very little.
A strategy must be learned in the form of a formula so that it can be plugged into the original
formula. This means that the algorithm does not easily allow for neural networks, for instance.
The current implementation uses decision-trees (see Section 4). For the sake of soundness, the
learned strategy formula must follow the definition of a strategy (Definition 1). In practice this
means that a strategy formula ξy for a variable y must only contain variables from dom(y).

If the function ShouldLearn triggers traditional refinement only finitely many times, the learn-
ing method also needs to guarantee termination of the whole algorithm. A natural minimal re-
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Algorithm 3: QBF Refinement with Learning

Function QFUN(QX. {Φ1, . . . ,Φn})
input : Each Φi is propositional or begins with Q̄Y .
output: a win. move for QX if exists, ⊥ otherwise

1 if all Φi propositional then
2 return Wins1(QX. {Φ1, . . . ,Φn})
3 E i ← ∅, i ∈ 1..n // samples

4 α← QX.∅ // empty abstraction

5 while true do
6 τ ′ ← QFUN(α) // candidate

7 if τ ′ = ⊥ then return ⊥ // loss

8 τ ← {l | l ∈ τ ′ ∧ var(l) ∈ X} // filter

9 if all QFUN(Φi[τ ]) = ⊥ then return τ // win

10 let l be s.t. QFUN(Φl[τ ]) = µ for some l ∈ {1..n}, µ 6= ⊥
11 E l ← E l ∪{(τ, µ)} // record sample

12 if ShouldLearn() then
13 S ← Learn(E l) // learn

14 α← Refine(α,Φl, S)
15 E l ← ∅ // reset samples

16 else
17 α← Refine(α,Φl, µ) // refine

quirement for this is that the learned strategies will correspond to at least one sample (τi, µi) ∈ E ,
i.e. sy(τi) = µi(y), for each y ∈ Y . This requirement guarantees that τi will not appear as a
candidate for a winning move in the upcoming iterations. Nevertheless, if ShouldLearn alter-
nates between traditional and learning-based refinement, termination is already guaranteed by
the traditional refinement and we do not need to worry about what is learned as long as it is
sound.

3.3 QFUN: General Case

The general case QFUN generalizes the two-level case QFUN2 using recursion (just as RAReQS
generalizes AReQS). The basic ideas remain, even though we are faced with a couple of technical
complications. The pseudocode is presented as Algorithm 3. Since the abstraction is a multi-
game, the recursive call also needs to handle a multi-game. For this purpose, we maintain a set
of sequences of samples—each sequence for each given sub-game. Candidates for a winning-move
are drawn from the abstraction α by a recursive call. The small technical difficulty here is that
the abstraction may return a winning move containing some extra fresh variables coming from
refinement. Hence, these need to be filtered out (ln. 8).

If, the candidate move τ is a winning move, it is returned. If, however, there is some counter-
move µi obtained by playing a sub-game Φi, it is used for refinement. This means inserting the pair
(τ, µi) into the sample sequence pertaining to this sub-game, i.e. sequence E i, and subsequently,
performing refinement. In order to ensure that quantifiers alternate, refinement introduces fresh
variables for formulas with more than 2 levels. The refinement function is defined as follows.
Refine

(
QX.{Ψ1, . . . ,Ψn}, Q̄Y QX1.Ψ, S

)
:= QXX ′1.{Ψ1, . . . ,Ψn,Ψ

′[S]}
Refine

(
QX.{Ψ1, . . . ,Ψn}, Q̄Y. ψ, S

)
:= QX.{Ψ1, . . . ,Ψn, ψ[S]}

where X ′1 are fresh duplicates of the variables X1 and Ψ′ is Ψ with X1 replaced
by X ′1 and where ψ is a propositional formula.
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4 Implementation

4.1 Formula representation

The algorithm requires nontrivial formula manipulation to achieve refinement. Performing these
operations directly on a CNF representation is difficult and further, CNF representation as input
has well-known pitfalls [1, 23]. Hence, the implementation represents formulas as And-Inverter
graphs (AIG) [18], which are simplified by trivial non-invasive simplifications [11]. All the logical
operations (e.g. substitution/conjunction) are performed on AIGs. Only when the time comes
to call a SAT solver, the AIG is translated into CNF. This is done in straightforward fashion.
Each sub-AIG is mapped to an encoding Boolean variable in the SAT solver. Since the AIGs are
hash-consed, each sub-AIG also corresponds to just one variable. All the and-gates are binary.
The input to the solver is the circuit-like format for QBF called QCIR [24].

4.2 Learning

Recall that learning is invoked with the sequence of pairs of assignments E = (τ1, µ1), . . . , (τk, µk),
where each τi is an assignment to some block of variables X in the prefix and µi is an assignment
to variables Y , which is the adjacent block in the prefix, belonging to the opposing player.

The objective is to learn a strategy (a function) for each of the variables in Y . A Boolean
function can be seen as a classifier with two classes: the input assignments where the strategy
should return 1 (true) and the input assignments where the strategy should return 0 (false).
The implementation uses the popular classifier Decision trees [42]. These are constructed by the
standard ID3 algorithm [37].

For each variable in y ∈ Y , construct the training set Ey from E by ignoring all the other Y
variables. Subsequently invoke ID3 on Ey thus obtaining a decision tree conforming to the sample
assignments. Once a decision-tree is constructed, the Boolean formula is constructed as follows.

1. Construct the sets of conjunctions of literals Ip and In corresponding to the positive and
negative branches of the tree, respectively. Hence, if t ∈ Ip is true, the tree gives 1.

2. Repeatedly apply subsumption and self-subsumption on each set Ip and In, until a fixed
point is reached.

3. If | Ip | < | In | return
∨
Ip, otherwise return ¬

∨
In.

Step 2 would not necessarily be needed but since we are substituting the constructed functions
into the input formula, it is desirable to maintain them small. Analogously, either set could be
chosen in step 3 but a smaller is preferable. Some heavier methods could be considered here,
cf. [19].

When to learn? It is a bad idea to learn too frequently since this would produce poor sample-
sets to learn from. However, learning too infrequently has two main pitfalls:

1. Learning on large sample-sets will be too costly (recall that a learning algorithm is run for
each opponent variable upon refinement).

2. There is a risk of very complicated and therefore large functions to be learned from compli-
cated samples

A straightforward approach was taken to implement the function ShouldLearn: learning is trig-
gered every K iterations of the loop, where K is a parameter of the solver. The number of iterations
is considered local for each recursive call of QFUN. The experimental evaluation examines the
solver’s behavior for several values of K (see Section 5).
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Solver Quabs GQ RAReQS L-16 L-64 L-128 L-64-f
Solved (320) 103 75 105 110 111 111 104
Wins 63 11 67 55 63 62 60

Table 1: Result summary. A win is counted also when time is not worse than the best time by 1s.

4.3 Strategy accumulation

Upon each refinement the set of samples is reset. Also, whatever is learned is forgotten in the next
rounds—learning starts from scratch on a new set of samples. This might be disadvantageous.
The current implementation uses a simple but important improvement. The algorithm records
for each variable y the last learned strategy. This strategy is then evaluated on the next batch of
samples when learning is invoked again. If it still fits the data, it is kept. Otherwise it is discarded
and a new strategy is learned.

Example 2 Consider the formula from the introduction of the paper: ∀x1, . . . , xn∃y1, . . . , yn.
∧
xi ↔

yi, and, the following sequence of samples.
x1 x2 . . . xn y1 y2 . . . yn

0 0 . . . 0 0 0 . . . 0
1 0 . . . 0 1 0 . . . 0

0 0 . . . 1 0 0 . . . 1
0 1 . . . 1 0 1 . . . 1

If K = 2, the first application of learning gives y1 , x1 and the rest of the strategies are
constantly 0. In the second refinement, learning gives y2 , x2 and the rest constants. If, however,
we keep the information from the previous learning, we get both y1 , x1, y2 , x2. Hence,
accumulating the individual strategies will eventually yield the right strategy.

Some similar functions were in fact learned during the experimental part. For instance, I have
observed the solver learn y , x for ∀x . . .∃y . . .

(
F ∧ (y ⇒ (x ∧ G)) ∧ (H ∨ ¬x ∨ y)

)
for some

larger formulas F , G, H. Theoretically, learning can be worse than traditional refinement, e.g.,
. . . ∃x1..x100. (x1∧· · ·∧x100)∨G it is clearly better refine with xi , 1 rather than some complicated
functions.

4.4 Incrementality

The recursive structure of the algorithm is very elegant but might be too forgetful. If one is to
solve Φ[µi], it could be useful to maintain the abstraction from that solving in order to solve
Φ[µi+1]. The issue is that then the solvers tend to occupy too much space. Currently, the solver
maintains only abstractions that are purely propositional.

5 Experimental Evaluation

The RAReQS algorithm has proven to be highly competitive as it have placed first in several
tracks of the recent QBF competitions. So the key question is whether RAReQS benefits, or may
benefit, from the proposed learning.

The success of the machine learning techniques can be assessed at various levels. The lowest
bar is whether the technique is at all computationally feasible. Indeed, it might be that the learning
is impractically time-consuming. Second step is whether the number of iterations decreases when
learning is applied. The third step is whether also solving time decreases when learning is applied.
Finally, we are interested in variations of the algorithm. Namely, the effect of the learning interval
and the effect of the technique of accumulating strategies (see Section 4.3).

The evaluation considers the following configurations of algorithm QFUN (Algorithm 3):
QFUN without any learning, which is in the fact RAReQS; versions QFUN-16, QFUN-64, and
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QFUN-128 where learning is triggered every 16/64/128 iterations, respectively; QFUN-64-f forgetful
version of QFUN where previously learned strategies are not used in the future. All the other
versions accumulate strategies as described in Section 4.3. Additionally we compare to the highly
competitive non-CNF solvers GhostQ [29] and QuAbS [45].

The evaluated prototype is implemented in C++ and minisat 2.2 [12] is used as the backend
solver. The experiments were carried out on Linux machines with Intel Xeon 5160 3GHz processors
and 4GB of memory with the time limit 800 s and memory limit 2GB. For the evaluation we used
the non-CNF suite from the 2017 QBF Competition counting 320 instances.1

The overall results are summarized in Table 1. The cactus plot in Fig. 1a summarizes the
performance. For the sake of readability, the cactus plots omits QFUN-16, whose performance is
quite similar to QFUN-64 and QFUN-128, which are already quite close. Fig. 1b is a scatterplot
comparing the total number of refinements for QFUN-64 and RAReQS, i.e., machine learning every
64 iterations versus no learning; all instances are displayed and time/mem-outs are placed on the
edges. The learning time observed was the relatively small, for instance on CM-sat-07-01-07-3

with 425+917 variables, each learning round took 0.8 s with 200 s being the total solving time.

5.1 Results Discussion

Overall, learning gives improvement both in terms of number of solved instances as well as number
of iterations. Admittedly, in terms of number of solved instances the gain is modest. However, the
difference in performance between RAReQS and QuAbS is even smaller despite each representing
a completely different algorithm. Also recall that Fig. 1b is in logarithmic scale so the number of
iterations saved are in number of cases in orders of magnitude. Overall this suggests that adding

1www.qbflib.org/event_page.php?year=2017
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learning in the brings about a new quality in the solver.
The effect of frequency of learning on the performance is relatively small. The best configu-

ration is with learning every 64 refinements (QFUN-64), while QFUN-16 and QFUN-128 perform
slightly worse. This is not surprising as too frequent learning will slow down the solving and too
infrequent does not give enough opportunity to learn.

The biggest effect has strategy accumulation. Indeed, without it, learning in fact performs
worse then without any learning. This suggests that at least for some variables it is important to
learn a certain strategy and maintain it. This observation clearly opens opportunities for further
investigation as the techniques of accumulating strategies can be further developed.

6 Related Work

The research on QBF solving has been quite active in the last decades and an array of approaches
exists. It appears that these different approaches also give us a different classes of instances
where they are successful. One of the oldest approaches is conflict/solution learning [13,31,33,53],
which essentially generalizes clause learning in SAT. Then there are solvers that perform quantifier
expansion into Boolean connectives [5, 8, 32, 36, 46]; solvers that target non-CNF inputs [4, 15, 16,
29, 45, 49, 52]; and solvers that calculate blocking clauses using a SAT solver [22, 39, 40]. Recently
we have also seen integration of inprocessing with conflict/solution learning [34].

This paper builds on the algorithm RAReQS [21], which expands quantifiers gradually by
substituting them one by one into the formula. This approach is conceptually akin to the model-
based quantifier instantiation [50].

It is known that QBF solvers implicitly trace strategies because a winning strategy can be
extracted once the formula is solved [2,3,7,17]. However, to our best knowledge there are currently
only two QBF solvers that explicitly target strategy computation. In [10] the authors fused clause
learning and RAReQS by refining abstractions with strategies calculated from clause learning—
with not very promising results. The second solver by Rabe and Seshia works in the context of
2QBF and gradually adds variables to a winning strategy of the inner quantifier [38].

It is hard to do justice to the work that has been done in machine learning, the reader is directed
to standard literature [42]. It should be mentioned that strategy learning is a very specific type
of learning because we need the result in the form of a formula. This is closely related to function
synthesis/learning cf. [26, 35, 44, 48]. Machine learning has also been used in portfolio solvers
e.g. [51].

Last but not least, machine learning has been used at a higher level of inference to discover
lemmas in the context of first order or higher order reasoning [25,47].

7 Conclusion and Future Work

This paper presents a QBF solver that periodically generalizes a set of observations (plays) into
a strategy by machine learning. These strategies are plugged into the original formula in order
to gradually strengthen a partial expansion of the formula. The results show that this is feasible
and it also helps to reduce the number of refinement iterations but also the solving time. The fact
that this results in a competitive QBF solver is already compelling. Indeed, machine learning is
invoked many times during solving on a number of variables separately. However, the design of
the algorithm enables us to curb the computational burden of machine learning by limiting the
size of the training set.

As discussed in Section 4, the current prototype is rather straightforward in its implementation
decisions. There is a lot of room for making the solver more intelligent. Besides inprocessing and
other implementation issues, number of things are to be investigated for the machine learning
part. What kind of machine learning methods are good for this purpose? When to trigger
machine learning? Can we improve the training sets (e.g. introduction of don’t-cares)?
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Another interesting question for future work is whether machine learning can be beneficial in
other type of QBF solving. There are opportunities for this. Even if the solver is not performing
expansion-based refinement (e.g. CAQE [39], QESTO [22], CADET [38]), it can for instance use
a learned strategy to predict the behavior of the opponent.

At the theoretical level, the paper touches a fundamental question: how difficult is it to learn
the right strategies? Here, PAC-learnability could give some answers [48].
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