Interactive Model Derivation with External Constraints

Mikoláš Janota

University College Dublin, Ireland

Victoria Kuzina Andrzej Wąsowski

IT University of Copenhagen, Denmark

- Soundness-preserving derivation seen in instance derivation
- Completeness-preserving derivation will be illustrated by a prototype for feature diagrams
- Semantics-preserving derivation will be illustrated by a prototype for feature models

- Soundness-preserving derivation seen in instance derivation
- Completeness-preserving derivation will be illustrated by a prototype for feature diagrams
- Semantics-preserving derivation will be illustrated by a prototype for feature models

- Soundness-preserving derivation seen in instance derivation
- Completeness-preserving derivation will be illustrated by a prototype for feature diagrams
- Semantics-preserving derivation will be illustrated by a prototype for <u>feature models</u>

 $model \rightarrow an instance$

 $model \rightarrow an instance$

 $model \rightarrow an instance$

 $model \rightarrow an instance$

- C1 Each USB must contain exactly one instance of PC.
- **C2** Every device is connected to a port or to the PC instance.
- **C3** Every USB has a keyboard connected or a free port to connect one.

- Validity of advice: no sequence of operations leads to an invalid model
 - For the USB language: all derivable USBs satisfy the language constraints (the diagram and C1–C3)
- Exhaustiveness of advice: all conforming instances are derivable.
 - For the USB language: all legal USBs can be derived (van der Meer 2006)

- Validity of advice: no sequence of operations leads to an invalid model
 - For the USB language: all derivable USBs satisfy the language constraints (the diagram and C1–C3)
- Exhaustiveness of advice: all conforming instances are derivable.
 - For the USB language: all legal USBs can be derived (van der Meer 2006)

- Validity of advice: no sequence of operations leads to an invalid model
 - For the USB language: all derivable USBs satisfy the language constraints (the diagram and C1–C3)
- Exhaustiveness of advice: all conforming instances are derivable.
 - For the USB language: all legal USBs can be derived (*van der Meer* 2006)

- Validity of advice: no sequence of operations leads to an invalid model
 - For the USB language: all derivable USBs satisfy the language constraints (the diagram and C1–C3)
- Exhaustiveness of advice: all conforming instances are derivable.
 - For the USB language: all legal USBs can be derived (*van der Meer* 2006)

 $model \rightarrow an instance$

additional constraint

electric → automatic

additional constraint:

electric → automatic


```
Java - Eclipse SDK

Java - Eclipse SDK
```



```
Java - Eclipse SDK

Java - Eclipse SDK
```

```
Java - Eclipse SDK

| Feature Model Derivation | Same | 14--Select Example -->>
| Same | 14--Feature Diagram | Value | Normalist | Normali
```

- The algorithm has the properties of **validity** and **exhaustiveness** of advice.
- The algorithm is efficient compared to approaches based on Constraint Satisfaction or Logic Programming.

 $\mathsf{model} \to \mathsf{an} \; \mathsf{instance}$

 $\mathsf{meta}\text{-}\mathsf{model} \to \mathsf{model}$

semantics-preserving =
completeness-preserving
+ soundness-preserving

semantics-preserving =
completeness-preserving
+ soundness-preserving

Example: any refactoring

semantics-preserving = completeness-preserving + soundness-preserving

Example: any refactoring

Example: feature model derivation

- the model comprises two components feature diagram (M) additional constraint (ψ)
- overall semantics must be preserved

"
$$M + \psi = M' + \psi'$$
"

Oľ

$$(M, \psi) \longrightarrow (M', \psi')$$

- the model comprises two components
 feature diagram (M)
 additional constraint (ψ)
- overall semantics must be preserved

"
$$M + \psi = M' + \psi'$$
"

or

$$(M, \psi) \longrightarrow (M', \psi')$$

glossary

soundness-preserving derivation completeness-preserving derivation semantics-preserving derivation

validity of advice exhaustiveness of advice

Work this out for a rich subset of ECORE models, not only for Feature Models

