
Community-based Partitioning for MaxSAT Solving?

Ruben Martins, Vasco Manquinho, and Inês Lynce

IST/INESC-ID, Technical University of Lisbon, Portugal
{ruben,vmm,ines}@sat.inesc-id.pt

Abstract. Unsatisfiability-based algorithms for Maximum Satisfiability (Max-
SAT) have been shown to be very effective in solving several classes of problem
instances. These algorithms rely on successive calls to a SAT solver, where an
unsatisfiable subformula is identified at each iteration. However, in some cases,
the SAT solver returns unnecessarily large subformulas. In this paper a new tech-
nique is proposed to partition the MaxSAT formula in order to identify smaller
unsatisfiable subformulas at each call of the SAT solver. Preliminary experimen-
tal results analyze the effect of partitioning the MaxSAT formula into communi-
ties. This technique is shown to significantly improve the unsatisfiability-based
algorithm for different benchmark sets.

1 Introduction

Problem partitioning is a well-known technique used for general problem solving and it
has already been proposed for Boolean optimization [1,2] formulations. The main goal
of partitioning is to identify easier to solve subproblems such that it will help to solve
the overall problem.

In recent years, several algorithms and solvers have been proposed for Maximum
Satisfiability (MaxSAT). In particular, unsatisfiability-based MaxSAT solvers [3,4,5,6,7]
have been shown to be very effective in tackling real-world problems [8]. These solvers
are based on iteratively calling a SAT solver enhanced with the ability of providing a
certificate of unsatisfiability. However, one drawback of these algorithms results from
the SAT solver returning unnecessary large unsatisfiable subformulas as certificates. In-
stead of dealing initially with the whole formula, we start with a smaller formula that is
extended at each iteration of the algorithm. The goal is to initially have smaller formulas
that enable the SAT solver to provide smaller certificates of unsatisfiability.

In this paper we propose a new method for formula partitioning in an unsatisfiabi-
lity-based algorithm for partial MaxSAT. A graph representation of the formula is used
and graph communities are identified based on a modularity measure, thus allowing
to build partitions of soft clauses in the MaxSAT formula. The paper is organized as
follows. The next section introduces MaxSAT and briefly reviews the main approaches
for MaxSAT solving. In section 3 an unsatisfiability-based algorithm with partitioning

? This work was partially supported by FCT under research projects iExplain (PTDC/EIA-
CCO/102077/2008) and ASPEN (PTDC/EIA-CCO/110921/2009), and INESC-ID multian-
nual funding through the PIDDAC program funds (PEst-OE/EEI/LA0021/2011).

of soft clauses is described. Section 4 proposes partition methods for partial MaxSAT,
in particular a new approach based on the identification of graph communities. Experi-
mental results are presented in section 5 and the paper concludes in section 6.

2 Preliminaries

The Maximum Satisfiability (MaxSAT) problem is an optimization version of the Propo-
sitional Satisfiability (SAT) problem which consists in finding an assignment to the
variables of the CNF formula such that the number of unsatisfied (satisfied) clauses is
minimized (maximized). In the remainder of the paper, it is assumed that MaxSAT is
defined as a minimization problem.

MaxSAT has several variants such as partial MaxSAT, weighted MaxSAT and wei-
ghted partial MaxSAT. In a partial MaxSAT formula ϕ = ϕh ∪ ϕs, some clauses are
declared as hard (ϕh), while the rest are declared as soft (ϕs). The objective in partial
MaxSAT is to find an assignment to formula variables such that all hard clauses ϕh are
satisfied, while minimizing the number of unsatisfied soft clauses in ϕs. Finally, in the
weighted versions of MaxSAT, soft clauses can have weights greater than or equal to
1 and the objective is to satisfy all hard clauses while minimizing the total weight of
unsatisfied soft clauses.

2.1 MaxSAT Algorithms

In the last decade, several new techniques and algorithms for MaxSAT have been pro-
posed [9], resulting in significant improvements in MaxSAT solvers. More recently,
new algorithms have been devised that are more effective for solving industrial bench-
mark instances1, namely linear search on the objective value of the MaxSAT instance
and unsatisfiability-based algorithms.

In the linear search approach, a new relaxation variable is initially added to each
soft clause and the resulting formula is solved by a SAT solver. Whenever a solution is
found, a new constraint on the relaxation variables is added such that solutions with a
higher or equal value are excluded. This new constraint is usually translated into a set
of propositional clauses so that a SAT solver can handle the resulting formula [10]. Oth-
erwise, a pseudo-Boolean solver must be used. The algorithm stops when the resulting
formula becomes unsatisfied.

A different approach is trying to satisfy all hard and soft clauses using a SAT solver
enhanced with the ability to produce certificates of unsatisfiability [3]. At each call of
the SAT solver, an unsatisfiable subformula is identified and relaxed by adding a new
relaxation variable to each soft clause in the unsatisfiable subformula. Additionally, a
new constraint is added such that at most one of the new relaxation variables can be
assigned value true. Again, in order to continue using a SAT solver, this new constraint
must be encoded into a set of propositional clauses. Next, the SAT solver is called
with the resulting formula. The algorithm stops when the formula becomes satisfiable.
Several extensions of this approach have been proposed for solving MaxSAT and its
variants [5,4,6,7].

1 See results from MaxSAT Evaluations at http://maxsat.ia.udl.cat/

http://maxsat.ia.udl.cat/

Algorithm 1: Unsatisfiability-based algorithm for partial MaxSAT enhanced with
partitioning of soft clauses

Input: ϕ = ϕh ∪ ϕs

Output: satisfiable assignment to ϕ or UNSAT
1 (st, ϕC)← SAT(ϕh) // check if the MaxSAT formula is UNSAT
2 if st = UNSAT then
3 return UNSAT
4 γ ← 〈γ1, . . . , γn〉 ← partitionSoft(ϕs)
5 ϕW ← ϕh

6 while true do
7 ϕW ← ϕW ∪ first(γ)
8 γ ← γ \ first(γ)
9 (st, ϕC)← SAT(ϕW)

10 while st = UNSAT do
11 VR ← ∅
12 foreach ω ∈ (ϕC ∩ ϕs) do
13 VR ← VR ∪ {r} // r is a new variable
14 ωR ← ω ∪ {r} // relax soft clause
15 ϕW ← ϕW \ {ω} ∪ {ωR}
16 ϕW ← ϕW ∪ {CNF(

∑
r∈VR

r = 1)}
17 (st, ϕC)← SAT(ϕW)

18 if γ = ∅ then
19 return satisfiable assignment to ϕW

3 Partition-based MaxSAT Algorithm

In this section we review an unsatisfiability-based MaxSAT algorithm that takes advan-
tage of partitioning. The original algorithm [2] was proposed for weighted variants of
MaxSAT where partitions are built considering the different weights of soft clauses.

Algorithm 1 starts by checking if the MaxSAT instance ϕ is satisfiable by calling
a SAT solver only with hard clauses ϕh. Next, the set of soft clauses ϕs is split into a
list of partitions (line 4) such that each soft clause is assigned to one partition. Initially,
the working formula only considers the hard clauses ϕh (line 5). At each iteration, a
partition γi of soft clauses is added to the working formula (line 7) and removed from
the partition list γ (line 8). A SAT solver is then applied to ϕW , returning a pair (st, ϕC)
where st denotes the outcome of the solver: SAT or UNSAT. While the outcome is
UNSAT, ϕC contains the unsatisfiable subformula identified by the SAT solver and
the unsatisfiable subformula is relaxed as in the original algorithm [3]. Next, the SAT
solver is applied to the modified working formula (line 17). After a given number of
relaxations, the working formula becomes satisfiable2 and a new partition of soft clauses
is added to the working formula. If there are no more partitions in γ, then the solver
found an optimal solution to the original MaxSAT formula (line 19).

2 Notice that initially we already confirmed that the MaxSAT formula is not unsatisfiable due to
the hard clauses. Since at each iteration at least one soft clause is relaxed, the working formula
at some point becomes satisfiable.

In Algorithm 1, a partition method must be used to split the set of soft clauses.
For weighted variants of MaxSAT, it was already shown that splitting the soft clauses
according to its weight allows the solver to be much more effective [11,2]. However,
for partial MaxSAT this partition method cannot be used since all soft clauses have
weight 1. In the next section we present two graph-based methods for partitioning of
soft clauses for partial MaxSAT.

4 Partial MaxSAT Partitioning

It has already been shown that partitioning can greatly boost the performance of unsa-
tisfiability-based solvers for weighted MaxSAT [11,2]. However, using the weight of
soft clauses for partitioning is not useful for partial MaxSAT. As a result, other meth-
ods based on the structure of the formula must be used. Next, we briefly review the
hypergraph partitioning method first proposed for weighted MaxSAT. Afterwards, we
propose a new partition method for MaxSAT based on a graph representation of the
MaxSAT formula. The new partition method uses the graph representation to iden-
tify communities using a modularity measure. The methods described in this section
represent different implementations of the partitionSoft procedure in line 4 of
Algorithm 1.

4.1 Hypergraph Partitioning

Hypergraph partitioning has already been applied to SAT [12], as well as to weighted
MaxSAT solving [2]. A hypergraph is a generalization of a graph where an edge, also
called hyperedge, can connect any number of vertices. In our case, for each soft and hard
clause there is a corresponding vertex in the hypergraph. Moreover, for each formula
variable xj there is an hyperedge connecting all vertices that represent soft or hard
clauses containing variable xj .

After building the hypergraph, the tool hmetis [13] is used as a black box to iden-
tify the partitions. In the experiments, hmetis is configured to identify 16 partitions
in each problem instance [2]. Afterwards, for each partition only the soft clauses are
considered. As a result, partitions containing only hard clauses are removed.

4.2 Community-based Partitioning

The identification of communities in SAT instances has been previously proposed [14]
and it was shown to be effective in characterizing industrial SAT instances. For that,
SAT instances are first represented as undirected weighted graphs and partitions of ver-
tices (communities) are identified using a modularity measure. In this paper we use
both graph representations described in [14] for SAT instances, namely the Variable
Incidence Graph (VIG) and the Clause-Variable Incidence Graph (CVIG) model. In
addition, a different weighting function is proposed in this paper.

Graph Representations
We start by defining an incidence function I on the formula variables xj in the soft

clauses ϕs as follows:

I(xj) = 1 +
∑

xj∈ω ∧ ω∈ϕs

1

|ω|
(1)

Notice that I(xj) = 1 if variable xj does not occur in any soft clause.
In the Variable Incidence Graph (VIG) model, a graph G is built such that for each

variable xj in the problem instance there is a corresponding vertex in G. Moreover, if
xj and xk belong to the same clause (hard or soft), then there is an edge between the
vertices corresponding to these variables with the following weight:

w(xj , xk) =
∑

xj ,xk∈ω ∧ ω∈ϕ

I(xj) · I(xk)(
|ω|
2

) (2)

Observe that if we consider I(xj) = 1 for all variables, then this weight func-
tion corresponds to the one proposed in [14], where all clauses are equally relevant.
However, for MaxSAT one has to consider both soft and hard clauses. In our graph rep-
resentation, more weight is given to clauses that establish edges between variables that
occur in soft clauses. The motivation is to fortify the relationship between variables that
occur in soft clauses.

In the Clause-Variable Incidence Graph (CVIG) model, for each variable xj and for
each clause ωi ∈ ϕ, there is a corresponding vertex in graph G. In this model, edges
only connect vertices representing a variable and a clause where the variable occurs.
Hence, if a variable xj occurs in clause ωi, then there is an edge between those vertices
with weight:

w(xj , ωi) =
I(xj)

|ωi|
(3)

Community Identification
After building a graph representation for the problem instance, we are interested in

making explicit the hidden structure of the MaxSAT formula by identifying partitions
in the graph. Clearly one can devise many different ways of partitioning. Therefore, it
is necessary to evaluate the quality of a given set of partitions.

In recent years, the use of modularity measures became common for the identifica-
tion of communities in graphs [15,16,17]. The main goal of the modularity measure is
to evaluate the quality of the communities in a graph where vertices inside a community
should be densely connected, while vertices assigned to different communities should
be sparsely connected. Let G = (V,w) denote a complete undirected weighted graph
where V is the set of vertices and w : V × V → R is a weight function for each pair of
vertices. If an edge does not occur inG, then it has weight 0. LetC = {C1, C2, . . . , Cn}
denote a set of communities such that every vertex u ∈ V is assigned to one and only
one community in C. Hence, the modularity value Q of the set of communities C in

graph G can be defined as follows [16]:

Q =
∑

Ck∈C

∑

i,j∈Ck

w(i, j)

m
−

∑

i∈Ck

∑
j∈V

w(i, j)

2m

2 (4)

where m =
∑

i,j∈V w(i, j) denotes the sum of the weights of all the edges in G.
One drawback of community identification using modularity measures is that find-

ing a set of communities with an optimal modularity value is computationally hard [18].
As a result, several approximation algorithms have been proposed [19,20,21]. In this
paper, the method proposed in [21] is used.

From Communities to Partitions
After identifying the communities in the graph, one must build the set of partitions

to be used in Algorithm 1. When using the CVIG model, building partitions of soft
clauses is straightforward since clauses are directly represented in the graph. For each
community with vertices representing soft clauses, there is a corresponding partition
containing the respective soft clauses in the community. After building the partitions,
these are sorted by ascending size with respect to the number of soft clauses. Therefore,
partitions with smaller size are considered first in Algorithm 1.

In the VIG model, only variables are represented in the graph. Therefore, given the
set of communities C, we define that a soft clause ω belongs to the community Ck that
maximizes |Ck ∩ ω|, i.e. Ck is the community with the most variables in ω. In case of
a tie, ω is assigned to the community of the lowest index variable in ω. After assigning
all soft clauses to communities, partitions to be used in Algorithm 1 are built as in the
CVIG model.

5 Experimental Results

All experiments were run on the partial MaxSAT instances from the industrial cate-
gory of the MaxSAT evaluation of 2012. The evaluation was performed on two AMD
Opteron 6276 processors (2.3 GHz) running Fedora 18 with a timeout of 1,800 seconds
and a memory limit of 16 GB.

The partitioning techniques described in the previous section were implemented on
top of WBO [5]. Figure 1 compares the different partitioning solvers against the origi-
nal WBO that does not use any partitioning techniques. The solver using hypergraph
partitioning is denoted by hyp. VIG and CVIG correspond to the community-based
partitioning using the VIG and CVIG graph representations described in section 4.2,
respectively. To assess the quality of the new partitions, we have also implemented a
random partitioning technique where each soft clause is placed randomly in one of the
partitions. We denote this solver by rdm. Similarly to the hypergraph partitioning, 16
partitions are used. The clauses are distributed uniformly among the partitions.

The table on the left of Figure 1 shows the number of instances solved in each
benchmark set by each solver. Randomly partitioning the soft clauses can have a detri-
mental effect on the performance of the solver for several classes of benchmarks. How-
ever, it can also significantly improve the performance of the solver on other classes of

Bench #I WBO hyp VIG CVIG rdm
aes 7 0 0 0 0 0
fir 59 40 26 28 29 18
simp 17 10 9 10 10 9
su 38 11 6 11 10 6
msp 64 4 5 4 6 1
mtg 40 18 39 38 36 19
syn 74 32 31 35 32 30
circuit 4 1 2 2 2 2
haplotype 6 5 5 5 5 5
nencdr 84 19 67 68 68 66
nlogencdr 84 24 71 70 75 68
routing 15 15 6 15 6 3
protein 12 1 2 1 1 2
Total 504 180 269 287 280 229 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 120 140 160 180 200 220 240 260 280

WBO
rdm
hyp
CVIG
VIG

Fig. 1. Comparison between different partitioning solvers.

random partitioning technique where each soft clause is placed randomly in one of the
partitions. We denote this solver by rdm. Similarly to the hypergraph partitioning, 16
partitions are used. The clauses are distributed uniformly among the partitions.

The table on the left of Figure 1 shows the number of instances solved by each
solver in each benchmark set. Randomly partitioning the soft clauses can have a detri-
mental effect on the performance of the solver for several classes of benchmarks. How-
ever, it can also significantly improve the performance of the solver on other classes of
benchmarks, such as nencdr and nlogencdr. Nevertheless, using the structure of
the formula to create the partitions significantly improves the overall performance of
the solver on most benchmarks.

Community-based partitioning outperforms hypergraph partitioning. Note that the
number of partitions created by the community-based partitioning is dynamic and de-
pends on the structure of the formula. On the other hand, hypergraph partitioning creates
a fixed number of partitions. This may explain the effectiveness of community-based
partitioning.

The cactus plot of Figure 1 shows the running times of the different solvers. The x-
axis shows the number of solved instances, whereas the y-axis shows the running time
in seconds. We can distinguish between three classes of solvers: (i) solvers that do not
use partitioning (WBO), (ii) solvers that use random partitioning (rdm) and (iii) solvers
that use the structure of the formula to create the partitions (hyp, CVIG and VIG).
Using any sort of partitioning improves the overall performance of the solver. However,
when the structure of the formula is considered, the performance of the solver is further
increased.

Even though partitioning approaches outperform WBO on most benchmarks, there
are some benchmarks where partitioning may lead to a detrimental effect on the per-
formance of the solver. Our motivation for partitioning is to identify easier to solve
subproblems. As a side effect, this may lead to finding smaller unsatisfiable subformu-
las at each call of the SAT solver. On average, WBO finds unsatisfiable subformulas

Fig. 1. Comparison between different partitioning solvers.

benchmarks, such as nencdr and nlogencdr. Nevertheless, other partition methods
based on structural information of the formula are clearly better.

Community-based partitioning outperforms hypergraph partitioning. Note that hy-
pergraph partitioning creates a fixed number of partitions. However, in community-
based partitioning, the number of partitions is dynamic and depends on the structure of
the formula. This may explain the effectiveness of community-based partitioning.

The cactus plot of Figure 1 results from the running times of the different solvers.
The x-axis shows the number of solved instances, whereas the y-axis shows the running
time in seconds. We can distinguish between three classes of solvers: (i) solvers that
do not use partitioning (WBO), (ii) solvers that use random partitioning (rdm) and (iii)
solvers that use the structure of the formula to create the partitions (hyp, CVIG and
VIG). Even random partitioning improves the overall performance of the solver. How-
ever, when the structure of the formula is considered, the performance of the solver is
further improved.

Even though partitioning approaches outperform WBO on most benchmarks, there
are some benchmarks where partitioning may lead to a detrimental effect on the per-
formance of the solver. Our motivation for partitioning is to identify easier to solve
subproblems. As a side effect, this may lead to finding smaller unsatisfiable subformu-
las at each call of the SAT solver. On average, WBO finds unsatisfiable subformulas
with 110 soft clauses, whereas unsatisfiable subformulas in VIG have 66 soft clauses.
The other solvers using partitions also behave similarly and find on average smaller un-
satisfiable subformulas than WBO. This behavior is particularly visible on the nencdr
and nloencdr benchmarks [22]. For these benchmarks, WBO finds on average unsat-
isfiable subformulas with 167 soft clauses, whereas unsatisfiable subformulas in VIG
have only 47 soft clauses.

However, if the partitions are not adequate, then we may split related soft clauses be-
tween different partitions. This may prevent the solver from finding small unsatisfiable
subformulas. For example, this behavior is observed in the routing benchmarks [23].
On average, WBO finds unsatisfiable subformulas with 7 soft clauses, whereas CVIG
finds unsatisfiable subformulas with 45 soft clauses. Due to an inadequate partitioning,

CVIG is only able to solve 6 out of 15 instances of routing. Note that VIG can solve
all routing instances since the partitions used allowed to find on average unsatis-
fiable subformulas with 9 soft clauses. Example 1 shows the impact that inadequate
partitioning may have on the performance of the solver.

Example 1. Consider a partial MaxSAT formula ϕ = ϕh∪ϕs. Assume that ϕh contains
the hard clause ω1 = (x1 ∨ x2 ∨ x3) and that ϕs contains the soft clauses ω2, ω3 and
ω4, where ω2 = (x̄1), ω3 = (x̄2) and ω4 = (x̄3). If these soft clauses are placed
in the same partition then we can find a trivial unsatisfiable subformula with the hard
clause ω1. However, consider the worst case scenario where ω2, ω3 and ω4 are placed
in different partitions with other soft clauses. Let us assume that we first try to find
unsatisfiable subformulas in the partition that contains ω2. In this case, we may find
unsatisfiable subformulas formed by ω2 with other soft clauses. Note that each time a
new unsatisfiable subformula ϕC is found, all soft clauses in ϕC are relaxed. Therefore,
after several iterations, when the working formula finally contains ω2, ω3 and ω4, we
may have already relaxed these soft clauses several times. If this is the case, then we
will no longer be able to find the small unsatisfiable subformula that could be identified
if no partitioning was used.

It was observed that the inadequate partitioning presented in Example 1 occurs fre-
quently in some classes of benchmarks, such as fir and routing. Moreover, if a
random partitioning is used, then this problem is even more accentuated. This may ex-
plain why random partitioning deteriorates the performance of the solver for several
benchmark sets. On the other hand, this shows that an adequate partitioning of the for-
mula is essential for the effectiveness of the solver. Future work will focus on improving
partitioning techniques to further reduce the probability of inadequate partitioning.

WBO is a state-of-the-art solver for weighted partial MaxSAT but is not as effective
for partial MaxSAT. Even though partitioning significantly improves the unsatisfiability-
based algorithm of WBO, it is still not enough to match the performance of state-of-
the-art solvers for partial MaxSAT. However, the partitioning approaches presented in
this paper are not limited to the unsatisfiability-based algorithm of WBO but can also
be extended to other unsatisfiability-based algorithms [4,7]. As future work, we pro-
pose to implement the partitioning techniques described in this paper on top of other
unsatisfiability-based algorithms for partial MaxSAT.

6 Conclusions

Partitioning the soft clauses has shown to significantly improve the unsatisfiability-
based algorithm of WBO for most classes of benchmarks. Moreover, if the structure
of the formula is taken into consideration when creating the partitions we can further
improve the effectiveness of the solver. This supports the idea that using the structure
of the formula to guide the search improves the performance of the solver and provides
a strong stimulus for future research.

As future work, we propose to extend our modularity-based partitioning for weighted
MaxSAT. Furthermore, the partitioning approaches proposed in this paper are not lim-
ited to the WBO algorithm and will be used in other unsatisfiability-based algorithms.

References

1. Coudert, O.: On Solving Covering Problems. In: Proceedings of the Design Automation
Conference. (June 1996) 197–202

2. Martins, R., Manquinho, V., Lynce, I.: On Partitioning for Maximum Satisfiability. In:
European Conference on Artificial Intelligence. (2012) 913–914

3. Fu, Z., Malik, S.: On Solving the Partial MAX-SAT Problem. In: International Conference
on Theory and Applications of Satisfiability Testing. (2006) 252–265

4. Ansótegui, C., Bonet, M., Levy, J.: Solving (Weighted) Partial MaxSAT through Satisfiability
Testing. In: International Conference on Theory and Applications of Satisfiability Testing.
(2009) 427–440

5. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for Weighted Boolean Optimiza-
tion. In: International Conference on Theory and Applications of Satisfiability Testing.
(2009) 495–508

6. Ansótegui, C., Bonet, M., Levy, J.: A New Algorithm for Weighted Partial MaxSAT. In:
AAAI Conference on Artificial Intelligence. (2010) 3–8

7. Heras, F., Morgado, A., Marques-Silva, J.: Core-Guided Binary Search Algorithms for Max-
imum Satisfiability. In: AAAI Conference on Artificial Intelligence. (2011) 36–41

8. Janota, M., Lynce, I., Manquinho, V., Marques-Silva, J.: PackUp: Tools for Package Upgrad-
ability Solving. Journal on Satisfiability, Boolean Modeling and Computation 8(1/2) (2012)
89–94

9. Li, C.M., Manyà, F.: MaxSAT, Hard and Soft Constraints. In: Handbook of Satisfiability.
IOS Press (2009) 613–631

10. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A Partial Max-SAT Solver.
Journal on Satisfiability, Boolean Modeling and Computation 8 (2012) 95–100

11. Ansótegui, C., Bonet, M., Gabàs, J., Levy, J.: Improving SAT-Based Weighted MaxSAT
Solvers. In: International Conference on Principles and Practice of Constraint Programming.
(2012) 86–101

12. Park, T.J., Gelder, A.V.: Partitioning Methods for Satisfiability Testing on Large Formulas.
Information and Computation 162(1-2) (2000) 179184

13. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: Ap-
plication in VLSI domain. In: IEEE Transactions on VLSI Systems. Volume 7. (1999) 69–79

14. Ansótegui, C., Giráldez-Cru, J., Levy, J.: The Community Structure of SAT Formulas. In:
International Conference on Theory and Applications of Satisfiability Testing. (2012) 410–
423

15. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Pro-
ceedings of the National Academy of Sciences 99(12) (2002) 7821–7826

16. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Physical Review E 69(026113) (2004)

17. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying
communities in networks. Proceedings of the National Academy of Sciences of the United
States of America 101(9) (2004) 2658–2663

18. Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., Wagner, D.:
Maximizing modularity is hard. arXiv: physics, 0608255. (2006)

19. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large net-
works. Physical Review E 70(6) (2004) 066111

20. Pons, P., Latapy, M.: Computing Communities in Large Networks Using Random Walks.
Journal of Graph Algorithms and Applications 10(2) (2006) 191–218

21. Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in
large networks. Journal of Statistical Mechanics 2008(10) (2008) P10008

22. Morgado, A., Marques-Silva, J.: Combinatorial Optimization Solutions for the Maximum
Quartet Consistency Problem. Fundamenta Informaticae 102(3-4) (2010) 363–389

23. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: PBS: A backtrack search pseudo
Boolean solver. In: In Symposium on the theory and applications of satisfiability testing.
(2002) 346–353

	Community-based Partitioning for MaxSAT Solving

