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Abstract. Maximum Satisfiability (MaxSAT) is an optimization variant of the
Boolean Satisfiability (SAT) problem. In general, MaxSAT algorithms perform a
succession of SAT solver calls to reach an optimum solution making extensive
use of cardinality constraints. Many of these algorithms are non-incremental in
nature, i.e. at each iteration the formula is rebuilt and no knowledge is reused
from one iteration to another. In this paper, we exploit the knowledge acquired
across iterations using novel schemes to use cardinality constraints in an incre-
mental fashion. We integrate these schemes with several MaxSAT algorithms.
Our experimental results show a significant performance boost for these algo-
rithms as compared to their non-incremental counterparts. These results suggest
that incremental cardinality constraints could be beneficial for other constraint
solving domains.

1 Introduction

Plethora of application domains such as software package upgrades [5], error local-
ization in C code [27], debugging of hardware designs [12], haplotyping with pedi-
grees [24], and course timetabling [6] have benefited from the advancement in MaxSAT
solving techniques. Considering such diversity of application domains for MaxSAT al-
gorithms, the continuous improvement of MaxSAT solving techniques is imperative.

Incremental approaches have provided a huge leap in the performance of SAT
solvers [47, 22, 45, 8]. However, the notion of incrementality has not yet been fully
exploited in MaxSAT solving. Most MaxSAT algorithms perform a succession of SAT
solver calls to reach optimality. Incremental approaches allow the constraint solver to
retain knowledge from previous iterations that may be used in the upcoming iterations.
The goal is to retain the inner state of the constraint solver as well as learned clauses
that were discovered during the solving process of previous iterations. At each iteration,
most MaxSAT algorithms [23, 38, 25, 43] create a new instance of the constraint solver
and rebuild the formula losing most if not all the knowledge that could be derived from
previous iterations.
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Between the iterations of a MaxSAT algorithm, cardinality constraints are added to
the formula [23, 3, 25, 43]. Usually, cardinality constraints are encoded in CNF so that a
SAT solver can handle the resulting formula [9, 46, 7]. Otherwise, calls to a SAT solver
must be replaced with calls to a pseudo-Boolean solver that natively handles cardinality
constraints [38]. This paper discusses the use of cardinality constraints in an incremental
manner to enhance MaxSAT algorithms. To achieve this, we propose the following
incremental approaches: (i) incremental blocking, (ii) incremental weakening, and (iii)
iterative encoding.

The remainder of the paper is organized as follows. Section 2 introduces prelimi-
naries and notations. We describe our proposed techniques in Section 3. In Section 4,
we mention prior research work done in relevant areas. We show the superiority of
our approaches through experimental results in Section 5. Finally, Section 6 presents
concluding remarks.

2 Preliminaries

A Boolean formula in conjunctive normal form (CNF) is a conjunction of clauses,
where a clause is a disjunction of literals and a literal is a Boolean variable xi or its
negation ¬xi. A Boolean variable may be assigned truth values true or false. A literal
xi (¬xi) is said to be satisfied if the respective variable is assigned value true (false).
A literal xi (¬xi) is said to be unsatisfied if the respective variable is assigned value
false (true). A clause is satisfied if and only if at least one of its literals is satisfied. A
clause is called a unit clause if it only contains one literal. A formula ϕ is satisfied if
all of its clauses are satisfied. The Boolean Satisfiability (SAT) problem can be defined
as finding a satisfying assignment to a propositional formula ϕ or prove that such an
assignment does not exist. Throughout this paper, we will refer to ϕ as a set of clauses,
where each clause ω is a set of literals.

Maximum Satisfiability (MaxSAT) is an optimization version of SAT where the
goal is to find an assignment to the input variables such that the number of unsatisfied
(satisfied) clauses is minimized (maximized). From now on, it is assumed that MaxSAT
is defined as a minimization problem.

MaxSAT has several variants such as partial MaxSAT, weighted MaxSAT and weigh-
ted partial MaxSAT [33]. A partial MaxSAT formula ϕ has the form ϕh ∪ϕs where ϕh
and ϕs denote the set of hard and soft clauses, respectively. The goal in partial MaxSAT
is to find an assignment to the input variables such that all hard clauses ϕh are satisfied,
while minimizing the number of unsatisfied soft clauses in ϕs. The weighted version of
MaxSAT allows soft clauses to have weights greater than or equal to 1 and the objec-
tive is to satisfy all hard clauses while minimizing the total weight of unsatisfied soft
clauses. In this paper we assume a partial MaxSAT formula. The described algorithms
can be generalized to the weighted versions of MaxSAT.

Cardinality constraints are a generalization of propositional clauses. In a cardinality
constraint, a sum of n literals must be smaller than or equal to a given value k, i.e.∑n
i=1 li ≤ k where li is a literal. As a result, a cardinality constraint over n literals

ensures that at most k literals can be satisfied.
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Algorithm 1: Linear Search Unsat-Sat Algorithm
Input: ϕ = ϕh ∪ ϕs

Output: satisfying assignment to ϕ
1 (ϕW , VR, λ)← (ϕh, ∅, 0)
2 foreach ω ∈ ϕs do
3 VR ← VR ∪ {r} // r is a new relaxation variable
4 ωR ← ω ∪ {r}
5 ϕW ← ϕW ∪ {ωR}
6 while true do
7 (st, ν, ϕC)← SAT(ϕW ∪ {CNF(

∑
r∈VR

r ≤ λ)}, ∅)
8 if st = SAT then
9 return ν // satisfying assignment to ϕ

10 λ← λ+ 1

2.1 MaxSAT Algorithms

Due to the recent developments in SAT solving, different algorithms for solving MaxSAT
have been proposed that rely on multiple calls to a SAT solver. A SAT solver call
SAT(ϕ,A) receives as input a CNF formula ϕ and a set of assumptions A. The set
of assumptions A defines a set of literals that must be satisfied in the model of ϕ re-
turned by the solver call. Assumptions may lead to early termination if the SAT solver
learns a clause where at least one of the literals inAmust be unsatisfied. An assumption
controls the value of a variable for a given SAT call, whereas a unit clause controls the
value of a variable for all the SAT calls after the unit clause has been added.

The SAT call returns a triple (st, ν, ϕC), where st denotes the status of the solver:
satisfiable (SAT) or unsatisfiable (UNSAT). If the solver returns SAT, then the model
that satisfies ϕ is stored in ν. On the other hand, if the solver returns UNSAT, then ϕC
contains an unsatisfiable formula that explains the reason of unsatisfiability. Notice that
ϕmay be satisfiable, but the solver returns UNSAT due to the set of assumptionsA (i.e.
there are no models of ϕ where all assumption literals are satisfied). In this case, ϕC
contains a subset of clauses from ϕ and a subset of assumptions from A. Otherwise, if
ϕ is unsatisfiable, then ϕC is a subformula of ϕ.

The algorithms presented in the paper assume that a SAT solver call is previously
performed to check the satisfiability of the set of hard clauses ϕh. If ϕh is not satisfiable,
then the MaxSAT instance does not have a solution.

Algorithm 1 performs a linear search on the number of unsatisfied soft clauses. First,
a new relaxation variable r is added to each soft clause ω (lines 2-5). The goal is to find
an assignment to the input variables that minimizes the number of relaxation variables
that are assigned value true. If the original clause ω is unsatisfied, then r is assigned to
true. At each iteration, a cardinality constraint is defined such that at most λ relaxation
variables can be assigned to true. This cardinality constraint is encoded into CNF and
given to the SAT solver (line 7). Algorithm 1 starts with λ = 0 and in each iteration λ is
increased until the SAT solver finds a satisfying assignment. Hence, λ defines a lower
bound on the number of unsatisfied soft clauses of ϕ. At each iteration, the result of the
SAT call is UNSAT, except the last one that provides an optimal solution to ϕ.

3



Algorithm 2: Fu-Malik Algorithm
Input: ϕ = ϕh ∪ ϕs

Output: satisfying assignment to ϕ
1 (ϕW , ϕWs)← (ϕ,ϕs)
2 while true do
3 (st, ν, ϕC)← SAT(ϕW , ∅)
4 if st = SAT then
5 return ν // satisfying assignment to ϕ

6 VR ← ∅
7 foreach ω ∈ (ϕC ∩ ϕWs) do
8 VR ← VR ∪ {r} // r is a new relaxation variable
9 ωR ← ω ∪ {r}

10 ϕWs ← (ϕWs \ {ω}) ∪ {ωR}
11 ϕW ← (ϕW \ {ω}) ∪ {ωR}
12 ϕW ← ϕW ∪ {CNF(

∑
r∈VR

r ≤ 1)}

Algorithm 3: MSU3 Algorithm
Input: ϕ = ϕh ∪ ϕs

Output: satisfying assignment to ϕ
1 (ϕW , VR, λ)← (ϕ, ∅, 0)
2 while true do
3 (st, ν, ϕC)← SAT(ϕW ∪ {CNF(

∑
r∈VR

r ≤ λ)}, ∅)
4 if st = SAT then
5 return ν // satisfying assignment to ϕ

6 foreach ω ∈ (ϕC ∩ ϕs) do
7 VR ← VR ∪ {r} // r is a new variable
8 ωR ← ω ∪ {r} // ω was not previously relaxed
9 ϕW ← (ϕW \ {ω}) ∪ {ωR}

10 λ← λ+ 1

Algorithm 1 follows an Unsat-Sat linear search. A converse approach is the Sat-
Unsat linear search where λ is defined as an upper bound. In that case, λ is initialized
with the number of soft clauses. Next, while the SAT call is satisfiable, λ is decreased.
The algorithm ends when the SAT call returns UNSAT and the last satisfying assign-
ment found is an optimal solution to ϕ.

Core-guided algorithms for MaxSAT take advantage of the certificates of unsatisfia-
bility produced by the SAT solver [23]. In Algorithm 2, proposed by Fu and Malik [23],
soft clauses are only relaxed when they appear in some unsatisfiable core ϕC returned
by the SAT solver. Initially, we consider all hard and soft clauses without relaxation. In
each iteration, an unsatisfiable subformula ϕC is identified and relaxed by adding a new
relaxation variable to each soft clause in ϕC (lines 7-11). Additionally, a new constraint
is added such that at most one of the new relaxation variables can be assigned to true
(line 12). The algorithm stops when the formula becomes satisfiable.
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(O : o1, o2, o3, o4, o5 : 5)

(A : a1, a2 : 2)

(C : l1 : 1) (D : l2 : 1)

(B : b1, b2, b3 : 3)

(E : l3 : 1) (F : f1, f2 : 2)

(G : l4 : 1) (H : l5 : 1)

Fig. 1: Totalizer encoding for l1 + · · ·+ l5 ≤ k

In Algorithm 2 soft clauses may have to be relaxed several times. As a result, several
relaxation variables can be added to the same soft clause. Nevertheless, other core-
guided algorithms have already been proposed where at most one relaxation variable
is added to each soft clause [3, 40]. Algorithm 3 follows a linear search Unsat-Sat, but
soft clauses are only relaxed when they appear in some unsatisfiable core ϕC .

In this section we solely describe MaxSAT algorithms that will be the focus of the
enhancements proposed in the paper. We refer to the literature for other approaches such
as branch and bound algorithms using MaxSAT inference techniques or procedures to
estimate the number of unsatisfied clauses to prune the search [33]. Additionally, there
is also an extended overview on core-guided algorithms [43].

2.2 Totalizer Encoding

For the purpose of this paper, we describe the Totalizer encoding [9] for cardinality
constraints, as later in the paper we build upon this encoding to present our novel ap-
proaches. Totalizer encoding can be better visualized as a tree as shown in Fig. 1. Here,
notation for every node is (node name : node vars : node sum). To enforce the car-
dinality constraint, we need to count how many input literals (l1, . . . , ln) are set to true.
This counting is done in unary. Therefore, at every node its corresponding node vars
represents an integer from 1 to node sum in the order. For example, at node B, b2 be-
ing set to truemeans that at least two of the leaves under the tree rooted atB have been
set to true. The input literals (l1, . . . , l5) are at the leaves where as the root node has
the output variables (o1, . . . , o5) giving the finally tally of how many input literals have
been set.

Any intermediate node P , counting up to n1, has two childrenQ andR counting up
to n2 and n3 respectively such that n2+n3 = n1. Also, their corresponding node vars
will be (p1, . . . , pn1), (q1, . . . , qn2) and (r1, . . . , rn3) in that order. In order to ensure
that the correct sum is received at P , the following formula is built for P :∧

0 ≤ α ≤ n2
0 ≤ β ≤ n3
0 ≤ σ ≤ n1
α + β = σ

¬qα ∨ ¬rβ ∨ pσ where, p0 = q0 = r0 = 1 (1)

5



Essentially, Eq. 1 dictates that if α many leaves have been set to true under the
subtree rooted at Q and β many leaves have been set to true under the subtree rooted
at R then rσ must be set to true to indicate that at least α + β many leaves have been
set to true under P . Eq. 1 only counts the number of input literals set to true. In other
words, it encodes cardinality sum over input literals. To enforce that at most k of the
input literals are set to true, we conjunct it with the following :∧

k+1≤i≤n

¬oi (2)

Observation 1 Two disjoint subtrees for the Totalizer encoding are independent of
each other. For example, the tree rooted at B counts how many literals have been set
from (l3, l4, l5) where as, the tree rooted at A counts the set literals from (l1, l2).

Note also that Eq. 1 counts up to n and then Eq. 2 restricts the sum to k. If we only
want to enforce the constraint for at most k then we need at most k+1 output variables
at the root. In turn, we need at most k + 1 node vars at any intermediate node. Even
with this modification, Eq. 1 remains valid. However, the equality n2 + n3 = n1 may
no longer hold. With this modification, Eq. 2 simplifies to

¬ok+1

Without the simplification this encoding requires O(nlog n) extra variables and O(n2)
clauses. After the simplification the number of clauses reduces toO(nk) [11, 29]. From
here on, we will refer to this simplification as k-simplification.

Observation 2 Let ϕ1 and ϕ2 be two formulas, representing cardinality sums k1 and
k2 respectively, generated using Eq. 1 and k-simplification. Observe that ϕ1 ⊂ ϕ2,
whenever k1 < k2.

3 Incremental Approaches

MaxSAT algorithms that are based on refining unsatisfiable SAT formulas can be en-
hanced by changing cardinality constraints in an incremental fashion. In this section, we
propose the following three techniques to enable incrementality when using cardinal-
ity constraints: (i) incremental blocking, (ii) incremental weakening, and (iii) iterative
encoding.

3.1 Incremental Blocking

MaxSAT algorithms based on refining unsatisfiable formulas are usually non-incremen-
tal. After an unsatisfiable iteration, the formula is refined by removing a certain set of
clauses and adding a new set of clauses that imposes a weaker constraint over the relax-
ation variables. However, SAT solvers do not allow the deletion of clauses that belong
to the original formula. Since learned clauses from previous iterations may depend on
the clauses that are now being removed, it is not sound to keep all of the learned clauses.
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Incremental SAT solving addresses these problems by using assumptions [22]. To the
best of our knowledge this approach has not been extended for incremental MaxSAT
solving.

We denote b as a blocking variable which is used to extend a clause ω to (ω ∨ b).
When b is set to false the original clause ω is enforced (enabled). When b is set to true
the extended clause (ω ∨ b) is trivially satisfied and ω is no longer enforced (disabled).
Thus, adding b (or ¬b) as an assumption or unit clause disables (or enables) a clause.
Using a blocking variable, we can overcome the limitation of a SAT solver not allowing
clause deletions.

MaxSAT Algorithms based on Cardinality Constraints. Many MaxSAT algorithms
are based on refining the formula by encoding and updating cardinality constraints [25,
2, 43]. For these algorithms, the incremental blocking can be done when cardinality
constraints are encoded to CNF.

ϕ� b ≡ {ω ∨ b : ω ∈ ϕ} (3a)
Ψ(X, k, b) ≡ CNFTotk(Σxi)� b (3b)

ϕi ≡ ϕW ∪

 i⋃
j=1

Ψ(Xj, kj , bj)

 ∪ 〈¬bi,¬oki+1〉 ∪
[
b1, . . . , bi−1

]
(3c)

ϕi+1 ≡ ϕW ∪

i+1⋃
j=1

Ψ(Xj, kj , bj)

 ∪ 〈¬bi+1,¬oki+1+1〉 ∪
[
b1, . . . , bi

]
(3d)

Let Eq. 3a define the extension of a CNF formula ϕ with a blocking variable b.
Next, Ψ(X, k, b) represents a cardinality sum up to k + 1 over x1, . . . , xn encoded
in CNF using Eq. 1 and k-simplification of the Totalizer encoding and extended with
a blocking variable b. Then, for incremental blocking, at line 7 in Algorithm 1 and
line 3 in Algorithm 3 we call the solver on ϕi as defined in Eq. 3c for the ith iteration.
Assumption 〈¬bi〉 enables the cardinality constraint for the current iteration whereas
unit clauses

[
b1, . . . , bi−1

]
ensure that cardinality constraints from earlier iterations are

disabled. In addition, assumption 〈¬oki+1〉 restricts the sum to ki. Notice that in the
(i + 1)th iteration, a new cardinality sum Ψ(Xi+1, ki+1, bi+1) is added and earlier
constraints are disabled as assumption 〈¬bi〉 moves as unit clause

[
bi
]
.

Assume the MaxSAT formula has a given optimum value kopt. When considering
Algorithm 1 and the Totalizer encoding, incremental blocking creates an encoding for
each ki up to kopt. Hence, the overall encoding would have O(

∑kopt
i=0 ni) = O(nk2opt)

auxiliary clauses. Though incremental blocking creates more clauses as compared to a
non-incremental approach (O(nkopt)), keeping the inner state of the constraint solver
across iterations significantly reduces the solving time. A similar reasoning can be made
for Algorithm 3 or any other MaxSAT algorithm that uses incremental blocking.

Fu-Malik Algorithm with Incremental Blocking. Incremental blocking can also be
used for MaxSAT algorithms that do not update cardinality constraints but modify the
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Algorithm 4: Fu-Malik Algorithm with Incremental Blocking
Input: ϕ = ϕh ∪ ϕs

Output: satisfying assignment to ϕ
1 (ϕW , ϕWs ,A,B)← (ϕ,ϕs, ∅, ∅)
2 while true do
3 (st, ν, ϕC)← SAT(ϕ,A)
4 if st = SAT then
5 return ν // satisfying assignment to ϕ

6 VR ← ∅
7 foreach ω ∈ (ϕC ∩ ϕWs) do
8 VR ← VR ∪ {r} // r is a new relaxation variable

9 ωR ← (ω \ B) ∪ {r} ∪ {b} // b is a new blocking variable

10 B ← B ∪ {b}
11 ϕWs ← (ϕWs \ {ω}) ∪ {ωR}
12 A ← (A \ {¬b′ : b′ ∈ B ∩ ω}) ∪ {¬b} // enables ωR

13 ϕW ← ϕW ∪ {ωR} ∪ {b′ : b′ ∈ B ∩ ω } // disables ω

14 ϕW ← ϕW ∪ {CNF(
∑

r∈VR
r ≤ 1)}

formula at each iteration. For example, Fu-Malik algorithm (Algorithm 2, Section 2)
can be enhanced with incremental blocking. Algorithm 4 shows the modifications to
Fu-Malik algorithm to support incremental blocking. The main differences between the
incremental and non-incremental versions of Fu-Malik algorithm are highlighted. For
each soft clause ω in ϕC , Algorithm 4 copies ω into ωR without blocking variables
(line 9). Next, it adds a fresh blocking variable b and a fresh relaxation variable r to ωR
(line 9). The current soft clause ωR is enabled by adding 〈¬b〉 to the set of assumptions,
where b is the blocking variable that occurs in ωR (line 12). At the same time, the
assumption 〈¬b′〉 is removed from the set of assumptions, where b′ is the blocking
variable that occurs in ω (line 12). Finally, the working formula ϕW is updated with the
new clause ωR, and with the unit clause [b′]. Note that this unit clause disables ω from
the working formula ϕW since ω contains b′ and therefore is always satisfied.

The incremental version of Fu-Malik algorithm creates m auxiliary clauses at each
iteration, where m is the number of soft clauses in the unsatisfiable subformula. How-
ever, the size of unsatisfiable subformulas tends to be small when compared to the total
number of soft clauses. Note that the number of auxiliary clauses created by the in-
cremental version of Fu-Malik is not as large as when incremental blocking is directly
applied to cardinality encodings.

3.2 Incremental Weakening

Since incremental blocking encodes a new cardinality constraint at each iteration, this
results in an increase in formula size at every iteration. To circumvent this increase,
one can build the cardinality sum only once, and incrementally weaken the cardinality
bound (k).
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Incremental weakening is similar to incremental strengthening [7], but instead of
constraining the output of the cardinality constraint with unit clauses it uses assump-
tions. Notice that incremental strengthening is used in linear search Sat-Unsat algo-
rithms. In these algorithms, the cardinality bound decreases monotonically at each iter-
ation. Therefore, the unit clauses that constrain the previous cardinality bound remain
valid when considering the new bound. On the other hand, incremental weakening is
used for MaxSAT algorithms that search on the lower bound of the optimal solution.
For these algorithms, the restriction of the cardinality bound is only valid for the current
iteration and must be updated for the upcoming iterations.

Γ (X, k) ≡ CNFTotk(Σxi) (4a)

ϕi ≡ ϕW ∪ Γ (X, ku) ∪ 〈¬oki+1, . . . ,¬oku〉 (4b)

ϕi+1 ≡ ϕW ∪ Γ (X, ku) ∪ 〈¬oki+1+1, . . . ,¬oku〉 (4c)

Let Γ (X, k) be the cardinality sum over input literals x1, . . . , xn encoded in CNF
using Eq. 1 and k-simplification. Then, for incremental weakening, at line 7 in Algo-
rithm 1 and line 3 in Algorithm 3 we call the solver on ϕi as defined in Eq. 4b for
the ith iteration. Note that Γ (X, ku) is encoded only once for a conservative upper
bound ku. For the ith iteration, we restrict the cardinality sum to ki using assump-
tions 〈¬oki+1, . . . ,¬oku〉 (Eq. 2). In the following iteration (Eq. 4c), we only change
assumptions to restrict the cardinality sum to ki+1.

To obtain a conservative upper bound ku, we invoke the SAT solver over ϕh to
check if the set of hard clauses itself is satisfiable. If it is not satisfiable, the original
MaxSAT formula ϕ can not be solved. However, if ϕh is satisfiable, one can count the
number of soft clauses that remain unsatisfied under the satisfying assignment for ϕh.
This number can be used as ku since we know at least one assignment where ku many
clauses remain unsatisfied. Therefore, the optimum value kopt must be smaller or equal
to ku.

With an upper bound ku, incremental weakening creates O(nku) auxiliary clauses
as opposed to O(nkopt) of the non-incremental approach. However, a non-incremental
approach builds a new formula of size O(nkopt) for every iteration, whereas incre-
mental weakening builds the formula only once keeping the internal state and learned
clauses across iterations. This results in a significant performance boost for MaxSAT
algorithms using incremental weakening.

Incremental weakening does not allow the number of input literals in the cardinal-
ity constraint to change. Therefore, it does not directly support the MSU3 Algorithm
(Algorithm 3, Section 2). To use incremental weakening with Algorithm 3, we mod-
ify the algorithm to relax all soft clauses and build a cardinality constraint over all
relaxation variables. The relaxation variables ri that do not appear in an unsatisfiable
subformula ϕC are added as assumptions of the form 〈¬ri〉. This enforces the soft
clauses corresponding to the relaxation variables until these clauses occur in ϕC . When
they do occur, assumptions ¬ri are removed and their value is now only restricted by
the cardinality constraint. Even though this procedure allows the incremental weak-
ening approach to be used with Algorithm 3, it does not benefit from smaller encod-
ings resulting from having less input literals in the cardinality constraint. Therefore, the
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(A : a1, a2 → a1, a2, a3, a4 : 2→ 4)

(B : b1, b2 : 2)

(D : l1 : 1) (E : l2 : 1)

(C : c1, c2,→ c1, c2, c3 : 2→ 3)

(G : l3 : 1) (F : f1, f2 : 2)

(H : l4 : 1) (I : l5 : 1)

(J : j1, j2 : 2)

(K : l7 : 1) (L : l8 : 1)

(O : o1, . . . , o4 : 4)

Fig. 2: Transforming l1 + · · ·+ l5 ≤ 1 and l7 + l8 ≤ 1 into l1 + . . .+ l5 + l7 + l8 ≤ 3

non-incremental approach may create a much smaller encoding than the incremental
weakening approach for Algorithm 3.

3.3 Iterative Encoding

Incremental weakening uses a conservative upper bound (e.g., ku) on the number of
unsatisfied soft clauses in order to encode the cardinality constraint only once. How-
ever, this upper bound may be much larger than the optimum value (e.g. kopt) which
may result in a larger encoding than the non-incremental approach. In addition, incre-
mental weakening does not allow the set of input literals in the cardinality constraint to
change. Therefore, MaxSAT algorithms that increase the input literals of the cardinality
constraint can not take advantage of incremental weakening. To remedy this situation,
we propose to encode the cardinality constraint in an iterative fashion. At each iteration
of the MaxSAT algorithm, the encoding of the cardinality constraint is augmented with
clauses that allow the sum of input literals to go up to k for the current iteration. We
call this approach iterative encoding.

Let us take a look at Fig. 2 to see how iterative encoding proceeds. Assume that for
a particular iteration, we needed to encode l1 + · · ·+ l5 ≤ 1. This can be accomplished
using the subtree rooted at A. Since the bound for this iteration is k = 1, we only need
k + 1 = 2, node vars at every node as described in k-simplification in Section 2.2. In
the next iteration, suppose we need to encode l1+ · · ·+ l5+ l7+ l8 ≤ 3. Observation 2
allows us to augment the formula for subtree rooted at A to allow l1 + · · · + l5 to sum
up to 4. This is done by increasing the output variables of node A to sum up to 4 and
adding the respective clauses that encode sums 3 and 4. Similarly, for nodeC the output
variables are increased to sum up to 3 and the clauses that sum up to 3 are added to the
formula. For the additional input literals l7 and l8 we encode the subtree rooted at J .
Observation 1 allows us to merge trees rooted at A and J by creating a new parent node
O which sums up to 4 since A and J have disjoint sets of input literals. To restrict the
number of input literals being set to true to 3, we only need to add ¬o4 as described in
Eq. 2.
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In general, if the cardinality constraint changes from x1+ · · ·+xn ≤ k1 (k1 < n) to
x1+· · ·+xn+y1+· · ·+ym ≤ k2 where k1 ≤ k2 then we do the following : (1) Remove
the assumption over output literal ¬ok1+1 which restricts the sum of x1 . . . , xn to k1.
(2) Augment the formula for x1, . . . , xn to sum up to min(k2 + 1, n). (3) Encode the
formula over y1, . . . , ym to sum up tomin(k2+1,m). (4) Conjunct these two formulas
and augment the resulting formula using Eq. 1 and k-simplification in order to encode
x1 + · · ·+ xn + y1 + · · ·+ ym ≤ k2. Since iterative encoding always adds clauses to
the existing formula and changes assumptions, it allows us to retain the internal state of
the solver across iterations.

Linear search Unsat-Sat algorithm (Algorithm 1, Section 2) increases the cardinal-
ity bound by 1 at each iteration but does not change the set of input literals of the
cardinality constraint. Therefore, to apply iterative encoding to this algorithm we only
perform steps (1) and (2). On the other hand, MSU3 algorithm (Algorithm 3, Section 2)
may change the set of input literals of the cardinality constraint between iterations.
Therefore, iterative encoding is applied to MSU3 by performing steps (1) to (4).

Since at every iteration, bare minimum number of clauses necessary to encode the
cardinality constraint for that iteration is added, the size of the encoding remains small
throughout the run of the MaxSAT algorithm. Iterative encoding is not only faster but
allows us to solve more problem instances as compared to non-incremental approaches.

4 Related Work

The first use of incremental SAT solving can be traced back to the 90’s with the seminal
work of John Hooker [26]. Initially, only a subset of constraints is considered. At each
iteration, more constraints are added to the formula. Later, incremental approaches were
adopted by constraint solvers in the context of SAT [50, 21] and SAT extensions [29, 8].

Assumptions are widely used for incremental SAT [22, 45]. The minisat solver [21]
interface allows the definition of a set of assumptions. Alternatively, the interface of
zchaff [36] allows removing groups of clauses.

Although not implemented, the work of Fu and Malik in MaxSAT [23] discusses
how learned clauses may be kept from one SAT iteration to the next one. In Pseudo
Boolean Optimization (PBO), early implementations include the use of incremental
strengthening in minisat+ [20]. Linear search Sat-Unsat algorithms [29, 32] are imple-
mented incrementally. A critical issue is on keeping safe learned clauses in successive
iterations of a core-guided algorithm [41]. Quantified Boolean Formula (QBF) solving
has successfully been made incremental [35] and further applied to verification [39].

In the context of SAT, incremental approaches exist for building encodings and
identifying Minimal Unsatisfiable Subformulas (MUSes). For example, an incremental
translation to CNF uses unit clauses to simplify the pseudo-Boolean constraint before
translating it to CNF [37]. More recent work lazily decomposes complex constraints
into a set of clauses [1]. The identification of MUSes has been made incremental by
Liffton et al. [34]. Later on, the SAT solver Glucose has been made incremental using
assumptions and applied to MUS extraction [8].

Incrementality is also present in other SAT-related domains such as Satisfiabil-
ity Modulo Theories (SMT) and Bounded Model Checking (BMC). The SMT-LIB
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v2.0 [10] defines the operations push and pop to work with a stack containing a set
of formulas to be jointly solved. The MaxSAT solvers WPM1 and WPM2 [2] use the
SMT solver Yices [19] which supports incrementality. Its use resembles the blocking
strategy. The use of SAT solvers in BMC is known to benefit from incrementality, either
by implementing incremental SAT solving [47] or by using assumptions [22].

In the context of Constraint Satisfaction Problems (CSPs), incremental formula-
tions, incremental propagation and incremental solving are worth mentioning. Incre-
mentality is naturally present in Dynamic CSPs (DCSPs) [18]. In DCSPs, the formu-
lation of a problem evolves over time by adding and/or removing variables and con-
straints. Nogoods can eventually be carried from one formulation to the next one. DC-
SPs make use of an incremental arc consistency algorithm [17]. Incremental propaga-
tion in CSP [31, 13] makes use of advisors which give propagators a detailed view of
the dynamic changes between propagator runs. Advisors enable the implementation of
optimal algorithms for important constraints. Search in CSP is inherently incremental.
From the first implementations, the approach to solve many CSPs is to incrementally
build a solution, backtracking when an infeasibility is detected, until a solution is found
or the problem is proven to have no solution [48]. More recently, incrementality has
been implemented in global constraints mostly due to efficiency reasons [49].

5 Experimental Results

We used all partial MaxSAT instances (627) from the industrial category of the MaxSAT
Evaluation 20131 as a benchmark for our experiments. The evaluation was performed
on two AMD Opteron 6276 processors (2.3 GHz) running Fedora 18 with a timeout of
1,800 seconds and a memory limit of 8 GB. We implemented all algorithms described in
section 2 (Linear search Unsat-Sat, Fu-Malik, and MSU3), as well as their incremental
counterparts on top of OPEN-WBO [42]. OPEN-WBO is a modular open source MaxSAT
solver that is easy to modify and is competitive with state-of-the-art MaxSAT solvers.

Table 1 shows the number of instances solved (#Inst) by the described MaxSAT
algorithms using the different approaches, namely, non-incremental approach (none),
incremental blocking (blocking), incremental weakening (weakening), and iterative en-
coding (iterative). Table 1 also shows the median speedup2 for instances that have been
solved by all incremental approaches for a given algorithm.

Fu-Malik with incremental blocking significantly outperforms the non-incremental
algorithm. Incremental blocking not only solves more instances but also is significantly
faster than the non-incremental algorithm. From those instances which were solved by
both approaches, 50% of them have a speedup of at least 2.4. Incremental weakening
and iterative encoding cannot be used with the Fu-Malik algorithm since it only uses at
most one constraints and modifies the formula across iterations of the algorithm.

Linear search Unsat-Sat (LinearUS) with incremental blocking solves less instances
than the non-incremental approach. Incremental blocking encodes a new cardinality
constraint at each iteration of the MaxSAT algorithm, causing the formula to grow too

1 Benchmarks available at http://maxsat.ia.udl.cat/13/benchmarks/
2 The speedup of an instance is measured as the ratio of the solving time of the non-incremental

approach to the solving time of the respective incremental approach.
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Table 1: Number of instances solved by the different incremental approaches and me-
dian speedup of solved instances

None Blocking Weakening Iterative
#Inst Speedup #Inst Speedup #Inst Speedup #Inst Speedup

Fu-Malik 366 1.0 388 2.4 - - - -
LinearUS 477 1.0 446 1.6 498 2.3 509 2.4
MSU3 517 1.0 488 1.6 504 2.0 541 3.6

large resulting in termination due to memory outs. However, for those instances that
were solved successfully, incremental blocking was 60% faster than the original Lin-
earUS. Incremental weakening allows MaxSAT algorithms to solve more instances with
significant speedup. Since the cardinality constraint is encoded only once, the size of
the formula remains almost constant across iterations. The majority of the instances are
solved at least 2× faster. Iterative encoding outperforms all other approaches. Smaller
formula sizes due to iterative encoding allows it to solve more instances as compared to
incremental weakening.

MSU3 with incremental blocking solves less instances as compared to the original
MSU3 but it is faster for instances solved by both approaches. Similar results have been
observed for the LinearUS algorithm with incremental blocking. Incremental weak-
ening outperforms incremental blocking in the number of solved instances as well as
in terms of solving time. However, incremental weakening solves less instances than
the non-incremental approach, since incremental weakening is not flexible to directly
support the increase in the number of input literals of the cardinality constraint. A non-
incremental approach may need to impose the cardinality constraint over a small subset
of relaxation variables. Incremental weakening does not enjoy this benefit due to its
inflexibility. This may result in incremental weakening producing a larger encoding for
certain problem instances. Iterative encoding solves more instances and is significantly
faster than the non-incremental approach. Iterative encoding only encodes the clauses
that are needed at each iteration of the MaxSAT algorithm, allowing for an encoding
with a similar size to the non-incremental approach. Most instances are solved at least
3.6× faster with iterative encoding than without it.

Fig. 3 shows scatter plots that compare the non-incremental and incremental ap-
proaches which are highlighted in Table 1. Each point in the plot corresponds to a prob-
lem instance, where the x-axis corresponds to the run time required by non-incremental
approaches and the y-axis corresponds to the run time required by incremental ap-
proaches. Instances that are above the diagonal are solved faster when using a non-
incremental approach, whereas instances that are below the diagonal are solved faster
when using an incremental approach. Incremental approaches that we propose in this
paper clearly assert their dominance over their non-incremental counterparts integrated
with all three algorithms as shown in Fig. 3. This is particularly evident in the MSU3
algorithm where the majority of the instances are solved much faster with iterative
encoding. For example, for 30% of the instances solved by MSU3 with and without

13



10-1

100

101

102

103

10-1 100 101 102 103

In
cr

em
en

ta
l B

lo
ck

in
g

Non-Incremental

(a) Fu-Malik Algorithm:
Non-Incremental vs. Incremental Blocking

10-1

100

101

102

103

10-1 100 101 102 103

In
cr

em
en

ta
l W

ea
ke

ni
ng

Non-Incremental

(b) LinearUS Algorithm:
Non-Incremental vs. Incremental Weakening

10-1

100

101

102

103

10-1 100 101 102 103

Ite
ra

tiv
e 

En
co

di
ng

Non-Incremental

(c) LinearUS Algorithm:
Non-Incremental vs. Iterative Encoding

10-1

100

101

102

103

10-1 100 101 102 103

Ite
ra

tiv
e 

En
co

di
ng

Non-Incremental

(d) MSU3 Algorithm:
Non-Incremental vs. Iterative Encoding

Fig. 3: Impact of incremental approaches

iterative encoding, iterative encoding is at least 6× faster than the non-incremental ap-
proach. For 10% of the instances solved by both approaches, iterative encoding boosts
MSU3 with at least 14× speedup.

Fig. 4 shows a cactus plot with the running times of state-of-the-art MaxSAT solvers
used in the MaxSAT Evaluation 20133 (WPM1 [3], WPM2 [4, 2], MaxHS [15, 16],
BCD2 [44], QMaxSAT2 [29]) and the best incremental algorithms presented in this
paper (incremental blocking Fu-Malik, iterative encoding LinearUS and MSU3).

Fu-Malik and WPM1 use similar MaxSAT algorithms. Moreover, WPM1 has a sim-
ilar incremental strategy due to the incremental SMT solver that is used by WPM1.
Since both solvers used similar techniques, it is not surprising that their performance is
similar. Even though LinearUS uses a simple MaxSAT algorithm, it is competitive with
more complex state-of-the-art MaxSAT algorithms. This is mostly due to the incremen-

3 Only single engine solvers have been considered in this evaluation, therefore we did not in-
clude ISAC+ (a portfolio MaxSAT solver) [28].
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tal approach that is being used in LinearUS and shows the importance of using an effi-
cient incremental approach. MSU3 and QMaxSAT2 perform complementary searches
but both use incrementality and have similar performances. Iterative encoding is not
restricted to MSU3 and may be used in other MaxSAT algorithms, such as WPM2 and
BCD2. It is expected that if those algorithms are enhanced with the incremental iter-
ative encoding, their performance might rise to values similar or higher than those of
QMaxSAT2 and MSU3.

6 Conclusions and Future Work

Several state of the art MaxSAT algorithms are based on solving a sequence of closely
related SAT formulas. However, although incrementality is not a new technique, it is
seldom used in MaxSAT algorithms that search on the lower bound of the optimum
solution. In this paper, we describe and propose new techniques to incrementally modify
cardinality constraints used in several MaxSAT algorithms, namely in linear Unsat-Sat
search, the classic Fu-Malik algorithm and MSU3 core-guided algorithm.

Experimental results show the effectiveness of the techniques proposed in the pa-
per. The incremental versions of the MaxSAT algorithms clearly outperform the non-
incremental versions, both in terms of speed and number of solved instances. Further-
more, the proposed techniques can be integrated in other core-guided algorithms such
as WPM2 and BCD2, among others.

Finally, the paper also describes that in general it is possible to perform iterative
encoding of cardinality constraints using the Totalizer encoding. Therefore, the use of
this technique is not limited to the scope of MaxSAT algorithms. As future work, we
propose to integrate these techniques in other domains where cardinality constraints are
used, and to extend incrementality to other effective cardinality constraints encodings.
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4. Ansótegui, C., Bonet, M.L., Levy, J.: A New Algorithm for Weighted Partial MaxSAT. In:
Fox, M., Poole, D. (eds.) AAAI Conference on Artificial Intelligence. AAAI Press (2010)

5. Argelich, J., Berre, D.L., Lynce, I., Marques-Silva, J., Rapicault, P.: Solving Linux Upgrade-
ability Problems Using Boolean Optimization. In: Workshop on Logics for Component Con-
figuration. pp. 11–22 (2010)

6. Ası́n, R., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and MaxSAT.
Annals of Operations Research pp. 1–21 (2012)

7. Ası́n, R., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E.: Cardinality Networks: a
theoretical and empirical study. Constraints 16(2), 195–221 (2011)

8. Audemard, G., Lagniez, J.M., Simon, L.: Improving Glucose for Incremental SAT Solving
with Assumptions: Application to MUS Extraction. In: Järvisalo, M., Gelder, A.V. (eds.)
International Conference on Theory and Applications of Satisfiability Testing. LNCS, vol.
7962, pp. 309–317. Springer (2013)

9. Bailleux, O., Boufkhad, Y.: Efficient CNF Encoding of Boolean Cardinality Constraints. In:
Rossi, F. (ed.) Principles and Practice of Constraint Programming. LNCS, vol. 2833, pp.
108–122. Springer (2003)

10. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. Tech.
rep., Department of Computer Science, The University of Iowa (2010), available at
www.SMT-LIB.org
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21. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
International Conference on Theory and Applications of Satisfiability Testing. LNCS, vol.
2919, pp. 502–518. Springer (2003)
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