
Improving Unsatisfiability-based Algorithms for
Boolean Optimization

Vasco Manquinho, Ruben Martins, and Inês Lynce

IST/INESC-ID, Technical University of Lisbon, Portugal
{vmm,ruben,ines}@sat.inesc-id.pt

Abstract. Recently, several unsatisfiability-based algorithms havebeen proposed
for Maximum Satisfiability (MaxSAT) and other Boolean Optimization prob-
lems. These algorithms are based on being able to iteratively identify and relax
unsatisfiable sub-formulas with the use of fast Boolean satisfiability solvers. It has
been shown that this approach is very effective for several classes of instances,
but it can perform poorly on others for which classical Boolean optimization al-
gorithms find it easy to solve. This paper proposes the use of Pseudo-Boolean Op-
timization (PBO) solvers as a preprocessor for unsatisfiability-based algorithms
in order to increase its robustness. Moreover, the use of constraint branching, a
well-known technique from Integer Linear Programming, is also proposed into
the unsatisfiability-based framework. Experimental results show that the integra-
tion of these features in an unsatisfiability-based algorithm results in an improved
and more effective solver for Boolean optimization problems.

1 Introduction

The success of Propositional Satisfiability (SAT) solvers has increased the interest in
several generalizations of SAT, namely in Boolean optimization problems. As a result,
several techniques first proposed for SAT algorithms have been extended for Pseudo-
Boolean Optimization (PBO), Maximum Satisfiability (MaxSAT) and the more general
problem of Weighted Boolean Optimization (WBO). Moreover,the acknowledgment
of the strong relation between all these problems has led to the development of new
algorithms based on the translation between these Boolean formalisms [8, 12, 15].

Algorithms based on the identification of unsatisfiable sub-formulas have also been
developed and are now able to tackle all these Boolean optimization problems. The first
proposal of unsatisfiability-based algorithm [13] was restricted to MaxSAT and partial
MaxSAT problems. However, recent work has been done on improving this algorithmic
solution [21] and generalizing it for weighted MaxSAT, PBO and WBO [2, 19].

The proposal in this paper is for a further integration of procedures in an unique
Boolean optimization framework. Hence, it is proposed the encoding into PBO and the
use of a PBO solver as a preprocessing step for finding a tight upper bound on the
optimal solution before applying an unsatisfiability-based algorithm. Moreover, the use
of constraint branching, a well-known technique initiallypresented for (Mixed) Integer
Linear Programming, can also be integrated with success in an unsatisfiability-based
algorithm for Boolean optimization.



2 V. Manquinho, R. Martins, I. Lynce

The paper is organized as follows: in section 2 several formalisms used for Boolean
optimization are introduced, namely Weighted Boolean Optimization (WBO), pseudo-
Boolean Optimization (PBO) and the Maximum Satisfiability (MaxSAT) problem and
its variants. Furthermore, several relations between these formalisms are reviewed, as
well as the most common algorithmic solutions. In section 3,it is proposed the use
of pseudo-Boolean solvers as a preprocessing step for an unsatisfiability-based algo-
rithm. Next, in section 4, it is shown how to integrate constraint branching into an
unsatisfiability-based solver for WBO. Finally, experimental results are presented in
section 5 and the paper concludes in section 6.

2 Preliminaries

In this section several Boolean optimization problems are defined, starting with the
more general Weighted Boolean Optimization problem. Next,translations between sev-
eral formalisms are reviewed and the most common algorithmic solutions are briefly
described. The approach based on the identification of unsatisfiable sub-formulas is
presented in more detail since it will be extensively referred in the remaining of the
paper.

2.1 Weighted Boolean Optimization

Weighted Boolean Optimization (WBO) is a natural extensionof other Boolean prob-
lems, such as Maximum Satisfiability (MaxSAT) and Pseudo-Boolean Optimization
(PBO). In WBO, constraints can be any linear inequality withinteger coefficients (also
known as pseudo-Boolean constraints) defined over a set of Boolean variables. In gen-
eral, one can define a pseudo-Boolean constraint as follows:

∑

j∈N

aj lj ≥ b (1)

whereaj andb are positive integers andlj is a propositional literal that either denotes
a variablexj or its complement̄xj . It is well-known that all other types of linear con-
straints with Boolean variables can be easily translated into this one [7]. Notice that
propositional clauses are a particular case of pseudo-Boolean constraints where all co-
efficientsaj and the right-hand sideb are equal to 1. If allaj are equal to 1 andb > 1,
then the constraint is called a cardinality constraint.

A WBO formulaϕ is defined as the conjunction of two pseudo-Boolean formulas
ϕh andϕs, whereϕh contains thehard constraints andϕs contains thesoftconstraints.
Moreover, each soft constraintωi has an associated positive weightci that represents
the cost of not satisfying constraintωi. The WBO problem can be defined as finding an
assignment to problem variables that satisfies all hard constraints inϕh and minimizes
the total weight of unsatisfied soft constraints inϕs.

Example 1.Consider the following example of a WBO formula:

ϕh = { x1 + x2 + x3 ≥ 2, 2x̄1 + x̄2 + x3 ≥ 2}
ϕs = { (x1 + x̄2 ≥ 1, 2), (x̄1 + x̄3 ≥ 1, 3)}

(2)



Improving Unsatisfiability-based Algorithms for Boolean Optimization 3

In this example, there are only two possible assignments that satisfy all hard con-
straints inϕh. These assignments arex1 = x3 = 1, x2 = 0 andx1 = 0, x2 = x3 = 1.
However, for each of these assignments, at least one soft constraint inϕs is made un-
satisfied. Therefore, the solution to the WBO instance wouldbex1 = 0, x2 = x3 = 1
since it is the assignment that minimizes the total cost of unsatisfied soft constraints
while satisfying all hard constraints.

2.2 Relating with MaxSAT and Pseudo-Boolean Optimization

One should note that WBO is a direct generalization of the Maximum Satisfiability
(MaxSAT) problem and variants. The MaxSAT problem can be defined as finding an
assignment that minimizes the number of unsatisfied clausesin a given CNF formula
ϕ. Hence, a WBO instance whereϕh = ∅ andϕs contains only propositional clauses
with weight 1 is in fact a MaxSAT instance.

Thepartial MaxSAT problem differs from MaxSAT since there is a set of clauses
declared as hard and a set of clauses declared as soft. The objective in partial MaxSAT
is to find an assignment such that all hard clauses are satisfied while minimizing the
number of unsatisfied soft clauses. Again, a WBO formula where all constraints inϕh

andϕs are propositional clauses and all soft clauses have weight 1is a partial MaxSAT
instance. Finally, there are also variants of MaxSAT and partial MaxSAT with weights
greater than 1 which are respectively known asweightedMaxSAT andpartial weighted
MaxSAT. Clearly, the resulting instances are also specific cases of WBO instances.

Another well-known Boolean optimization formalism is Pseudo-Boolean Optimiza-
tion (PBO), also known as 0-1 Integer Linear Programming (0-1 ILP). The PBO prob-
lem can be defined as finding an assignment to the Boolean variables such that a set of
pseudo-Boolean constraints is satisfied and the value of a linear cost function is mini-
mized. Formally, it is possible to define PBO as follows:

minimize
∑

j∈N

cj xj

subject to
∑

j∈N

aij lj ≥ bi,

lj ∈ {xj , x̄j}, xj ∈ {0, 1}, aij, bi, cj ∈ N
+
0

(3)

It is also possible to encode a PBO instance into the WBO formalism. The constraint
set of the PBO instance can be directly mapped into the set of hard constraintsϕh of the
resulting WBO instance, while the objective function is mapped using soft constraints.
For each termcjxj in the objective function, a new soft constraintx̄j ≥ 1 is added to
ϕs with weightcj . The optimal solution to the resulting WBO instance will also be an
optimal solution to the original PBO instance [19].

2.3 Algorithmic Solutions

For each of these Boolean formalisms (WBO, MaxSAT and PBO), there is a wide va-
riety of algorithmic solutions. One classical approach is the use of a branch and bound
algorithm where anupper boundon the value of the objective function is updated when-
ever a better solution is found andlower boundson the value of the objective function



4 V. Manquinho, R. Martins, I. Lynce

Algorithm 1 Unsatisfiability-based Algorithm for MaxSAT and partial MaxSAT

FUMALIK ALG(ϕ)

1 while true
2 do (st, ϕC)← SAT(ϕ)
3 if st = UNSAT
4 then VR ← ∅
5 for eachω ∈ ϕC ∧ soft(ω)
6 do r is a new relaxation variable
7 ωR ← ω ∪ {r}
8 ϕ← ϕ\{ω} ∪ {ωR}
9 VR ← VR ∪ {r}

10 if VR = ∅
11 then return UNSAT
12 else ϕ← ϕ ∪ CNF(

P

r∈VR
r = 1)

13 � Additional clauses for Equals1 constraint are marked as hard clauses
14 else returnSatisfiable assignment toϕ

are estimated considering a set of variable assignments. Whenever the lower bound
value is higher or equal to the upper bound, the search procedure can safely backtrack
since it is guaranteed that the current best solution cannotbe improved by extending the
current set of variable assignments. Several MaxSAT and PBOalgorithms follow this
approach using different lower bounding procedures [16, 17, 3, 14, 18].

Another approach used in PBO solvers is to perform a linear search on the value of
the objective function by iterating on the possible upper bound values [7]. Whenever a
new solution to the problem constraints is found, the upper bound value is updated and
a new constraint is added such that all solutions with an higher value are discarded. Sev-
eral state of the art PBO solvers use this approach such asPueblo [26], minisat+ [12],
among others [8, 1]. These solvers rely on the generalization of the most effective tech-
niques already used in SAT solvers, such as Boolean Constraint Propagation, conflict-
based learning and conflict-directed backtracking [18, 10].

There are other successful solvers that perform conversions of one Boolean for-
malism to another and subsequently use a specific solver on the new formalism. For
instance, PBO solverminisat+ [12] converts all pseudo-Boolean constraints to propo-
sitional clauses and uses a SAT solver to find an assignment that satisfies the prob-
lem constraints;SAT4J MAXSAT [8] converts MaxSAT instances into a PBO instance;
Toolbar [15] converts MaxSAT instances into a weighted constraint network and uses
a Constraint Satisfaction Problem (CSP) solver, among other solvers [23, 24].

A recent approach initially proposed by Fu and Malik [13] forMaxSAT and partial
MaxSAT problems is based on the iterated use of a SAT solver toidentify unsatisfi-
able sub-formulas. Algorithm 1 presents the pseudo-code for the original Fu and Ma-
lik’s proposal. Consider thatϕ is the Boolean working formula where constraints are
marked as either soft or hard. At each iteration, a SAT solveris used and its output is
a pair(st, ϕC) where st denotes the resulting status of the solver (satisfiable or unsat-



Improving Unsatisfiability-based Algorithms for Boolean Optimization 5

Algorithm 2 Unsatisfiability-based Weighted Boolean Optimization algorithm

WBO(ϕ)

1 while true
2 do (st, ϕC)← PB(ϕ)
3 if st = UNSAT
4 then minc ←∞
5 for eachω ∈ ϕC

6 do if soft(ω) and cost(ω) < minc

7 then minc ← cost(ω)
8 VR ← ∅
9 for eachω ∈ ϕC ∧ soft(ω)

10 do r is a new relaxation variable andω =
P

aj lj ≥ b
11 VR ← VR ∪ {r}
12 ωR ← (b r +

P

aj lj ≥ b)
13 cost(ωR)← minc

14 if cost(ω) > minc

15 then ϕ← ϕ ∪ {ωR}
16 cost(ω)← cost(ω)−minc

17 else ϕ← ϕ\{ω} ∪ {ωR}
18 if VR = ∅
19 then return UNSAT
20 else ϕW ← ϕW ∪ {

P

r∈VR
r = 1}

21 else returnSatisfiable assignment toϕ

isfiable) andϕC contains the unsatisfiable sub-formula provided by the SAT solver if
ϕ is unsatisfiable. In this latter case, for each soft constraint in ϕC , a new relaxation
variable is added. Moreover,ϕ is changed to encode that exactly one of the new relax-
ation variables can be assigned value 1 (Equals1 constraintin line 12) and the algorithm
continues to the next iteration. Otherwise, ifϕ is satisfiable, the SAT solver was able
to find an assignment which is an optimal solution to the original MaxSAT or partial
MaxSAT problem [13].

Different algorithms have been proposed for MaxSAT and partial MaxSAT based
on this approach. For instance, effective encodings for theEquals1 constraint have been
proposed with better results [21, 20] than the pairwise encoding of the original algo-
rithm [13]. Moreover, different strategies have been used regarding the total number of
relaxation variables needed [20, 2].

Finally, the unsatisfiability-based approach has also beenextended for weighted
and partial weighted MaxSAT [2, 19] and generalized to WBO [19] by using a pseudo-
Boolean solver instead of a SAT solver. Algorithm 2 presentsthe pseudo-code for the
WBO solver and one can clearly notice that it follows the samestructure as Algorithm 1.
However, in this case,ϕ is now a WBO formula, i.e. constraints can be any type of
pseudo-Boolean constraints and a positive cost is associated with each soft constraint.
One difference from Algorithm 1 is in lines 4-7 whereminc denotes the cost associated
to the unsatisfiable sub-formulaϕC , defined as the minimum cost of soft constraints



6 V. Manquinho, R. Martins, I. Lynce

in ϕC . Moreover, if the weight of a soft constraint inϕC is larger thanminc, then the
relaxation also differs since the original constraint is kept, but with a smaller weight as
shown in lines 9-17. Finally, notice that the Equals1 constraint in line 20 does not need
to be encoded into CNF, since a pseudo-Boolean solver is usedinstead of a SAT solver.

3 Improving Unsatisfiability-based Algorithms

As shown previously, unsatisfiability-based algorithms are able to tackle several Boolean
optimization problems. These algorithms work by making a linear search on the lower
bounds of the optimal solution value. However, it has been shown that in some cases, it
is preferable to search on the upper bounds of the optimal solution.

In this section, we propose to translate Weighted Boolean Optimization (WBO)
to the more specific Pseudo-Boolean Optimization (PBO) problem before applying an
unsatisfiability-based algorithm. This approach has two main goals: (i) to apply simpli-
fication techniques that are used as preprocessing procedures in PBO and (ii) to find a
tight upper bound on the optimal solution. Afterwards, the problem is again translated
into WBO and solved using an unsatisfiability-based algorithm.

3.1 Pseudo-Boolean Optimization as Preprocessing

We start by reviewing the translation from WBO formulas intoPBO. Clearly, hard
constraintsϕh can be directly mapped as constraints into the resulting PBOformula.
However, for soft constraints inϕs, additional variables are needed. Each soft constraint
of the form

∑
aj lj ≥ b, is mapped into a new PBO constraintb r+

∑
aj lj ≥ b, where

r is a new relaxation variable. The objective function will beto minimize the weighted
sum of the relaxation variables. The coefficient of variabler in the objective function is
the weight of the original constraint associated with variabler.

Example 2.Consider the following WBO formula:

ϕh = { x1 + x2 + x3 ≥ 2, 2x̄1 + x̄2 + x3 ≥ 2, x1 + x4 ≥ 1}
ϕs = { (x1 + x̄2 ≥ 1, 2), (x̄1 + x̄3 ≥ 1, 3), (x̄4 ≥ 1, 4)}

(4)

The resulting PBO instance would be:

minimize 2r1 + 3r2 + 4r3

subject tox1 + x2 + x3 ≥ 2
2x̄1 + x̄2 + x3 ≥ 2
x1 + x4 ≥ 1
r1 + x1 + x̄2 ≥ 1
r2 + x̄1 + x̄3 ≥ 1
r3 + x̄4 ≥ 1

(5)

Notice that in this example variabler3 is not necessary in the resulting PBO instance.
Sincex̄4 ≥ 1 is a unit clause in (4), one can remove this constraint and just addx4 with
weight 4 to the objective function, which would result in minimizing 2r1 + 3r2 + 4x4.



Improving Unsatisfiability-based Algorithms for Boolean Optimization 7

This is an important simplification, as many industrial instances have unit clauses as
soft constraints [4].

After translating the WBO formula to PBO, two steps are applied:

1. Simplification techniques are used in the PBO formula;
2. The PBO formula is solved using tight limits.

In the first step we use a generalization of Hypre [5] for pseudo-Boolean formulas.
As a result, literal equivalence detection and hyper-binary resolution are used to elim-
inate variables from the formula. In fact, besides these techniques, other preprocessing
procedures could have also been used, such as clause and variable subsumption, among
others [22].

After the first step, a search procedure is carried out using apseudo-Boolean solver
and making a linear search on the upper bound of the optimal solution. However, our
use of the pseudo-Boolean solver is limited to 10% of the timelimit given to solve the
formula. Notice that the goal is not to solve the problem using a PBO solver, but rather
to quickly find a tight upper bound on the optimal solution such that it prunes the search
space on the upper bound side.

Given a tight time limit, the pseudo-Boolean solver will notfind the optimal solu-
tion in most cases. Therefore, if the solver is unable to prove optimality, the problem
instance is encoded back to WBO and solved using an unsatisfiability-based algorithm.
Remember that the unsatisfiability-based algorithm will make a search on the lower
bound of the optimal solutions, but in this case it will be already limited on the upper
bound side. We note that searching on both the upper and the lower bound on the value
of the objective function is not new [21], but to the best of our knowledge, the presented
approach is novel.

Although the objective is to find a tight upper bound, it is possible that the PBO
solver proves the optimality of the found upper bound. In that case, the optimal solution
to the original problem has been found without having to makethe search on the lower
bound value. However, even if the solver is unable to prove optimality, small clauses
learned by the pseudo-Boolean solver are kept in the WBO formula as hard clauses,
further constraining the search space.

4 Using Constraint Branching

One of the main problems of using unsatisfiability-based algorithms for WBO is that
after a given number of iterations, the number of relaxationvariables can be much
larger than the initial number of problem variables [21]. This might occur even when
using a pseudo-Boolean solver where the encoding of the Equals1 constraint to CNF is
not necessary. Furthermore, when solving a formula with several Equals1 constraints,
setting a single variable to 0 or 1 may cause a dramatic difference on the number of
propagations that results from this assignment.

Remember that in each iteration of Algorithm 2, a new Equals1constraint is added
(line 20), thus constraining that only one of the new relaxation variables can be assigned



8 V. Manquinho, R. Martins, I. Lynce

value 1. Consider that, at any given iteration,k new relaxation variables are added. As
a result, a new Equals1 constraint is added as follows:

k∑

i=1

ri = 1 (6)

Notice that, by assigning one variableri with value 1, all other variablesrj 6= ri

(with 1 ≤ j ≤ k) must be assigned value 0. However, ifri is assigned value 0, no prop-
agation occurs due to (6). As a result, assigning a value to any of these variables tends
to produce very different search trees, in particular for large values ofk. Therefore,
if the solver assigns one single variable that appears in these constraints early in the
search tree, that assignment might be too strong or too weak depending on the chosen
value. This problem has already been observed in (Mixed) Integer Linear Programming
problems [6] and one way to balance the search tree is to use constraint branching [25].

Constraint branching is a well-known technique used in specific cases of (Mixed)
Integer Linear Programming in which the formula to be solvedis split into two sub-
problems such that new constraints are added to each branch.In our case, we would
like to take advantage of the Equals1 constraints in order toassign large sets (hundreads
or even thousands) of variables in a single step. Therefore,it is proposed the use of a
branching step due on Equals1 constraints and integrate it into an unsatisfiability-based
algorithm.

By using constraint branching on an Equals1 constraint, instead of assigning just
one variable, half of thek variables in (6) are assigned value 0. Without loss of gener-
ality, assume that variablesr1 to rk/2 are assigned value 0. This is done by adding the
following constraint to the working formulaϕ:

ωc1 :

k/2∑

i=1

ri = 0 (7)

This means that the variable to be assigned value 1 is one ofrk/2+1 to rk. If the formula
ϕ ∪ {ωc1} is not satisfiable, then it is possible to infer that one of thevariables fromr1

to rk/2 must be assigned value 1, while all others fromrk/2+1 to rk must be assigned
value 0. Hence, ifϕ ∪ {ωc1} is unsatisfiable, the following constraint can be safely
inferred:

ωc2 :

k∑

i=k/2+1

ri = 0 (8)

Algorithm 3 illustrates the use of constraint branching in the computation of un-
satisfiable sub-formulas. This procedure can replace the call for the pseudo-Boolean
solver in line 2 of Algorithm 2. In Algorithm 3 we start by selecting a large1 Equals1
constraint in order to maximize the number of variables to beassigned due toωc1. No-
tice thatϕC1 denotes an unsatisfiable sub-formula fromϕ ∪ {ωc1}. If ϕC1 does not
includeωc1, thenϕC1 is also an unsatisfiable sub-formula fromϕ and the procedure

1 An Equals1 constraint with than 100 relaxation variables isconsidered large in the context of
our solver.



Improving Unsatisfiability-based Algorithms for Boolean Optimization 9

Algorithm 3 Using Constraint Branching in Unsatisfiability-based WBO Algorithm

COMPUTE CORE(ϕ)

1 � Compute an unsatisfiable sub-formula fromϕ
2 if (no large Equals1 constraint exist inϕ)
3 then (st, ϕC)← PB(ϕ)
4 return (st, ϕC)
5 else Select a large Equals1 constraintω from ϕ
6 k = size(ω)

7 ωc1 :
Pk/2

i=1
ri = 0

8 (st, ϕC1)← COMPUTE CORE(ϕ ∪ {ωc1})
9 if (st = SAT ∨ ωc1 /∈ ϕC1)

10 then return (st, ϕC1)

11 else ωc2 :
Pk

i=k/2+1
ri = 0

12 (st, ϕC2)← COMPUTE CORE(ϕ ∪ {ωc2})
13 if (st = SAT ∨ ωc2 /∈ ϕC2)
14 then return (st, ϕC2)
15 else return (st, ϕC1 ∪ ϕC2)

returns. The same applies toϕC2 when it does not includeωc2. Otherwise, if bothϕC1

andϕC2 include the respective added constraints, then an unsatisfiable sub-formula for
ϕ is ϕC1 ∪ ϕC2.

Finally, it should be noticed that, in practice, this technique is applied parsimo-
niously. It was observed that if we were to make constraint branching onall large
Equals1 constraints, then the resulting unsatisfiable sub-formula would usually be much
larger than a single call to the pseudo-Boolean solver. Thisoccurs, since the search
space is explored differently in each sub-problem and the set union of both unsatisfiable
sub-formulas results in a larger unsatisfiable sub-formulafor the main problem. Hence,
before making a constraint branching step, the solver is called with a limited number
of conflicts (approx. 30,000). Afterwards, if the solver hasbeen unable to produce an
unsatisfiable sub-formula, a constraint branching step is applied.

5 Experimental Results

In order to evaluate the techniques proposed in the paper, solver wbo was modified to
include pseudo-Boolean optimization techniques described in section 3, as well as the
use of constraint branching, presented in section 4. The newversion of solverwbo is
1.2, while version 1.0 is the one submitted to the last MaxSATevaluation [4].

For the experimental evaluation, the industrial benchmarksets of the partial MaxSAT
problem (a specific case of WBO) were selected. Besideswbo, we also run other solvers
among the most effective for these benchmark sets, namelyMSUncore [21, 19],SAT4J
MaxSAT [8] and pm2 [2]. Experiments were run on a set of Intel Xeon 5160 servers
(3.0GHZ, 1333Mhz, 3GB) running Red Hat Enterprise Linux WS 4. For each instance,
the CPU time limit was 1800 seconds.



10 V. Manquinho, R. Martins, I. Lynce

Table 1.Solved Instances for Industrial Partial MaxSAT

Benchmark set #I MSUncoreSAT4J (MS) pm2 wbo1.0wbo1.2

bcp-fir 59 49 10 58 40 47
bcp-hipp-yRa1 176 139 140 166 144 137
bcp-msp 148 121 95 93 26 95
bcp-mtg 215 173 196 215 181 207
bcp-syn 74 32 21 39 34 33
CircuitTraceCompaction 4 0 4 4 0 4
HaplotypeAssembly 6 5 0 5 5 5
pbo-mqc 256 119 250 217 131 210
pbo-routing 15 15 13 15 15 15
PROTEININS 12 0 2 3 1 2

Total 965 553 731 815 577 755

Table 1 shows the number of solved instances by each solver for all benchmark sets.
The improvements from version 1.0 to version 1.2 ofwbo are clear. The overall number
of solved instances is vastly improved as it now solves more instances thanMSUncore
andSAT4J MaxSAT. Nevertheless, version 1.2 ofwbo is not as effective as the current
version ofpm2. However,wbo has an additional overhead since it is a more general
solver able to tackle any WBO problem instance, whereaspm2 is specific for partial
MaxSAT and it cannot handle formulas with weights. Furthermore,pm2 needs to use
the encoding of cardinality constraints to CNF that dependson the number of iterations,
but since the number of iterations for most instances is not large, the respective CNF
encoding should tend to produce manageable CNF formulas. Finally, wbo is built on
top ofminisat 2.0 [11], whilepm2 is built on the more effectivePicoSAT solver [9].

The improvements ofwbo are due to different reasons for the several benchmark
sets. For example, improvements inbcp-fir are due to the use of constraint branching
technique, while inbcp-msp several instances are trivially solved by the use of a PBO
solver at preprocessing. Preprocessing techniques from PBO are also extensively ap-
plied in theCircuitTraceCompactionwhere the initial formula can be significantly
reduced. Overall, the integration of all these techniques into an unsatisfiability-based al-
gorithm improve its performance and robustness for severalsets of industrial instances.

Observe that it was choosen not to present results from otherindustrial categories
from the MaxSAT evaluation for two main reasons: (i) version1.0 of thewbo solver
was already able to solve all instances from the partial weighted MaxSAT problem and
(ii) the proposed techniques do not apply on the industrial MaxSAT instances without
hard constraints for whichwbo was already one of the best performing solvers [4].
Note that PBO preprocessing techniques can only be applied when literal implications
can be extracted from the formula and that does not occur for those benchmark sets.
Furthermore, most of industrial MaxSAT instances are solved after finding a single
unsatisfiable sub-formula. Hence, there are not enough iterations to apply constraint
branching and overall results from version 1.0 and 1.2 for solver wbo would be the
same for these sets of instances.



Improving Unsatisfiability-based Algorithms for Boolean Optimization 11

6 Conclusions

This paper proposes to extend an unsatisfiability-based algorithm for Weighted Boolean
Optimization, by first encoding the problem into pseudo-Boolean Optimization such
that powerful inference preprocessing techniques can be used. Furthermore, the pseudo-
Boolean solver can also be used to learn hard constraints anddeal with problem in-
stances that are trivially solved using a linear search on the upper bound value of the
solution. Moreover, the paper also shows how to selectivelyapply constraint branching
in the unsatisfiability-based framework.

Preliminary experimental results show that these techniques significantly improve
the performance of our unsatisfiability-based algorithm when solving industrial in-
stances of the partial MaxSAT problem (a special case of Weighted Boolean Optimiza-
tion). As a result, our solver is now competitive with dedicated algorithms for the partial
MaxSAT problem.

The success obtained on solving these problem instances with the integration of
techniques from Pseudo-Boolean Optimization and constraint branching, first proposed
for (Mixed) Integer Linear Programming, provide a strong stimulus for further integra-
tion of several Boolean optimization techniques into an unique framework.

Acknowledgement. This work was supported by FCT grant PTDC/EIA/76572/2006.

References

1. F. Aloul, A. Ramani, I. Markov, and K. A. Sakallah. GenericILP versus specialized 0-1 ILP:
An update. InInternational Conference on Computer-Aided Design, pages 450–457, 2002.

2. C. Ansótegui, M. Bonet, and J. Levy. Solving (Weighted) Partial MaxSAT through Satis-
fiability Testing. InInternational Conference on Theory and Applications of Satisfiability
Testing, pages 427–440, 2009.

3. J. Argelich, C. M. Li, and F. Manyà. An improved exact solver for partial max-sat. In
Proceedings of the International Conference on Nonconvex Programming: Local and Global
Approaches (NCP-2007), pages 230–231, 2007.

4. J. Argelich, C. M. Li, F. Manyà, and J. Planes. Fourth Max-SAT evaluation.
www.maxsat.udl.cat/09/, 2009.

5. F. Bacchus and J. Winter. Effective preprocessing with hyper-resolution and equality reduc-
tion. In Sixth International Conference on Theory and Applicationsof Satisfiability Testing,
pages 183–192, 2003.

6. C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance. Branch-and-price:
Column generation for solving huge integer programs.Operations Research, 46(3):316–329,
1998.

7. P. Barth. A Davis-Putnam Enumeration Algorithm for Linear Pseudo-Boolean Optimization.
Technical Report MPI-I-95-2-003, Max Plank Institute for Computer Science, 1995.

8. D. L. Berre. SAT4J library. www.sat4j.org.
9. A. Biere. PicoSAT essentials.Journal on Satisfiability, Boolean Modeling and Computation,

2:75–97, 2008.
10. D. Chai and A. Kuehlmann. A fast pseudo-Boolean constraint solver. InDesign Automation

Conference, pages 830–835, 2003.
11. N. Eén and N. Sörensson. Minisat 2.0 sat solver. http://minisat.se/MiniSat.html.



12 V. Manquinho, R. Martins, I. Lynce

12. N. Eén and N. Sörensson. Translating pseudo-Boolean constraints into SAT.Journal on
Satisfiability, Boolean Modeling and Computation, 2, 2006.

13. Z. Fu and S. Malik. On solving the partial MAX-SAT problem. In International Conference
on Theory and Applications of Satisfiability Testing, pages 252–265, August 2006.

14. F. Heras, J. Larrosa, and A. Oliveras. MiniMaxSAT: An efficient weighted Max-SAT solver.
Journal of Artificial Intelligence Research, 31:1–32, 2008.

15. J. Larrosa, F. Heras, and S. de Givry. A logical approach to efficient Max-SAT solving.
Artificial Intelligence, 172(2-3):204–233, 2008.

16. C. M. Li, F. Manyà, and J. Planes. New inference rules forMax-SAT. Journal of Artificial
Intelligence Research, 30:321–359, 2007.

17. H. Lin and K. Su. Exploiting inference rules to compute lower bounds for MAX-SAT solv-
ing. In International Joint Conference on Artificial Intelligence, pages 2334–2339, 2007.

18. V. Manquinho and J. Marques-Silva. Search pruning techniques in SAT-based branch-and-
bound algorithms for the binate covering problem.IEEE Transactions on Computer-Aided
Design, 21(5):505–516, 2002.

19. V. Manquinho, J. Marques-Silva, and J. Planes. Algorithms for weighted boolean optimiza-
tion. In International Conference on Theory and Applications of Satisfiability Testing, pages
495–508, 2009.

20. J. Marques-Silva and V. Manquinho. Towards more effective unsatisfiability-based maxi-
mum satisfiability algorithms. InInternational Conference on Theory and Applications of
Satisfiability Testing, pages 225–230, 2008.

21. J. Marques-Silva and J. Planes. Algorithms for maximum satisfiability using unsatisfiable
cores. InDesign, Automation and Testing in Europe Conference, pages 408–413, March
2008.

22. R. Martins, I. Lynce, and V. Manquinho. Preprocessing inpseudo-boolean optimization: An
experimental evaluation. InEighth International Workshop on Constraint Modelling and
Reformulation, 2009.

23. K. Pipatsrisawat, A. Palyan, M. Chavira, A. Choi, and A. Darwiche. Solving weighted Max-
SAT problems in a reduced search space: A performance analysis. Journal on Satisfiability
Boolean Modeling and Computation, 4:191–217, 2008.

24. M. Ramı́rez and H. Geffner. Structural relaxations by variable renaming and their compila-
tion for solving MinCostSAT. In C. Bessiere, editor,The 13th International Conference on
Principles and Practice of Constraint Programming, volume 4741 ofLNCS, pages 605–619.
Springer, 2007.

25. D. Ryan and B. Foster. An integer programming approach toscheduling. InComputer
Scheduling of Public Transport, pages 269–280, 1981.

26. H. Sheini and K. Sakallah. Pueblo: A Modern Pseudo-Boolean SAT Solver. InDesign,
Automation and Testing in Europe Conference, pages 684–685, March 2005.


