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Abstract. Recently, several unsatisfiability-based algorithms leen proposed
for Maximum Satisfiability (MaxSAT) and other Boolean Opization prob-
lems. These algorithms are based on being able to itengiglentify and relax
unsatisfiable sub-formulas with the use of fast Booleasailility solvers. It has
been shown that this approach is very effective for sevdealses of instances,
but it can perform poorly on others for which classical Basl@ptimization al-
gorithms find it easy to solve. This paper proposes the ussaid®-Boolean Op-
timization (PBO) solvers as a preprocessor for unsatisifigthiased algorithms
in order to increase its robustness. Moreover, the use afti@nt branching, a
well-known technique from Integer Linear Programming, Isogroposed into
the unsatisfiability-based framework. Experimental resssthow that the integra-
tion of these features in an unsatisfiability-based algoritesults in an improved
and more effective solver for Boolean optimization probdem

1 Introduction

The success of Propositional Satisfiability (SAT) solvesis Increased the interest in
several generalizations of SAT, namely in Boolean optitwzeproblems. As a result,
several techniques first proposed for SAT algorithms haen lextended for Pseudo-
Boolean Optimization (PBO), Maximum Satisfiability (Max®pand the more general
problem of Weighted Boolean Optimization (WBO). Moreowke acknowledgment
of the strong relation between all these problems has letdaaléevelopment of new
algorithms based on the translation between these Bootearafisms [8, 12, 15].

Algorithms based on the identification of unsatisfiable farpaulas have also been
developed and are now able to tackle all these Boolean agattioh problems. The first
proposal of unsatisfiability-based algorithm [13] wasniettd to MaxSAT and partial
MaxSAT problems. However, recent work has been done on imipgdhis algorithmic
solution [21] and generalizing it for weighted MaxSAT, PB@davBO [2, 19].

The proposal in this paper is for a further integration ofgadures in an unique
Boolean optimization framework. Hence, it is proposed theoeling into PBO and the
use of a PBO solver as a preprocessing step for finding a tigerubound on the
optimal solution before applying an unsatisfiability-béaggorithm. Moreover, the use
of constraint branching, a well-known technique initiglyesented for (Mixed) Integer
Linear Programming, can also be integrated with success imnaatisfiability-based
algorithm for Boolean optimization.
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The paper is organized as follows: in section 2 several fisma used for Boolean
optimization are introduced, namely Weighted Boolean @jztion (WBO), pseudo-
Boolean Optimization (PBO) and the Maximum Satisfiabilit§yakSAT) problem and
its variants. Furthermore, several relations betweeretf@snalisms are reviewed, as
well as the most common algorithmic solutions. In sectionit 8 proposed the use
of pseudo-Boolean solvers as a preprocessing step for atisfrebility-based algo-
rithm. Next, in section 4, it is shown how to integrate coaistr branching into an
unsatisfiability-based solver for WBO. Finally, experirtediresults are presented in
section 5 and the paper concludes in section 6.

2 Preliminaries

In this section several Boolean optimization problems afindd, starting with the

more general Weighted Boolean Optimization problem. Neahslations between sev-
eral formalisms are reviewed and the most common algoréhsoiutions are briefly

described. The approach based on the identification of igfiadte sub-formulas is

presented in more detail since it will be extensively refdrin the remaining of the
paper.

2.1 Weighted Boolean Optimization

Weighted Boolean Optimization (WBO) is a natural extengibnther Boolean prob-
lems, such as Maximum Satisfiability (MaxSAT) and PseudoiBan Optimization
(PBO). In WBO, constraints can be any linear inequality viitieger coefficients (also
known as pseudo-Boolean constraints) defined over a setaéso variables. In gen-
eral, one can define a pseudo-Boolean constraint as follows:

doajl=b (1)

JEN

wherea; andb are positive integers arld is a propositional literal that either denotes
a variablez; or its complement;. It is well-known that all other types of linear con-
straints with Boolean variables can be easily translateal tims one [7]. Notice that
propositional clauses are a particular case of pseudoedaatonstraints where all co-
efficientsa; and the right-hand sideare equal to 1. If alk; are equal to 1 anbl > 1,
then the constraint is called a cardinality constraint.

A WBO formulay is defined as the conjunction of two pseudo-Boolean formulas
wr andys, whereyp,, contains thénard constraints ang, contains thesoftconstraints.
Moreover, each soft constraint has an associated positive weighthat represents
the cost of not satisfying constraint. The WBO problem can be defined as finding an
assignment to problem variables that satisfies all hardt@inss iny;, and minimizes
the total weight of unsatisfied soft constraints:in

Example 1.Consider the following example of a WBO formula:

op={ 11 +x24+23>2, 2T1+ To+ a3 >2} @)
s ={ (x1+72>1,2), (Z1+732>1,3)}
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In this example, there are only two possible assignmentssttesfy all hard con-
straints ing;,. These assignments ate = 3 = 1,25 = 0 andz; = 0,20 = z3 = 1.
However, for each of these assignments, at least one sddtreamt ing, is made un-
satisfied. Therefore, the solution to the WBO instance woeld, = 0,20 = 23 = 1
since it is the assignment that minimizes the total cost sftisfied soft constraints
while satisfying all hard constraints.

2.2 Relating with MaxSAT and Pseudo-Boolean Optimization

One should note that WBO is a direct generalization of the iMam Satisfiability
(MaxSAT) problem and variants. The MaxSAT problem can bengefias finding an
assignment that minimizes the number of unsatisfied clansagiven CNF formula
. Hence, a WBO instance wheyg, = () and, contains only propositional clauses
with weight 1 is in fact a MaxSAT instance.

The partial MaxSAT problem differs from MaxSAT since there is a set oluslas
declared as hard and a set of clauses declared as soft. Tdwdiabjn partial MaxSAT
is to find an assignment such that all hard clauses are sdtisfide minimizing the
number of unsatisfied soft clauses. Again, a WBO formula wladirconstraints irnp;,
andy, are propositional clauses and all soft clauses have weitgha partial MaxSAT
instance. Finally, there are also variants of MaxSAT andigavlaxSAT with weights
greater than 1 which are respectively knowmasghtedVlaxSAT andpartial weighted
MaxSAT. Clearly, the resulting instances are also specdises of WBO instances.

Another well-known Boolean optimization formalism is PdetBoolean Optimiza-
tion (PBO), also known as 0-1 Integer Linear Programming (QP). The PBO prob-
lem can be defined as finding an assignment to the Boolearblesisuch that a set of
pseudo-Boolean constraints is satisfied and the value akadicost function is mini-
mized. Formally, it is possible to define PBO as follows:

minimize > ¢; z;
JEN

subjectto Y a;; l; > b;, 3)
JEN
lj S {‘Tj,.f'j},l'j S {07 1},aij,bi,cj S Ng

Itis also possible to encode a PBO instance into the WBO flismaThe constraint
set of the PBO instance can be directly mapped into the setrdfdonstraintg, of the
resulting WBO instance, while the objective function is meg using soft constraints.
For each terne;z; in the objective function, a new soft constraint > 1 is added to
v, With weightc;. The optimal solution to the resulting WBO instance willaatse an
optimal solution to the original PBO instance [19].

2.3 Algorithmic Solutions

For each of these Boolean formalisms (WBO, MaxSAT and PB@)et is a wide va-
riety of algorithmic solutions. One classical approacthiesise of a branch and bound
algorithm where anpper boundan the value of the objective function is updated when-
ever a better solution is found atalver boundn the value of the objective function
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Algorithm 1 Unsatisfiability-based Algorithm for MaxSAT and partial KBAT

FUMALIK ALG(p)

1 while true
2 do (st pc) < SAT(p)
3 if st= UNSAT
4 then Vz «—
5 foreachw € pc A soft(w)
6 do r is a new relaxation variable
7 wr — wU{r}
8  — p\{w} U {wr}
9 Vr — VR U {T}
10 if VR =10
11 then return UNSAT
12 else ¢ — @UCNF(}, .\ 7= 1)
13 > Additional clauses for Equalsl constraint are marked ad tlauses
14 else return Satisfiable assignment (o

are estimated considering a set of variable assignmenten®ver the lower bound
value is higher or equal to the upper bound, the search puoe@adn safely backtrack
since it is guaranteed that the current best solution camimbproved by extending the
current set of variable assignments. Several MaxSAT and RB&rithms follow this
approach using different lower bounding procedures [163.174, 18].

Another approach used in PBO solvers is to perform a lineancheon the value of
the objective function by iterating on the possible upparrzbvalues [7]. Whenever a
new solution to the problem constraints is found, the uppenk value is updated and
a new constraint is added such that all solutions with andrigalue are discarded. Sev-
eral state of the art PBO solvers use this approach suetedd o [26], minisat+[12],
among others [8, 1]. These solvers rely on the generalizatithe most effective tech-
niques already used in SAT solvers, such as Boolean Comsedpagation, conflict-
based learning and conflict-directed backtracking [18, 10]

There are other successful solvers that perform convessibrone Boolean for-
malism to another and subsequently use a specific solvereoneWw formalism. For
instance, PBO solverinisat+[12] converts all pseudo-Boolean constraints to propo-
sitional clauses and uses a SAT solver to find an assignmans#tisfies the prob-
lem constraintsSAT4J MAXSAT [8] converts MaxSAT instances into a PBO instance;
Toolbar [15] converts MaxSAT instances into a weighted constragtivork and uses
a Constraint Satisfaction Problem (CSP) solver, among atblgers [23, 24].

A recent approach initially proposed by Fu and Malik [13] kéaxSAT and partial
MaxSAT problems is based on the iterated use of a SAT solveteiotify unsatisfi-
able sub-formulas. Algorithm 1 presents the pseudo-codthéoriginal Fu and Ma-
lik's proposal. Consider thap is the Boolean working formula where constraints are
marked as either soft or hard. At each iteration, a SAT sak/eised and its output is
a pair(st, o) where st denotes the resulting status of the solver (sdisf@ unsat-
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Algorithm 2 Unsatisfiability-based Weighted Boolean Optimizatioroaignm

WBO(¢)
1 while true
2 do(stwc) — PB(p)
3 if st= UNSAT
4 then min. «— oo
5 for eachw € pc
6 do if soft(w) and cost(w) < min.
7 then min. «— cost(w)
8 Ve« 0
9 foreachw € pc A soft(w)
10 do r is a new relaxation variable and= > a;l; > b
11 Vr «— Vg U {7‘}
12 wr— (br+> a;l; >b)
13 cost(wgr) «— mine
14 if cost(w) > min.
15 thenp — p U {wr}
16 cost(w) « cost(w) — mine
17 else ¢ — p\{w} U{wr}
18 if VR =10
19 then return UNSAT
20 else ow — ow U{>, ¢y, 7 =1}
21 else return Satisfiable assignment o

isfiable) andpc contains the unsatisfiable sub-formula provided by the S#Wes if

v Is unsatisfiable. In this latter case, for each soft constiaipc-, a new relaxation
variable is added. Moreoveyp,is changed to encode that exactly one of the new relax-
ation variables can be assigned value 1 (Equalsl1 consimdiné 12) and the algorithm
continues to the next iteration. Otherwiseyifis satisfiable, the SAT solver was able
to find an assignment which is an optimal solution to the aaMaxSAT or partial
MaxSAT problem [13].

Different algorithms have been proposed for MaxSAT andiglaaxSAT based
on this approach. For instance, effective encodings foEtheals1 constraint have been
proposed with better results [21, 20] than the pairwise dimgpof the original algo-
rithm [13]. Moreover, different strategies have been usggrding the total number of
relaxation variables needed [20, 2].

Finally, the unsatisfiability-based approach has also eeanded for weighted
and partial weighted MaxSAT [2, 19] and generalized to WB@)] Hy using a pseudo-
Boolean solver instead of a SAT solver. Algorithm 2 presémespseudo-code for the
WBO solver and one can clearly notice that it follows the satnecture as Algorithm 1.
However, in this casep is now a WBO formula, i.e. constraints can be any type of
pseudo-Boolean constraints and a positive cost is asedath each soft constraint.
One difference from Algorithm 1 is in lines 4-7 wherén . denotes the cost associated
to the unsatisfiable sub-formula-, defined as the minimum cost of soft constraints
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in pc. Moreover, if the weight of a soft constraint g is larger thanmin.., then the

relaxation also differs since the original constraint iptikéut with a smaller weight as
shown in lines 9-17. Finally, notice that the Equalsl caistrin line 20 does not need
to be encoded into CNF, since a pseudo-Boolean solver isinsedd of a SAT solver.

3 Improving Unsatisfiability-based Algorithms

As shown previously, unsatisfiability-based algorithnesatle to tackle several Boolean
optimization problems. These algorithms work by makinghadir search on the lower
bounds of the optimal solution value. However, it has beemvstthat in some cases, it
is preferable to search on the upper bounds of the optimatisnol

In this section, we propose to translate Weighted Booleatintigation (WBO)
to the more specific Pseudo-Boolean Optimization (PBO) lpralbefore applying an
unsatisfiability-based algorithm. This approach has twmrgaals: (i) to apply simpli-
fication techniques that are used as preprocessing praoiuPBO and (i) to find a
tight upper bound on the optimal solution. Afterwards, thelglem is again translated
into WBO and solved using an unsatisfiability-based alparit

3.1 Pseudo-Boolean Optimization as Preprocessing

We start by reviewing the translation from WBO formulas imBO. Clearly, hard
constraintsp, can be directly mapped as constraints into the resulting RBQula.
However, for soft constraints ip,, additional variables are needed. Each soft constraint
of the form}_ a; I; > b, is mapped into a new PBO constraint+ > a;l; > b, where

r is a new relaxation variable. The objective function willtbeninimize the weighted
sum of the relaxation variables. The coefficient of variatitethe objective function is
the weight of the original constraint associated with Jalga:.

Example 2.Consider the following WBO formula:

on={x +x2+23>2, 2T1+To+x3>2, x1+x4>1}

s ={(r1+T2>1,2), (T1+T3>1,3), (T4>1,4)} 4)

The resulting PBO instance would be:

minimize 2ry + 3ro + 413
subjecttox; + zo + x3 > 2
21_71 +Q_72+I3 Z 2
T1+a4>1 (5)
ri+x+T22>1
7’2+Q_71 +Q_73 Z 1
rg+ T4 > 1

Notice that in this example variablg is not necessary in the resulting PBO instance.
Sincez, > 1is aunit clause in (4), one can remove this constraint artchplcir 4 with
weight 4 to the objective function, which would result in finiizing 211 + 3ro + 424.
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This is an important simplification, as many industrial arstes have unit clauses as
soft constraints [4].
After translating the WBO formula to PBO, two steps are agapli

1. Simplification techniques are used in the PBO formula;
2. The PBO formula is solved using tight limits.

In the first step we use a generalization of Hypre [5] for pseBdolean formulas.
As a result, literal equivalence detection and hyper-lyimasolution are used to elim-
inate variables from the formula. In fact, besides theskrtiegies, other preprocessing
procedures could have also been used, such as clause afdlezaribsumption, among
others [22].

After the first step, a search procedure is carried out usppggado-Boolean solver
and making a linear search on the upper bound of the optinhai®e. However, our
use of the pseudo-Boolean solver is limited to 10% of the fimé& given to solve the
formula. Notice that the goal is not to solve the problem gsifPBO solver, but rather
to quickly find a tight upper bound on the optimal solutionfstltat it prunes the search
space on the upper bound side.

Given a tight time limit, the pseudo-Boolean solver will fiotd the optimal solu-
tion in most cases. Therefore, if the solver is unable to @maptimality, the problem
instance is encoded back to WBO and solved using an unshilisfidoased algorithm.
Remember that the unsatisfiability-based algorithm wilkena search on the lower
bound of the optimal solutions, but in this case it will besaldy limited on the upper
bound side. We note that searching on both the upper andwlee liound on the value
of the objective function is not new [21], but to the best of kimowledge, the presented
approach is novel.

Although the objective is to find a tight upper bound, it is gibke that the PBO
solver proves the optimality of the found upper bound. Irt tase, the optimal solution
to the original problem has been found without having to ntakesearch on the lower
bound value. However, even if the solver is unable to proweraity, small clauses
learned by the pseudo-Boolean solver are kept in the WBO dtarras hard clauses,
further constraining the search space.

4 Using Constraint Branching

One of the main problems of using unsatisfiability-basedrtigms for WBO is that
after a given number of iterations, the number of relaxatiariables can be much
larger than the initial number of problem variables [21]isTmight occur even when
using a pseudo-Boolean solver where the encoding of thel&goanstraint to CNF is
not necessary. Furthermore, when solving a formula witleisd\Equals1 constraints,
setting a single variable to 0 or 1 may cause a dramatic difiez on the number of
propagations that results from this assignment.

Remember that in each iteration of Algorithm 2, a new Equatsistraint is added
(line 20), thus constraining that only one of the new relexatariables can be assigned
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value 1. Consider that, at any given iteratidmew relaxation variables are added. As
aresult, a new Equalsl constraint is added as follows:

dom=1 (6)

i=1

Notice that, by assigning one variablewith value 1, all other variables; # ;
(with 1 < 5 < k) must be assigned value 0. However;ifs assigned value 0, no prop-
agation occurs due to (6). As a result, assigning a valueytaméthese variables tends
to produce very different search trees, in particular fogdavalues oft. Therefore,
if the solver assigns one single variable that appears isetleenstraints early in the
search tree, that assignment might be too strong or too weadrdiing on the chosen
value. This problem has already been observed in (MixedgkttLinear Programming
problems [6] and one way to balance the search tree is to ustramt branching [25].

Constraint branching is a well-known technique used in i§igezases of (Mixed)
Integer Linear Programming in which the formula to be soligedplit into two sub-
problems such that new constraints are added to each brianobr case, we would
like to take advantage of the Equals1 constraints in ordassan large sets (hundreads
or even thousands) of variables in a single step. Theretoseproposed the use of a
branching step due on Equalsl constraints and integrat®iain unsatisfiability-based
algorithm.

By using constraint branching on an Equalsl constrainte&ts of assigning just
one variable, half of thé variables in (6) are assigned value 0. Without loss of gener-
ality, assume that variables to r;,/, are assigned value 0. This is done by adding the
following constraint to the working formula:

k/2

Wel - ZTi =0 (7)
i=1

This means that the variable to be assigned value 1 is ong£f; tor. If the formula

v U{we } is not satisfiable, then it is possible to infer that one ofwaeables fromr

to 5,/ must be assigned value 1, while all others frogm, ., to r, must be assigned
value 0. Hence, ifp U {w,1} is unsatisfiable, the following constraint can be safely
inferred:

Wea - Z ri =0 (8)

i=k/2+1

Algorithm 3 illustrates the use of constraint branchinghe tomputation of un-
satisfiable sub-formulas. This procedure can replace thdacahe pseudo-Boolean
solver in line 2 of Algorithm 2. In Algorithm 3 we start by setling alarge! Equalsl
constraint in order to maximize the number of variables tagsgned due to.;. No-
tice thatyp, denotes an unsatisfiable sub-formula fregnu {w.1}. If 1 does not
includew,, theny; is also an unsatisfiable sub-formula frasmand the procedure

1 An Equals1 constraint with than 100 relaxation variablesoissidered large in the context of
our solver.



Improving Unsatisfiability-based Algorithms for Booleaipi®nization 9

Algorithm 3 Using Constraint Branching in Unsatisfiability-based WB@aithm

COMPUTE.CORE((p)

1 > Compute an unsatisfiable sub-formula frgm
2 if (no large Equalsl constraint existir)

3 then (st o) — PB(p)

4 return (st ¢c)

5 else Select a large Equals1 constrainfrom ¢
6 k = sizgw)

7 wd:Zfﬁn:O

8 (st pc1) « COMPUTECOREp U {we1})
9 if (st=SATV we1 ¢ @c1)

0

1 then return (st, 1)

11 else wez : >0 4 pq i =0

12 (st pc2) « COMPUTE.CORE(p U {we2})
13 if (St: SAT V weo ¢ LpCQ)

14 then return (st ¢c2)

15 else return (st pc1 U pc2)

returns. The same applies¢e» when it does not include... Otherwise, if bothpq
andycs include the respective added constraints, then an unahbtsgub-formula for
@ispci Upes.

Finally, it should be noticed that, in practice, this tecjue is applied parsimo-
niously. It was observed that if we were to make constraianbhing onall large
Equalsl constraints, then the resulting unsatisfiabldeuhula would usually be much
larger than a single call to the pseudo-Boolean solver. dbaurs, since the search
space is explored differently in each sub-problem and thersen of both unsatisfiable
sub-formulas results in a larger unsatisfiable sub-forrfarlthe main problem. Hence,
before making a constraint branching step, the solver igdalith a limited number
of conflicts (approx. 30,000). Afterwards, if the solver teen unable to produce an
unsatisfiable sub-formula, a constraint branching steppsied.

5 Experimental Results

In order to evaluate the techniques proposed in the padeerso was modified to
include pseudo-Boolean optimization techniques desdribsection 3, as well as the
use of constraint branching, presented in section 4. Theveesion of solvefibo is
1.2, while version 1.0 is the one submitted to the last Max8¥dluation [4].

For the experimental evaluation, the industrial benchreatk of the partial MaxSAT
problem (a specific case of WBO) were selected. Besideswe also run other solvers
among the most effective for these benchmark sets, nams@lycore [21, 19],SAT4J
MaxSAT [8] and pm2 [2]. Experiments were run on a set of Intel Xeon 5160 servers
(3.0GHZ, 1333Mhz, 3GB) running Red Hat Enterprise Linux W&dr each instance,
the CPU time limit was 1800 seconds.
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Table 1. Solved Instances for Industrial Partial MaxSAT

|Benchmark set | #I[MSUncordSAT4J (MS] pm2wbol.qwbol.3
bep-fir 59 49 10 58 40 47
bep-hipp-yRal 176 139 1400 166 144 137
bcp-msp 148 121 95 93 26| 95
bcp-mtg 215 173 196 215 181 207
bcp-syn 74 32 21 39 34 33
CircuitTraceCompactign 4 0 4 4 0 4
HaplotypeAssembly 6 5 0 5 5 5
pbo-mqc 256 11 250 217 131 210
pbo-routing 15 15 13 15 15 15
PROTEININS 12 0 2 3 1 2
[Total [965 553 731 81§ 577 755

Table 1 shows the number of solved instances by each solvalt frenchmark sets.
The improvements from version 1.0 to version 1.2b$ are clear. The overall number
of solved instances is vastly improved as it now solves mustances thamSUncore
andsSAT4J MaxSAT. Nevertheless, version 1.2 @bo is not as effective as the current
version ofpm2. However,wbo has an additional overhead since it is a more general
solver able to tackle any WBO problem instance, whegaesis specific for partial
MaxSAT and it cannot handle formulas with weights. Furthempm2 needs to use
the encoding of cardinality constraints to CNF that depemdthe number of iterations,
but since the number of iterations for most instances is argel, the respective CNF
encoding should tend to produce manageable CNF formulaallfiwbo is built on
top ofminisat 2.0 [11], while pm2 is built on the more effectivBicoSAT solver [9].

The improvements ofibo are due to different reasons for the several benchmark
sets. For example, improvementsiep-£ ir are due to the use of constraint branching
technique, while irbcp-msp several instances are trivially solved by the use of a PBO
solver at preprocessing. Preprocessing techniques froth &B also extensively ap-
plied in theCircuitTraceCompaction where the initial formula can be significantly
reduced. Overall, the integration of all these technigntsan unsatisfiability-based al-
gorithm improve its performance and robustness for segetalof industrial instances.

Observe that it was choosen not to present results from attastrial categories
from the MaxSAT evaluation for two main reasons: (i) versiof of thewbo solver
was already able to solve all instances from the partial teidy MaxSAT problem and
(ii) the proposed techniques do not apply on the industriak AT instances without
hard constraints for whickbo was already one of the best performing solvers [4].
Note that PBO preprocessing techniques can only be applied fiteral implications
can be extracted from the formula and that does not occuhfiset benchmark sets.
Furthermore, most of industrial MaxSAT instances are gblaiter finding a single
unsatisfiable sub-formula. Hence, there are not enougétibveis to apply constraint
branching and overall results from version 1.0 and 1.2 fdvesasbo would be the
same for these sets of instances.
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6 Conclusions

This paper proposes to extend an unsatisfiability-baseudlitiign for Weighted Boolean
Optimization, by first encoding the problem into pseudo-Ban Optimization such
that powerful inference preprocessing techniques cands &sirthermore, the pseudo-
Boolean solver can also be used to learn hard constraintsieaddwith problem in-
stances that are trivially solved using a linear search eruffper bound value of the
solution. Moreover, the paper also shows how to selecti&pply constraint branching
in the unsatisfiability-based framework.

Preliminary experimental results show that these tectasaugnificantly improve
the performance of our unsatisfiability-based algorithmemisolving industrial in-
stances of the partial MaxSAT problem (a special case of kie@jBoolean Optimiza-
tion). As aresult, our solver is now competitive with dedézhalgorithms for the partial
MaxSAT problem.

The success obtained on solving these problem instanchsthvatintegration of
techniques from Pseudo-Boolean Optimization and comstoaanching, first proposed
for (Mixed) Integer Linear Programming, provide a stronigsiius for further integra-
tion of several Boolean optimization techniques into amquaiframework.
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