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Abstract

The first evaluation of pseudo-Boolean solvers was organized as a subtrack of the SAT
2005 competition. The first goal of this event is to take a snapshot of the current state
of the art in the field of pseudo-Boolean constraints. The second goal is to stimulate the
research efforts in this field and contribute to the creation of better technologies. This
paper details the organization and the results of this event.
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1. Introduction

The SAT competition[22] aims at promoting interesting techniques for the propositional
satisfiability problem (SAT) as well as identifying challenging benchmarks. This competition
organized since 2002 [34] by Daniel Le Berre and Laurent Simon has been very fruitful to
the SAT community and has contributed to the wide use of SAT techniques in a number
of applications. For its fourth edition, the SAT 2005 competition has introduced a few
subtracks, one of them being devoted to pseudo-Boolean solvers.

This first evaluation of pseudo-Boolean solvers (PB’05)[25] inherits the same goals as the
SAT competition. It aims at providing the community with a snapshot of the current state of
the art in the field of pseudo-Boolean solvers through a comparison of their performances.
The goal is both to identify successful techniques as well as encouraging researchers to
develop new techniques. This first edition fulfills this desire since several well-known pseudo-
Boolean solvers entered the evaluation as well as new solvers based on significantly different
techniques.

Another goal of the evaluation is to identify a set of challenging benchmarks so as to
stimulate the improvement of solvers. This first evaluation brought the opportunity to
gather existing benchmarks under a common format as well as providing the community
with a set of new instances.

This first event is called an evaluation rather than a competition because our goal is less
to identify a possible best solver than to set up the conditions for assessing the quality of
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the different techniques. Besides, since pseudo-Boolean solvers often solve an optimization
problem, comparing two solvers is a significantly more difficult task than for the SAT
competition. Therefore, our ambition was mainly to gather some experience in order to
provide a better analysis of results the next time and try to setup the grounds for the
evolution of the current evaluation into a competition.

We consider that the first evaluation was rather successful since 8 different solvers were
submitted (with a number of different versions) by 16 authors and co-authors. New bench-
marks were also submitted by 5 different contributers. This paper explains how the eval-
uation was organized and tries to identify what should be improved. It also presents the
results of the different solvers.

Section 2 provides the reader with a definition of the pseudo-Boolean problem and
introduces the key concepts to understand the sequel of the paper. The following section
describes the input format that was adopted for the evaluation and section 4 addresses
the issue of big integers that must be dealt by pseudo-Boolean solvers but not by SAT
solvers. Section 5 presents the benchmarks used in the evaluation, as well as a proposed
categorization of those benchmarks and section 6 gives a short description of the solvers
that where submitted. The next sections present the experimental conditions used to run
solvers and the experimental process used. Section 9 provides the reader with the final
results of the evaluation. Finally, some perspective for the next evaluation are drawn and
final conclusions are presented in section 11.

2. Definitions

In a propositional formula, a literal lj denotes either a variable xj or its complement x̄j . If
a literal lj = xj and xj is assigned value 1 or lj = x̄j and xj is assigned value 0, then the
literal is said to be true. Otherwise, the literal is said to be false.

Formally, an instance of a Linear Pseudo-Boolean Optimization (PBO) problem can be
defined as follows:

minimize
n∑

j=1
cjxj

subject to
n∑

j=1
aijlj ≥ bi,

xj ∈ {0, 1}, aij , bi ∈
+
0 , i ∈ {1, . . . , m}

(1)

where cj is a non-negative integer cost associated with variable xj , 1 ≤ j ≤ n and aij denote
the coefficients of the literals lj in the set of m linear constraints. All pseudo-Boolean
formulations can be rewritten such that all coefficients aij and right-hand side bi be non-
negative [8]. Moreover, equality constraints or other types of inequality constraints (such
as greater than, smaller than or smaller than or equal to), can also be transformed in linear
time into greater than or equal to constraints as defined in (1).

In a given constraint, if all aij coefficients have the same value k, then it is called a
cardinality constraint, since it only requires that dbi/ke literals be true. A pseudo-Boolean
constraint where any literal set to true is enough to satisfy the constraint, can be interpreted
as a propositional clause. This occurs when the value of all aij coefficients are greater than
or equal to bi. Otherwise, if a constraint is neither a cardinality constraint or a propositional
clause, then it is classified as a general pseudo-Boolean constraint.
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If every constraint in a PBO instance P can be interpreted as a propositional clause
then P is an instance of the Binate Covering (BCP) problem. If all constraints in P can
be interpreted as propositional clauses with only positive literals, then P is an instance of
the Unate Covering (UCP) problem. When all coefficients cj of the cost function in P are
equal to 0 (no cost function is present), then we say that P is an instance of the Pseudo-
Boolean Solving (PBS) problem. If all constraints of a PBS instance can be interpreted as
propositional clauses, then it is an instance of the Propositional Satisfiability (SAT) problem.

Notice that a linear pseudo-Boolean optimization problem can also be viewed as a special
case of integer linear programming (ILP) problem. The ILP formulation for the constraints
can be obtained if we replace literals x̄j by 1 − xj .

3. Input Format

For this first evaluation, an input format that would be read by each solver had to be
defined. This common format should have the following properties

• be already used by some existing solver

• be easily parsable by a solver

• be easily read by a human being

• have no ambiguity in its definition

In our opinion, the last three points are the reason of the success of the DIMACS
format for CNF formulae used in SAT solvers. Among the different formats of pseudo-
Boolean problems that were already available on the web, the OPB format[7] was certainly
the one closest to our objectives. Unfortunately, it was soon discovered that there were a
few ambiguities in its definition. Therefore, it was decided to use a strict variant of the OPB
format to avoid any ambiguity and ease the parsing of files. This format can be described
by a simple BNF grammar outlined below:

<unsigned_integer>::= <digit> | <digit><unsigned_integer>

<integer>::= <unsigned_integer> | "+" <unsigned_integer> | "-" <unsigned_integer>

<identifier>::= <letter_or_underscore>[<letters_or_digits_or_underscores>]

<relational_operator>::= ">=" | "="

<product>::= <integer> "*" <identifier> " "

<linearfunction>::= <product> | <product><linearfunction>

<constraint>::= <linearfunction> <relational_operator> <integer> ";"

<objective>::= "min:" <linearfunction> ";"

<comment>::= "*" <any_sequence_of_characters_other_than_EOL> <EOL>

<formula>::= <sequence_of_comments>

<optional_objective>

<sequence_of_comments_or_constraints>

The key points of our proposed format is that the objective function (if any) must be
minimized, constraints must be ’greater than or equal to’ or equality constraints, variables
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names can be any legal identifier and numbers can be of any length. Another point is that
it is easy to parse. To read the terms of a constraint, one only has to read in a loop an
integer, then a star, then the variable name.

Some other points about this format are detailed below:

• A line starting with a ’*’ is a comment and can be ignored. Comment lines are allowed
anywhere in the file.

• As a hint to perform memory allocation, the first line of the file will be a comment
containing the word ”#variable=” followed by a space and the number of variables
in the file, then a space and the word ”#constraint=” followed by a space and the
number of constraints in the file. The space between the word and the number is
mandatory to make parsing trivial. This information is only provided as a commodity
for solvers which include a very limited parser. High quality provers are encouraged to
ignore this information as it may not be accurate outside the evaluation environment
(e.g. when a user creates a file by hand).

• Each non comment line must end with a semicolon ’;’

• The first non comment line may be an objective function to minimize. It starts with
the word ”min:” followed by the linear function to minimize and terminated by a
semicolon. No other objective function can be found after this first non comment line.

• A constraint is written on a single line and is terminated by a semicolon.

• An identifier represents the name of a Boolean variable (atom).

• Each identifier must be followed by a space (so that it can be read by a function which
reads a word from the file)

• The negation of an atom A will not appear in the file (it will be translated to 1-A)

• An integer may contain an arbitrary number of digits. There must be no space between
the sign of an integer and its digits.

A tiny example is given below:

* #variable= 5 #constraint= 3

*

* comments

*

min: 1*x2 -1*x3 ;

1*x1 +4*x2 -2*x5 >= 2;

-1 * x1 +4 * x2 -2 * x5 >= +3;

12345678901234567890*x4 +4*alpha3 >= 10;

To encourage the adoption of this strict variant of the OPB format, parsers for a few
languages (C, C++ and Java) were made available.
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To avoid any problem with the format of the benchmarks files, each instance was first
normalized to adhere to this stricter format. Files which were obtained in other formats
were systematically converted.

However, a few problems can still be attributed to this stricter format. Some solvers had
problems with very long lines or with long variable identifiers, while other solvers wrongly
assumed that a variable was called “x” followed by a number. Another problem which is
not intrinsic to the format is the size of the integers. This is detailed in the next section.

4. The Big Integer issue

One problem that may occur when solving a linear pseudo-Boolean formula is integer over-
flow. Usually, programs use integers of size corresponding to the processor registers. On the
usual 32 bits platforms, this means that the biggest positive integer is only 2,147,483,647
when using the int type (C/C++/Java). However, this limit can be easily reached. Using
64 bits integers gives a more comfortable limit but does not really solve the problem. In
fact, it is easy and natural to get constraints with big integers. For example, the constraint
A = B + C where A, B, C are integers may be encoded as follows:

∑

i

2i.Ai =
∑

i

2i.Bi +
∑

i

2i.Ci

As soon as the size of A, B, C equals the size of the integers used by the solver, we get
an integer overflow problem.

As far as pseudo-Boolean solvers are concerned, integer overflow can occur either during
the input of the formula or during the resolution of the formula and will have different
effects on the solver capabilities:

• during the input of the formula

If a solver does not use big enough integers, it will fail to read some input files with
large integers, or it will truncate some coefficients and give a random answer. This is
a minor problem provided that this failure is either detected of at least documented
in the solver manual.

• during the resolution of the formula

This problem is more serious because it will break the correctness of the prover in
ways that will be subtle to identify. Suppose that each constraint in the formula
contains only small numbers (i.e. such that their sum fits into an integer). If the
solver computes new constraints or simply new weights, it may from time to time
overflow the limit of the integer it uses internally and give a wrong answer.

Such integer overflows were a concern for the evaluation because we expected to get
wrong answers on some benchmarks triggering an integer overflow. This concern was justi-
fied since some solvers do provide wrong answers because of this issue.

On the other hand, integer overflows are easy to fix and are related to the implementation
and not to the algorithm used by the solver. The use of a multiple precision integer library
is enough to avoid this issue. However, numerical computations will be become slower with
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the use of such library. Nevertheless, a sound solver is always preferable to a faster but
unsound solver.

Our policy for this evaluation was the following

• to specify a format which does not hide this problem by specifying that integers may
be of arbitrary size

• most of the benchmarks would use small integers to avoid integer overflows as much
as possible

• any solver (subject or not to integer overflow) could be submitted

• to gather information about the integers internally used by each solver so as to explain
possible failures

5. Set of benchmarks

During the build up to this first evaluation, an effort was made to gather the largest number
of instances with pseudo-Boolean constraints. We were able to find several instances avail-
able on the web and others were submitted to the organizers. Additionally, a large number
of integer linear programming problems in MPS format were converted to pseudo-Boolean
optimization problems. In this section we present the benchmark set used in the evaluation.
Moreover, we also describe the division of the benchmark set in several categories. Finally,
we present the conversion process from MPS instances to pseudo-Boolean formulae.

5.1 Classification of Benchmarks

It is well-known that solvers using different strategies or techniques behave better than
others depending on some characteristics of the benchmark instance. For example, pure
SAT-based solvers are better in dealing with hard constrained instances while others are
better dealing with information from the cost function [24]. Hence, we find it necessary to
make a classification of the benchmarks in categories and analyze the results considering
those sets of instances.

The two main sets of instances to consider are the optimization and the non-optimization
instances. While in the first set the solver must find the optimum value for the cost func-
tion, in the latter it is sufficient to find a complete assignment that satisfies all problem
constraints. However, there are several optimization instances that are unsatisfiable.

We should also consider that in some instances, variable coefficients are big integers
and some solvers do not comply with it. Therefore, we divided the optimization set of
instances into three categories (small, medium and big integers) depending on the value of
the coefficients in the instance.

• Small Integers (OPTSMALLINT) : For all constraints, the sum of the coefficients
is smaller than 220 (20 bits). Benchmarks in this category should not cause any integer
overflow.

• Medium Integers (OPTMEDINT): For all constraints, no single coefficient is
bigger than 230 (30 bits). However, there is at least one constraint with a sum of
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Table 1. Benchmark Categories

Categories #benchs Cl Crd PB Cl&Crd Cl&PB Crd&PB All

SAT/UNSAT 113 0 0 0 57 50 0 6

OPTSMALLINT 386 184 5 1 60 42 33 61

OPTMEDINT 191 0 28 57 5 1 61 39

OPTBIGINT 482 0 0 226 2 12 160 82

Total 1172 184 33 284 124 105 254 188

coefficients greater than 220 (20 bits). Benchmarks in this category do not contain
integers wider that the usual int variables. Solvers which do not learn constraints are
probably safe but solver which learn new constraints may be faced with some integer
overflows.

• Big Integers (OPTBIGINT): There is at least one coefficient bigger than 230 (30
bits). Benchmarks in this category will probably cause integer overflows.

It was observed that all non-optimization instances submitted to the evaluation have small
integers. Hence, no distinction was made regarding the value of the coefficients in the
non-optimization instances and one single category was created (SAT/UNSAT). Table 1
presents the number of benchmarks for each category. Also for each category, we present
the number of instances considering the type of constraints. Instances with only a specific
type of constraints appear first: propositional clauses (Cl), cardinality constraints (Crd)
and general pseudo-Boolean constraints (PB). The following columns provide the number
of instances that combine two types of constraints and the last column indicates the number
of instances that contain all three types of constraints.

In Table 2 we present a short description of the several benchmark sets used in the
evaluation. Observe that instances modelling different problem domains were used and in
future evaluations, instances can also be categorized according to their domain of origin.
However, for this evaluation, the number of instances from specific domains was considered
to be too small. Hence, we chose to present a simpler categorization.

Figure 1 represents the distribution of the number of clauses, cardinality and pseudo-
Boolean constraints for each instance. Each point of this 3D plot represents an instance file:
the X coordinate is the number of clauses, the Y coordinate is the number of cardinality
constraints and the Z coordinate is the number of pseudo-Boolean constraints contained in
the file. The plot on figure 1 is in fact a subset of the global plot: only benchmarks where
each coordinates are less than 1000 are displayed here. This zoom is representative of the
global structure and shows interesting details. A 3D plot is generally poorly transcripted by
a 2D projection and figure 1 is not an exception. However, the structure of the distribution
which is clearly visible by interactively rotating the 3D graph is also perceptible on this
snapshot. It appears clearly that our benchmark set is not uniformly distributed over the
space of the number of clauses, cardinality and pseudo-Boolean constraints. We mainly
have benchmarks with a majority of clauses or cardinality or pseudo-Boolean constraints
(which appear along the axis on the plot). Some other benchmarks mostly contain only two
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Table 2. Benchmark Descriptions

Category #benchs Short Problem Description

SAT/UNSAT 50 UCLID Benchmarks [20]

SAT/UNSAT 6 Progressive Party Problem [39]

SAT/UNSAT 57 FPGA switch-boxes [6]

OPTSMALLINT 40 Generated [40]

OPTSMALLINT 5 Basketball Scheduling Problem [39]

OPTSMALLINT 12 Radar Allocation Problem [39]

OPTSMALLINT 20 Converted from MPS to OPB format (submitted)

OPTSMALLINT 15 FPGA Routing [4]

OPTSMALLINT 17 Logic Synthesis [41]

OPTSMALLINT 156 Minimum-size Prime Implicant [32] DIMACS bench-
marks [18]

OPTSMALLINT 10 Synthesis PTL-CMOS Circuits [43]

OPTSMALLINT 8 Travelling Tournament Problem [35]

OPTSMALLINT 7 Unknown Problem (submitted)

All Optimization Categories 181 Converted MIPLIB [1] MPS instances with a = 13, b = 7
(section 5.2)

All Optimization Categories 181 Converted MIPLIB [1] MPS instances with a = 20, b =
10 (section 5.2)

All Optimization Categories 184 Converted NetLib [2] MPS instances with a = 13, b = 7
(section 5.2)

All Optimization Categories 184 Converted NetLib [2] MPS instances with a = 20, b = 10
(section 5.2)

All Optimization Categories 223 Converted other [9, 27] MPS instances with a = 13, b = 7
(section 5.2)

All Optimization Categories 222 Converted other [9, 27] MPS instances with a = 20, b =
10 (section 5.2)
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Figure 1. Distribution of the number of clauses, cardinality and pseudo-Boolean constraints in
the benchmarks (zoomed)

Majority of clauses

Category #instances

SAT/UNSAT 58
OPTSMALLINT 249

Total 307

Minority of clauses

Category #instances

OPTSMALLINT 78
OPTMEDINT 161
OPTBIGINT 435

Total 674

Figure 2. Distribution of benchmarks with a majority/minority of clauses

kinds of constraints (with a fixed ratio). Very few benchmarks have all kinds of constraints
with a balanced distribution.

This distribution suggests that an extra effort should be made next year to obtain a
wider distribution of the benchmarks. Beyond the submission of new benchmarks, one
possible solution would be to randomly modify some constraints in a benchmark file to
generate a new file with another distribution.

Given the observed distribution of benchmarks, it might be interesting to consider an-
other classification of benchmarks based on the ratio of the different kinds of constraints

Majority of cardinality constraints

Category #instances

OPTSMALLINT 28
OPTMEDINT 45
OPTBIGINT 35

Total 108

Minority of cardinality constraints

Category #instances

SAT/UNSAT 68
OPTSMALLINT 265
OPTMEDINT 70
OPTBIGINT 279

Total 682

Figure 3. Distribution of benchmarks with a majority/minority of cardinality constraints
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Majority of pseudo-Boolean constraints

Category #instances

OPTSMALLINT 7
OPTMEDINT 68
OPTBIGINT 267

Total 342

Minority of pseudo-Boolean constraints

Category #instances

SAT/UNSAT 103
OPTSMALLINT 322
OPTMEDINT 56
OPTBIGINT 47

Total 528

Figure 4. Distribution of benchmarks with a majority/minority of pseudo-Boolean constraints

in the instance. We choose arbitrarily to define that there is a majority of a given kind of
constraint when its represents more than 90% of all the constraints. Conversely, we define
that there is a minority of a given kind of constraint when its represents less than 10% of
all the constraints.

Obviously, this classification is neither exhaustive nor mutually exclusive. Some in-
stances belong to none of these categories and instances with a majority of clauses neces-
sarily belong to the set of instances with a minority of cardinality or pseudo-Boolean con-
straints. It is clearly noticeable from tables 2,3 and 4 that most instances with a majority
of pseudo-Boolean constraints belong to the OPTBIGINT category (which some solvers did
not support) and most instances with a majority of clauses belong to the OPTSMALLINT
category.

5.2 The MPS instances

A number of integer linear programming problems are available on the web in MPS format.
These problems did not seem too hard to translate to pseudo-Boolean constraints and were
potentially an interesting source of industrial problems. Besides, we could notice that some
of the pseudo-Boolean instances which were available at that time were already a translation
from problems expressed in MPS format. As these problems could substantially increase
the number of benchmarks used for the evaluation, we decided to translate these problems
to pseudo-Boolean constraints.

The MPS input format was originally introduced by IBM to express linear and integer
programs in a standard way. It is an old format, with fixed column width. Another
peculiarity is that constraints are described in columns rather than lines, which means that
it lists for each variable the constraints in which that variable appears instead of listing for
each constraint the variables which appear in the constraint.

Variables and weights in the MPS format are real numbers. Variables can be constrained
to be integers or even Booleans (0/1). A variable can be free (without bounds) or bounded
by a upper or lower limit (or both). Constraints include the usual equality and inequality
constraints.

The main problem for converting a problem in MPS format is that variables can have real
values. To translate this to pseudo-Boolean constraints, we decompose a variable X into its
binary representation as a fixed-point number: X =

∑b
i=−a 2i.Xi In this decomposition, a

represents the number of digits after the binary point and b represents the number of digits
before the binary point. These two numbers are an important parameter of the translation.
Greater numbers will provide more accuracy but will generate big integers in the translated
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Table 3. The submitted solvers and their authors

solver authors

bsolo Vasco Manquinho and João Marques-Silva

galena Donald Chai and Andreas Kuehlmann

minisat+ Niklas Eén and Niklas Sörensson

PBS4 Fadi Aloul and Bashar Al-Rawi

pb2sat+zchaff Olivier Bailleux, Yacine Boufkhad, Olivier Roussel

Pueblo Hossein Sheini and Karem Sakallah

sat4jpseudo Daniel Le Berre, Mederic Baron, Anne Parrain, Olivier Roussel

vallst 0.9.258 Daniel Vallstrom

pseudo-Boolean constraints. Small a and b will generate smaller weights in the pseudo-
Boolean constraint but will not be able to represent large values of X and will have a poor
precision as well. Faced with this choice, it was decided to use two encodings: one with
a = 10 and b = 20 and another one with a = 7 and b = 13. The name of the translated
formulae indicates which value where used: they all follow the pattern mps-v2-b-a. The v2
simply indicates that this is the second version of the translator. Files named mps-v2-20-10-
* therefore use real variables encoded on a total of 30 bits, while files named mps-v2-13-7-*
use real variables encoded on a total of 20 bits.

Bounds on variables are used (when possible) to limit the size of their encoding. When
a variable X is bound by L ≤ X ≤ U , it is rewritten as X = L + X ′ where X ′ will be a
positive variable that will be less or equal to U − L.

Once the encoding of each variable is chosen, each linear constraint is multiplied by the
smallest coefficient so that all its weights become integer numbers. Clearly, this multipli-
cation can create huge numbers. The biggest coefficient that was generated in an instance
has 110 bits. These big integers are partly due to the number of digits of the coefficients in
the original MPS file. It is questionable whether the number of digits after the decimal dot
in the MPS files is really meaningful or is only an artefact caused by some output format.

384 instances mps-v2-20-10* and 385 instance mps-v2-13-7* where generated. Compared
to the 403 instances which were submitted, the MPS instances are clearly over represented.
Besides, some submitted instances are already a translation of some MPS files. If this was
not considered as a major problem in this first evaluation, it is highly desirable to obtain a
wider set of benchmarks for the next evaluation.

6. Description of the solvers

Eight solvers were submitted to the evaluation: bsolo [36, 24], galena [10], minisat+ [30, 13],
PBS4 [5], pb2sat+zchaff [31, 29], Pueblo [15, 33], sat4jpseudo [21] and vallst [37, 38]. Table 3
presents the authors of each solvers. Table 4 reports their ability to deal with instances
from the different categories (as defined in section 5.1). All solvers were presented to the
evaluation as being able to solve PBS instances as well as PBO instances with small integers.
However, only half the solvers have the ability to deal with big integers. None of the solvers
uses local search.
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Table 4. Ability of each solver to deal with different types of instances

solver SAT OPTSMALLINT OPTMEDINT OPTBIGINT

vallst 0.9.258 X X

galena X X X

PBS4 X X X

Pueblo X X X

bsolo X X X X

minisat+ X X X X

pb2sat+zchaff X X X X

sat4jpseudo X X X X

Most of the solvers are generalizations of SAT solvers adapted to deal with pseudo-
Boolean constraints. In fact, minisat+ and pb2sat+zchaff map the original pseudo-Boolean
constraints into propositional clauses and use pure SAT solvers (minisat [13] and zchaff [42],
respectively) to solve problem instances. Although these solvers were developed indepen-
dently, they appear to share one common translation scheme to SAT based on some kind of
BDD (Binary Decision Diagram). While pb2sat+zchaff uses only this encoding and often
exceeds the memory limits, minisat+ is more elaborated and implements two alternative
encodings (based on sorting networks and binary adders respectively) which are used when
the BDD encoding is too large.

All other solvers manipulate directly pseudo-Boolean constraints and also use SAT-
based techniques, namely conflict analysis and constraint learning. However, while vallst,
PBS4 and bsolo use clause learning, galena [10] learns cardinality constraints, Pueblo [33]
has a mixed learning scheme and learns both clauses and pseudo-Boolean constraints and
sat4jpseudo learns pseudo-Boolean constraints.

Besides being SAT-based, another common feature is that all solvers in the evaluation
also use lazy data structures to manipulate propositional clauses. However, only Pueblo
and sat4jpseudo use lazy data structures to manipulate other types of constraints.

From an implementation point of view, Pueblo, sat4jpseudo and obviously minisat+ are
all based on the minisat framework.

The approach used by most solvers for solving PBO is the linear search on the value of
the cost function, first proposed in [8]. In fact, the only two exceptions in using this method
are pb2sat+zchaff and bsolo. While pb2sat+zchaff uses binary search on the value of the
cost function, bsolo is a SAT-based branch and bound algorithm that uses lower bound
estimation procedures, namely the maximum independent set of constraints [12] and linear
programming relaxations (LPR) [23], to bound the search. Moreover, when using LPR, it
also generates cutting planes [14] from the information provided by the LPR solution.

7. Experimental Conditions

7.1 Available resources

The solvers were run on a cluster of 32 computers kindly provided by Michal Kouril and
the LINC Lab, Department of ECECS, University of Cincinnati. Each node of this cluster
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is a bi processor Pentium III cadenced at 450MHz with 1GB RAM. The operating system
was a Red Hat Enterprise Linux WS release 3 running linux kernel version 2.6.8.1 (SMP).

Each solver was allowed to run for 1200 seconds of CPU time and could use up to 900
MB of RAM.

7.2 Output requirements

Solvers were required to give their answer by two means: a message displayed on the
standard output and a specific exit code for each possible answer. A solver was also allowed
to output any data as long as each line started by “c ” to define a comment line.

Solvers were asked to give one out of four possible answers:

• “s SATISFIABLE” with exit code 10: the solver has found a solution but either there
is no function to optimize or it cannot prove that this solution gives the least value of
the objective function.

• “s OPTIMUM FOUND” with exit code 20: the solver has found a model and it can
prove that no other solution will give a value of the objective function strictly less
than the one obtained with this model. Let v be the value of the objective obtained
with the valuation output by the solver. Giving this result is a commitment that the
formula extended with the constraint objective < v is unsatisfiable.

• “s UNSATISFIABLE” with exit code 30: the solver can prove that the formula has
no solution.

• “s UNKNOWN” with exit code 0: the solver is unable to tell anything about the
formula

Invalid output was considered as an UNKNOWN answer. Whenever the solver answered
“OPTIMUM FOUND” or “SATISFIABLE”, it was required to output the best solution it
had found on a line starting with “v ” (as Value line). This solution had to define the value
of each variable to avoid any ambiguity on the value of the objective function.

8. Experimentations

There has been two campaigns of experimentations during the evaluation. The first phase
which took place from April to June 2005 allowed us to run several versions of the solvers and
to detect the first bugs in the solvers implementation. Unfortunately, the bug correctives
that were submitted by the authors still had some bugs. Therefore, the results that were
presented to the SAT conference in June 2005 were not completely satisfying since every
solver had at least a problem (but some of these problems were simple mistakes in the
output of the solver).

To obtain more reliable results, it was decided to run the solvers one last time in Septem-
ber 2005. Authors were allowed to fix the bugs as well as to improve their solver. During
this second phase, only one version of the solvers was allowed to run.

There were a few differences between the two phases. A new version of the program
runsolver which controls the execution of a solver was used during the second phase. This
second version fixed some problems encountered during the first phase. Unfortunately, as
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will be seen in the next section, it introduces some time penalty which was not anticipated.
Fortunately, as the main criterion to evaluate the solvers was not time but the number of
instances it was able to solve in a fixed period of time, this had insignificant influence (if
any) on the results. Another difference is that the solvers exit code was mostly ignored in
the second phase and only the message output by the solver was considered (to avoid the
strange case where a solver message output and its exit code did not match). At last, the
classification of the answers of the solvers was slightly changed.

Each time a solver was run, some information was recorded about the host, the solver
and the instance (including checksums). The solver output messages were also recorded (up
to a global limit of 1 MB) as well as the information collected by the runsolver program.
All these form the execution trace of the solver and is available on the evaluation web site.

Each solution provided by a solver was verified by an independent program which
checked that each constraint was satisfied and computed the value of the objective function
given by this solution

8.1 The runsolver program

Each solver was run under the control of another program called runsolver. The task of the
runsolver program is to ensure that the solver will not take too much resources (especially
time and memory) as well as gathering some data about the running solver (CPU time, exit
code,...).

Two different versions of the runsolver program were used during the evaluation: one
during the first phase, and a much improved version during the second phase of the evalu-
ation.

The first version of runsolver starts by enforcing some resource limits, then launches
the solver with its arguments and waits until the solver completes its execution. Every ten
seconds, it fetches some data about the system (average load) as well as informations on
the solver process such as the current memory consumption and CPU time elapsed so far
(obtained from the /proc/*/stat* files). On completion of the solver process, runsolver
prints the child exit code, as well as the CPU time used by the process. runsolver enforces
limits on the CPU time, the memory usage and the stack size through the setrlimit

system call. When a solver exceeds these limits, it is killed by the system (through signal
SIGKILL) and is not given any chance to output a partial result. To give solvers a chance
to output a partial result when the time limit is exceeded, the runsolver program sends
a SIGTERM signal to the solver before it reaches the system limit. Afterwards, the solver
has two seconds to output the best result it got so far and after this delay, it is killed by
runsolver.

All in all, the first version of runsolver is merely an integration of the ulimit and time

system commands with just a few improvements. This version has mainly two weaknesses:
it does not support correctly multi-processes solvers and cannot send a SIGTERM when
the solver exceeds the memory limit.

The problem with multi-processes solvers is that a child process CPU time is reported
to its parent process (through the wait() system call) only when the child process exits.
This means that the first version of runsolver which only watched the parent process CPU
time could not notice that the child exceeded the time limit until the child exited (when it
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was actually too late). This is what happens when a shell script is used to run the solver
since there are 2 processes. For this reason, we observed that a solver which used a shell
script to control the search actually used up to 4800 seconds (instead of the normal limit
of 1200 seconds).

Another point is that if the first version of runsolver could easily anticipate the system
CPU time limit (remember it gathered data about the solver every ten seconds), it was
absolutely unable to anticipate a memory exhaustion because the program may request
some memory from the system at any time and at any rate. The only way to anticipate
the violation of the memory limit (and send a SIGTERM to the solver) is to intercept the
system calls. This is what the second version of runsolver does. This was inspired by two
programs: strace [3] which prints the system calls performed by a program and s4g [28]
which is a generic sandbox for programs run on a grid.

The second version of runsolver intercepts the system calls by running the solver in a
trace mode. In this mode, the solver will be suspended by the kernel each time it enters or
exits a system call and the runsolver process will be notified by a SIGTRAP signal. The
controlling process can examine the system call and intercept its parameters and result.
One big advantage is that this technique does not require any privilege since it is accessible
to any process through the ptrace() call. Another advantage is that it works on any kind
of binary (statically or dynamically linked) without any modification.

The system calls of interest in our case are clone and exit to track the creation and
deletion of processes or threads, and the brk, mmap, munmap, mremap system calls to track
memory allocation. We also intercept open, execve and the sockets system calls to check
if the solver respects the evaluation policy. In this version, we only log the file and network
accesses but the next version of runsolver will actively control these system calls and stop
the process as in s4g as soon as the solver violates the policy (such as trying to connect to
a remote host).

The runsolver program easily maintains a list of the processes created by the solver
and adds the CPU time of all its child processes to decide if the solver must be stopped by
a SIGTERM. Tracking the memory usage of the solver is a bit more difficult because there are
a number of system calls to allocate memory with subtle interactions. The current version
of the program maintains a upper bound of the memory used by the solver and its children
and, when this bound exceeds the memory limit, it fetches the actual memory usage of the
processes in the /proc/*/stat* files. When the memory used by the process and all its
children is over the imposed limit, it sends a SIGTERM to the solver and all its children.

Stopping a solver when it uses too much memory is more difficult than when the time
limit is exceeded. In fact, we impose two limits: a soft limit which sends a SIGTERM to the
solver and a hard limit which will immediately kill the solver. The hard limit was set as
the soft limit plus 50 MB. For these reasons, a solver should not allocate too much memory
in a single call to avoid bumping into the hard limit immediately. Besides, when it is sent
a SIGTERM, a solver should be very careful about its memory usage to avoid reaching the
hard limit while it outputs its results (which might be difficult in some languages such as
Java).

Intercepting system calls has necessarily a side effect: it slows down the solver. How-
ever, the solver is only stopped when it performs system calls and, as it should not happen
that often in a pseudo-Boolean or SAT solver, we could expect only slightly different perfor-
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Table 5. Difference of time measured by the time command and the runsolver program with
or without interception of system calls (all times in seconds). Host has a single hyperthreaded
Pentium 4 at 2.8GHz with 1GB RAM and kernel 2.4.20smp (RedHat 9)

solver time runsolver v1 runsolver v2

user system total user system total user system total

Pueblo 7.277 0.24 7.517 7.257 0.16 7.417 8.982 3.12 12.102

vallst 0.9.258 16.85 1.205 18.055 16.825 1.189 18.014 25.92 18.09 44.01

sat4jpseudo 3.73 0.1 3.83 3.8 0.1 3.9 6.5 0.17 6.67
9.165 0.245 9.41 10.525 0.4 10.925 12.3 0.3 12.6

mances. Table 5 compares the time measured by the time command with the time measured
by the two versions of the runsolver program for a few different solvers on bench mps-v2-
20-10/MIPLIB/miplib/normalized-mps-v2-20-10-p0040.opb. The Pueblo solver is a classic
mono-process program. The vallst solver uses a script to run another solver in a loop.
Therefore, it uses several processes. The sat4jpseudo solver is written in Java and therefore
uses multiple threads. These experiments were run on a Pentium 4 (HT) at 2.8GHz with
1GB RAM and kernel 2.4.20smp (RedHat 9). The reported time is the average of 4 runs.

The times measured for solver sat4jpseudo (written in Java and run by java -server -
Xms650M -Xmx650M) are extremely different from one run to another. We reported the
average of the two fastest runs on the first line and the average of the two slowest runs on
the second line. We have no explanation yet why these times are so different.

We can check that there is no real difference between the time command and the first
version of runsolver. However, the impact of the second version of runsolver is quite
noticeable, from a rough 50% (which could be considered as acceptable) to more than 240%
for vallst (which is clearly not acceptable).

To add some confusion, it appears that the time penalty induced by the interception of
signals is different form one version of the kernel to another and from a single CPU host to
a multi processor host.

Therefore, we are still missing the best way to time a solver and impose accurate re-
strictions on the resources it uses. The first version of runsolver gives accurate timing
but does not enforce correct limits. It can be fooled by multi-processes solvers. The second
version of runsolver has a good support for multi-processes but has a time penalty which
is too high in some cases.

Hopefully, the time penalty induced by the second version of runsolver had an in-
significant impact on the number of instances solved by each solver. As can be checked on
the evaluation web site, there are very few differences between the number of unsatisfiable
formulae or optimums found during the first phase and the second phase. However, the
runsolver program must clearly be improved for the next evaluation.

9. Results analysis

In this section we present the experimental results of the evaluation for the different solvers.
For each solver we present the information described in Table 6. Results are first presented

118



The First Evaluation of Pseudo-Boolean Solvers

Table 6. Classification of the possible outcomes of a solver

Answer Description

UNSAT. solver proved unsatisfiability (”s UNSATISFIABLE” was output)

OPT. solver found an optimum solution (”s OPTIMUM FOUND” was out-
put), the provided implicant satisfies each constraint and no solver gave
a better solution

SAT. solver found a solution (”s SATISFIABLE” was output) and the pro-
vided implicant satisfies each constraint

SAT (timeout) solver exceeded the time limit but was able to find a solution (”s SAT-
ISFIABLE” was output) and the provided implicant satisfies each con-
straint

SAT (out of mem.) solver exceeded the memory limit but was able to find a solution (”s
SATISFIABLE” was output) and the provided implicant satisfies each
constraint

UNKNOWN solver could not decide (”s UNKNOWN” was output)

UNKNOWN (timeout) solver exceeded the time limit and gave no answer. These runs are
considered to give result UNKNOWN

UNKNOWN (out of mem.) solver exceeded the memory limit and gave no answer. These runs are
considered to give result UNKNOWN.

UNKNOWN (exit code) solver did not output a solution line and terminated with an unexpected
exit code (different of 0, 10, 20 and 30). These runs are considered to
give result UNKNOWN.

Sig. Caught solver was terminated by a signal (SIGSEGV for example) and did not
output a solution line

NO CERT. solver answered SATISFIABLE but either did not provide a certificate
(the ”v ” line) or either gave a truncated certificate (which does not
end in a new line)

WRONG CERT. solver gave an implicant but it appears that it does not satisfy every
constraint

WRONG OPT. solver found an optimum solution (”s OPTIMUM FOUND” was out-
put) but there exists an implicant which gives a better value to the
objective function

WRONG UNSAT. solver proved unsatisfiability but was wrong (”s UNSATISFIABLE”
was output)

for each of the categories defined in section 5.1. Moreover, in this section we also present
an analysis of partial solutions from the different solvers. Finally, we discuss bugs detected
in solvers.

Tables 7,8,9 and 10 present the results for each instance category. The overall results for
all instances are presented in Table 11. However, we note that solvers cannot be compared
solely using the results from Table 11 since they were not run on the same number of
benchmarks.

Table 7 contains the results for instances with no optimization function. For these
instances, Pueblo have the best results for both UNSAT and SAT instances. PBS4 also
performed very well in UNSAT instances, being able to solve as many as Pueblo, but using
less time (see Figure 6). Both galena and bsolo have the lowest performances (specially in
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Table 7. Results of the second phase for category "no optimization function" (SAT)

Solver Name #benchs unsat. opt. satisfiable unknown sig. no wrong
TO MO TO MO Exit caught cert. cert. opt. unsat.

bsolo 113 36 0 8 0 0 69 0 0 0 0 0 0 0 0

galena 113 36 0 7 0 0 70 0 0 0 0 0 0 0 0

minisat+ 113 43 0 0 0 0 0 35 0 0 0 35 0 0 0

PBS4 113 61 0 28 0 0 0 24 0 0 0 0 0 0 0

Pueblo 113 61 0 42 0 0 0 10 0 0 0 0 0 0 0

sat4jpseudo 113 52 0 17 0 0 0 44 0 0 0 0 0 0 0

vallst 0.9.258 113 38 0 29 0 0 0 46 0 0 0 0 0 0 0

pb2sat+zchaff 113 42 0 36 0 0 0 35 0 0 0 0 0 0 0

Table 8. Results of the second phase for category "optimization, small integers" (OPTSMALL-
INT)

Solver Name #benchs unsat. opt. satisfiable unknown sig. no wrong
TO MO TO MO Exit caught cert. cert. opt. unsat.

bsolo 386 10 159 159 21 0 31 0 6 0 0 0 0 0 0

galena 386 9 98 135 0 0 140 0 0 0 0 0 0 0 4

minisat+ 386 10 176 0 0 0 0 78 1 1 0 120 0 0 0

PBS4 386 10 133 0 0 0 0 243 0 0 0 0 0 0 0

Pueblo 386 10 160 182 0 0 0 33 0 0 0 0 1 0 0

sat4jpseudo 386 10 120 0 225 0 1 29 0 0 0 1 0 0 0

vallst 0.9.258 386 10 131 4 0 0 0 231 0 0 0 0 3 0 7

pb2sat+zchaff 386 10 136 0 148 10 0 33 7 42 0 0 0 0 0

SAT instances). minisat+ did not provide the necessary certificates for SAT instances (see
section 9.2).

For the optimization instances with small integers, results are presented in Table 8.
All solvers (with the exception of galena) were able to solve the same number of UNSAT
instances. In Figure 8 we can notice that minisat+ has the best performance for these
instances. This result is only natural since in 8 of the 10 instances all constraints are
propositional clauses.

In the category of small integers, minisat+ is the solver with more instances for which
it was able to prove optimality. Pueblo and bsolo are also very effective to find the optimum
solution. In fact, Pueblo, bsolo and sat4jpseudo were able to find solutions (either optimum
or approximations) for almost 90% of instances. Observe that sat4jpseudo was able to prove
optimality to a smaller number of instances, probably due its mechanism to deal with the
cost function. Nevertheless, it was the solver that was able to output more certificates in
this category. In Figure 7, we can also see that the curve of pb2sat+zchaff is able to pass
PBS4 and vallst 0.9.258 as the time limit increases. Hence, this hints that for higher time
limits, pb2sat+zchaff would improve on its results.
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Table 9. Results of the second phase for category "optimization, medium integers"
(OPTMEDINT)

Solver Name #benchs unsat. opt. satisfiable unknown sig. no wrong
TO MO TO MO Exit caught cert. cert. opt. unsat.

bsolo 191 0 28 78 4 0 50 5 26 0 0 0 0 0 0

galena 191 4 5 15 0 0 109 0 0 0 51 0 0 0 7

minisat+ 191 0 24 0 0 0 0 92 7 1 0 67 0 0 0

PBS4 191 0 33 0 0 0 0 158 0 0 0 0 0 0 0

Pueblo 191 0 34 74 0 0 48 35 0 0 0 0 0 0 0

sat4jpseudo 191 2 19 0 107 0 1 62 0 0 0 0 0 0 0

pb2sat+zchaff 191 0 14 0 14 2 0 56 31 71 3 0 0 0 0

Table 10. Results of the second phase for category "optimization, big integers" (OPTBIGINT)

Solver Name #benchs unsat. opt. satisfiable unknown sig. no wrong
TO MO TO MO Exit caught cert. cert. opt. unsat.

bsolo 482 90 9 81 1 1 241 5 54 0 0 0 0 0 0

minisat+ 482 103 26 0 0 0 0 239 41 9 0 64 0 0 0

sat4jpseudo 482 85 3 12 157 0 4 218 0 0 1 2 0 0 0

pb2sat+zchaff 482 8 11 0 11 0 0 69 119 259 5 0 0 0 0

In the category with medium integers (Table 9), Pueblo and PBS4 were able to solve
and prove optimality to more instances. In Figure 9 we can also note that Pueblo takes less
time to prove optimality than PBS4. As in the small integer category, sat4jpseudo is the
solver able to provide more certificates, but unable to prove optimality for the vast majority
of instances inside the time limit. Because very few instances in the category with medium
integers could be proved unsatisfiable, no meaningful graph could be drawn for the UNSAT
answers in that category.

In the category with big integers, minisat+ was the solver able to find more optimum
values to problem instances. For these instances, bsolo does not use cuts since the linear
programming package used with the solver has precision problems for these instances. Nev-
ertheless, it was able to provide certificates (as well as proving unsatisfiability) to a large
number of instances. pb2sat+zchaff was unable to find solutions for most instances and
only proves unsatisfiability to a small number of instances. Considering Figure 11, it seems
that pb2sat+zchaff finds it difficult to convert pseudo-Boolean and cardinality constraints
to propositional clauses. Notice that for those instances that is able to solve, it does not
take much time.

The overall results of the evaluation are presented in Table 11. Remember that the
solvers were not run on the same number of instances since some of them had no support
for some category. These results show that minisat+ was able to prove unsatisfiability
and optimality to a larger number of instances than other solvers. Hence, the approach of
converting pseudo-Boolean formulations to propositional clauses seems to be competitive
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Table 11. Results of the second phase for all categories

Solver Name #benchs unsat. opt. satisfiable unknown sig. no wrong
TO MO TO MO Exit caught cert. cert. opt. unsat.

bsolo 1172 136 196 326 26 1 391 10 86 0 0 0 0 0 0

galena 690 49 103 157 0 0 319 0 0 0 51 0 0 0 11

minisat+ 1172 156 226 0 0 0 0 444 49 11 0 286 0 0 0

PBS4 690 71 166 28 0 0 0 425 0 0 0 0 0 0 0

Pueblo 690 71 194 298 0 0 48 78 0 0 0 0 1 0 0

sat4jpseudo 1172 149 142 29 489 0 6 353 0 0 1 3 0 0 0

vallst 0.9.258 499 48 131 33 0 0 0 277 0 0 0 0 3 0 7

pb2sat+zchaff 1172 60 161 36 173 12 0 193 157 372 8 0 0 0 0

Table 12. Results of the second phase for categories "no optimization function" (SAT) and "opti-
mization, small integers" (OPTSMALLINT)

Solver Name #benchs unsat. opt. satisfiable unknown sig. no wrong
TO MO TO MO Exit caught cert. cert. opt. unsat.

bsolo 499 46 159 167 21 0 100 0 6 0 0 0 0 0 0

galena 499 45 98 142 0 0 210 0 0 0 0 0 0 0 4

minisat+ 499 53 176 0 0 0 0 113 1 1 0 155 0 0 0

PBS4 499 71 133 28 0 0 0 267 0 0 0 0 0 0 0

Pueblo 499 71 160 224 0 0 0 43 0 0 0 0 1 0 0

sat4jpseudo 499 62 120 17 225 0 1 73 0 0 0 1 0 0 0

vallst 0.9.258 499 48 131 33 0 0 0 277 0 0 0 0 3 0 7

pb2sat+zchaff 499 52 136 36 148 10 0 68 7 42 0 0 0 0 0

with pure pseudo-Boolean solvers. bsolo and Pueblo are also able to prove optimality to a
large number of instances due to their specific techniques. bsolo is more effective in instances
with small integers since the linear programming relaxations and cut generation are more
effective. The learning mechanisms and lighter data structures from Pueblo were also able
to provide good results in several instances, in particular for the SAT category. Observe
from Figure 18 that sat4jpseudo finds it very hard to prove optimality. However, there are
several instances for which no other solver was able to find a partial solution. Therefore,
sat4jpseudo was a valuable contribution to this evaluation. PBS4 also has some good results,
specially in the UNSAT instances. pb2sat+zchaff also has sound overall results. Finally,
vallst 0.9.258 and galena have a more erratic behavior. Moreover, for some instances these
solvers provided wrong answers. This issue is discussed in section 9.2.

Table 12 presents the overall results for the non-optimization instances and optimization
instances with small integers. These are the categories which all solvers presented in the
evaluation are able to solve, since the author of vallst 0.9.258 declared that the correctness
of his solver was not guaranteed for the remaining categories of instances. Figure 12 shows
than minisat+ and then Pueblo and bsolo are the best solvers to give a positive answer
(satisfiability or optimality) in these two categories. In contrast, PBS4 and Pueblo are the
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Table 13. Results of the second phase for all categories, except "optimization, big integers"
(OPTBIGINT)

Solver Name #benchs unsat. opt. satisfiable unknown sig. no wrong
TO MO TO MO Exit caught cert. cert. opt. unsat.

bsolo 690 46 187 245 25 0 150 5 32 0 0 0 0 0 0

galena 690 49 103 157 0 0 319 0 0 0 51 0 0 0 11

minisat+ 690 53 200 0 0 0 0 205 8 2 0 222 0 0 0

PBS4 690 71 166 28 0 0 0 425 0 0 0 0 0 0 0

Pueblo 690 71 194 298 0 0 48 78 0 0 0 0 1 0 0

sat4jpseudo 690 64 139 17 332 0 2 135 0 0 0 1 0 0 0

pb2sat+zchaff 690 52 150 36 162 12 0 124 38 113 3 0 0 0 0

Table 14. Results of the second phase for all categories, including "optimization, big integers"
(OPTBIGINT)

Solver Name #benchs unsat. opt. satisfiable unknown sig. no wrong
TO MO TO MO Exit caught cert. cert. opt. unsat.

bsolo 1172 136 196 326 26 1 391 10 86 0 0 0 0 0 0

minisat+ 1172 156 226 0 0 0 0 444 49 11 0 286 0 0 0

sat4jpseudo 1172 149 142 29 489 0 6 353 0 0 1 3 0 0 0

pb2sat+zchaff 1172 60 161 36 173 12 0 193 157 372 8 0 0 0 0

best solvers to prove unsatisfiability (see Figure 13) in these categories. When the kind of
answer is not distinguished (see Figure 14), Pueblo and minisat+ appear as the best solvers.

Table 13 presents the overall results considering all benchmark instances, except opti-
mization instances of the big integer category. In the call for solvers for the evaluation, we
did not require that all solvers be able to deal with big integers. This option was taken in
order to be able to gather the largest number of solvers. vallst 0.9.258 does not appear in
this table since it did not enter the OPMEDINT category. It can be seen in Figures 15, 16
and 17 that minisat+, Pueblo and bsolo are the leading solvers for proving optimality. PBS4
and Pueblo have the best results on unsatisfiable instances. All in all, in these combined
categories, Pueblo has the best results closely followed by minisat+.

Table 14 presents the overall results considering all benchmark instances, including
optimization instances of the big integer category. Only solvers which have support for the
OPTBIGINT category are shown. In comparison with Table 13, the major changes when
considering instances with big integers is that bsolo, minisat+ and sat4jpseudo are able to
provide more UNSAT answers. The number of SAT answers of bsolo and sat4jpseudo also
increases significantly if we consider big integer instances. Figures 18, 19 and 20 show that
minisat+ is overall the leading solver out of the solvers with support for big integers. bsolo
also appears as a strong solver. sat4jpseudo has very good results on UNSAT instances.

After the evaluation, many instances are still unresolved. For most of the optimization
benchmarks, the optimum value of the cost function is unknown and for those where a
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Table 15. Overall benchmark results by category

Categories #benchs UNSAT SAT OPT. Unknown

SAT/UNSAT 113 61 42 0 10

OPTSMALLINT 386 10 150 202 24

OPTMEDINT 191 6 106 41 38

OPTBIGINT 482 113 157 26 186

Total 1172 190 455 269 258
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Figure 5. Number x of instances that can be solved (SAT answers only) in y seconds for category
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partial solution is known, there is no idea of how far the optimum value is. In Table 15 we
present the number of instances for each category already solved, as well as the number of
unresolved instances.
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OPTBIGINT

 0

 200

 400

 600

 800

 1000

 1200

 0  20  40  60  80  100  120

tim
e 

(s
)

number of instances

Number x of instances that can be solved (UNSAT only) in y seconds for category OPTBIGINT

bsolo
minisat+

sat4jpseudo
pb2sat+zchaff

Figure 11. Number x of instances that can be solved (UNSAT answers only) in y sec. for category
OPTBIGINT

127



V.M. Manquinho and O. Roussel

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100  120  140  160  180

tim
e 

(s
)

number of instances

Number x of instances that can be solved (OPT only) in y seconds
in categories SAT/UNSAT and OPTSMALLINT

bsolo
galena

minisat+
PBS4

Pueblo
sat4jpseudo

vallst_0.9.258
pb2sat+zchaff
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Figure 13. Number x of instances that can be solved (UNSAT answers only) in y seconds for
categories SAT/UNSAT and OPTSMALLINT
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Figure 14. Number x of instances that can be solved (OPT+UNSAT answers) in y seconds for
categories SAT/UNSAT and OPTSMALLINT
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Figure 15. Number x of instances that can be solved (OPT answers only) in y seconds for all
categories but OPTBIGINT
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Figure 16. Number x of instances that can be solved (UNSAT answers only) in y seconds for all
categories but OPTBIGINT
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Figure 17. Number x of instances that can be solved (OPT+UNSAT answers) in y seconds for all
categories but OPTBIGINT
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Figure 18. Number x of instances that can be solved (OPT answers only) in y seconds for all
categories
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Figure 19. Number x of instances that can be solved (UNSAT answers only) in y seconds for all
categories
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Figure 20. Number x of instances that can be solved (OPT+UNSAT answers) in y seconds for all
categories

Figures 21 to 24 present the solvers performances on another classification of the bench-
marks based on the majority or minority of a kind of constraints. Recall from section 5.1
that we defined that there is a majority of a given kind of constraint when its represents
more than 90% of all the constraints. Conversely, we defined that there is a minority of
a given kind of constraint when its represents less than 10% of all the constraints. This
classification is nor exhaustive, nor mutually exclusive. However, it can help us determine
if some solvers are more suitable to a given kind of constraints that other and therefore
presents some interest.

Graphs concerning the influence of cardinality constraints are not presented because
there are too few points to draw any conclusion.

It can be seen on Figure 21 that the proportion of clauses does not seem to influence
the relative ranking of solvers concerning the search of an optimum solution. vallst 0.9.258
is an exception but this may be caused by the limited number of categories it supported.

Figure 22 shows that pb2sat+zchaff is more successful in proving optimality than bsolo
when there is a majority of pseudo-Boolean constraints. Conversely, bsolo is more successful
than pb2sat+ zchaff when there is a minority of pseudo-Boolean constraints. An explanation
is certainly that instances with a majority of pseudo-Boolean constraints mostly contain big
integers and bsolo does not use cuts in this case since the linear programming package used
with the solver has precision problems for these instances.

The difference that can be observed on Figure 23 between unsatisfiable instances with a
majority or minority of clauses is certainly caused by the number of unsatisfiable instances
in category OPTBIGINT and is a simple artefact. At last, the predominance of PBS4 and
Pueblo on unsatisfiable instances with a minority of pseudo-Boolean constraints is consistent
with the results of Figure 16 for unsatisfiable instances without big integers. As instances
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Table 16. Number of Best Results for each solver

Solver SAT/UNSAT OPTSMALLINT OPTMEDINT OPTBIGINT Total

bsolo 44 271 62 136 513

galena 43 112 10 0 165

minisat+ 43 186 24 129 382

PBS4 89 143 33 0 265

Pueblo 103 207 70 0 380

sat4jpseudo 69 154 64 208 495

vallst 0.9.258 67 141 34 0 242

pb2sat+zchaff 78 146 15 19 258

with a majority of pseudo-Boolean constraints mostly belong to the OPTBIGINT category,
it is hardly surprising that solvers with support for big integers be successful in this category.

To sum up, beyond the differences that can be explained by some implementation point
or by our imperfect benchmarks set, it does not seem to be obvious differences of behavior
that could be linked to the different ratios of a kind of constraint.

9.1 Evaluating partial solutions

In optimization instances, finding the optimum value is the main goal. However, for many
instances that cannot be achieved inside a given time limit. As shown in Table 15, for
most optimization instances, only partial solutions were obtained. Nevertheless, we need to
evaluate how good these partial solutions are.

In Table 16 we can see how many best solutions were provided by each solver. We
consider as best solutions the UNSAT solutions, the SAT solutions for the non-optimization
category and when the optimum value is found. Moreover, we should also consider as
best, solutions to optimization instances for which no other solver was able to find a better
solution.

Clearly, bsolo and sat4jpseudo are the solvers able to provide the largest number of best
solutions. However, remember that solvers were not run in the same number of benchmark
instances. Moreover, note that minisat+ was unable to output certificates for its partial
solution answers. Hence, we did not consider minisat+ partial solutions, since we were
unable to verify its correctness. Nevertheless, Pueblo has the best results in SAT and
optimization instances with medium integers, while bsolo is clearly the solver with more
best solutions in optimization instances with small integers. sat4jpseudo has best results
in big integer category, since in several instances it was the only solver able to output a
certificate.

We can also observe a different perspective by considering a solver contribution to the
evaluation. We say that a solver provides a contribution to the evaluation if it is the only
solver to give a best answer to an instance. In Table 17 we present the results for each solver
in each category.

These clearly show that bsolo (in the small integer category) and sat4jpseudo (in the big
integer category) are the main contributers. For solvers with 0 values, this indicates that
there is not a particular instance for which only that solver is able to give a best solution.
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Figure 21. Number x of instances that can be solved (OPT answers only) in y seconds for in-
stances with a majority or minority of clauses
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Figure 22. Number x of instances that can be solved (OPT answers only) in y seconds for in-
stances with a majority or minority of pseudo-Boolean constraints
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Figure 23. Number x of instances that can be solved (UNSAT answers only) in y seconds for
instances with a majority or minority of clauses
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Figure 24. Number x of instances that can be solved (UNSAT answers only) in y seconds for
instances with a majority or minority of pseudo-Boolean constraints
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Table 17. Solver contributions for the best solutions in the evaluation

Solver SAT/UNSAT OPTSMALLINT OPTMEDINT OPTBIGINT Total

bsolo 0 112 32 37 181

galena 0 1 3 0 4

minisat+ 0 20 1 12 33

PBS4 0 0 0 0 0

Pueblo 4 29 27 0 60

sat4jpseudo 0 19 41 120 180

vallst 0.9.258 0 0 0 0 0

pb2sat+zchaff 0 0 1 0 1

Note that this does not mean that these solvers are not good. In fact, some solvers with
all 0 in Table 17 have very good results in a large number of instances. What it means is
that solvers with more contributions have specific features that enable them to be unique
for several benchmark instances.

9.2 Bugs in solvers

Fixing bugs is often a long and tedious task and each programmer knows that a bug can
remain hidden for a long time. The last version of some solvers were unfortunately still
buggy. We report here what we know about these problems.

On one single instance, solver Pueblo outputs a solution which did not satisfy all con-
straints. According to its author, that problem was caused by an objective function that
contains terms with both positive and negative coefficients, which was not correctly handled
by the solver. The problem has been fixed since then.

Because of a missing flush in its signal handler, minisat+ never outputs a complete solu-
tion on the “v ” line and therefore, all its SAT answer are counted as NO CERTIFICATE.

On 3 instances classified as NO CERTIFICATE, solver sat4jPseudo required more than
two seconds to output a solution when it received a SIGTERM and was therefore killed
before it could provide a complete solution.

The wrong UNSAT answers of vallst 0.9.258 seem to be caused by an error in the script
(a ’grepres’ command is called but not found).

10. Next Evaluation

In this section we present suggestions for the next evaluation of pseudo-Boolean solvers.
We start by proposing an input format simpler to parse and afterwards we discuss several
issues to be dealt with in the next evaluation of pseudo-Boolean solvers.

10.1 Input Format

In this evaluation, the input format for the solvers was a restriction of the general OPB
format, as described in section 3. However, several problems were detected in some solvers,
namely related with the variable identifiers.
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One approach is to modify the input format to a CNF-like format commonly used in
SAT. In this case, each text-based variable identifier must be mapped into a numerical
identifier. Each line in the file would represent a constraint starting with pairs (coeffi-
cient,variable) and ending with the constraint sign and the value of the right-hand side. In
pratice, we do not think it is a good idea to assume that the sign in all constraints is ≥, as
in (1), since some solvers might introduce strategies that take advantage of some types of
constraints, namely equality constraints. Hence, constraint

2 ∗ x + 3 ∗ y + 1 ∗ z ≥ 3 (2)

could be written as
2 1 3 2 1 3 ≥ 3 (3)

where variables x, y and z are respectively mapped into numerical identifiers 1, 2 and 3.
The major drawback from this CNF-like format is that some perspective is lost to the

human eye when observing the contents of an instance file. We think it is better to keep a
simple way to identify what are the coefficients and variables in the constraint. Therefore,
we propose to use a fixed letter x as a prefix in the variable identifiers. Hence, the constraint
in (2) could be written as

2 x1 3 x2 1 x3 ≥ 3 (4)

10.2 Evaluation Procedures

In this first evaluation, categories of benchmark instances were defined only after the first
phase of submission of solvers. Initially, submitters only had to declare if a solver was able
to solve PBS and/or PBO instances. However, we noticed from the first phase results that
some solvers were unable to deal with medium or big integers. Hence, categories depending
on the type of coefficients were defined.

For the next evaluation, categories must be defined before the submission process and
submitters must declare which categories the solver is able to tackle without providing
wrong answers. Moreover, if a solver provides a wrong answer, it should be excluded from
that category.

Besides having a categorization of benchmarks depending on the type of coefficients, we
should also have other categories depending on different features of instances, namely the
type of constraints. For example, Binate and Unate Covering formulations (PBO instances
with only propositional clauses in constraints) are special cases of PBO with several real
world applications, in particular in Circuit Aided Design [11, 16, 17, 19, 26].

The number of non-zero variable coefficients in the cost function of PBO instances is
also a feature to consider. Note that if the cost function has a very small number of non-zero
variable coefficients, the problem might be easier to solve by solvers with more constraint
manipulation techniques. On the other hand, if the number of non-zero variable coefficients
in the cost function is large, it might be easier for solvers with better techniques to use the
information from the cost function. However, this conjecture is yet to be verified.

Having benchmark categories depending on the domain from which instances were gen-
erated is also an option. However, a significant number of instances from a given domain
must be gathered in order to categorize instances using this criteria. Additionally, a more
representative set of benchmarks must be considered in order to avoid a polarization of the
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evaluation process, since in this first evaluation most instances were converted from MPS
instances.

Finally, we should note that the use of different categorization criteria may allow us to
look at the experimental results from different perspectives, since these category proposals
are not mutually exclusive. Overall, analyzing experimental results using different views
will hopefully allow us to understand better the relation between the techniques used by
the solvers and the benchmark features.

11. Conclusion

The first evaluation of pseudo-Boolean solvers, has allowed the gathering of pseudo-Boolean
solvers using very different techniques in a single experimental evaluation. Comparing the
pseudo-Boolean solvers results is a challenging task because there are a few more parameters
than for a SAT solver and also because half of the submitted solvers were not able to deal
with all the benchmarks categories. It would be hazardous to try to summarize the solvers
performances in a single ranking.

In spite of the variety of techniques used by the solvers, most optimization instances
remain an open challenge for future events. Nevertheless, people are encouraged to submit
new benchmarks from different problem domains, in order to diversify the benchmark set.

We believe that this first evaluation has contributed to the evaluation of different tech-
niques and the improvement of existing solvers. Moreover, we also expect that it will
contribute to the development of future solvers.

We would like to insist on the fact that the evaluation of pseudo-Boolean solvers has
two goals which cannot be dissociated. The first one of course is to identify the most
successful techniques. The second one – and probably the most important – is to encourage
researchers to submit innovating algorithms. Such an event would be a terrible waste of
time if the community only remembered the solver with the best results and only tried
to marginally improve its performances. Major improvements necessarily come from new
visions of the problem and the pseudo-Boolean evaluation must encourage the development
of new techniques.
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