
Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 199-208

On Using Cutting Planes in Pseudo-Boolean Optimization

Vasco M. Manquinho vmm@sat.inesc-id.pt

IST/INESC-ID, Technical University of Lisbon, Portugal

João Marques-Silva jpms@ecs.soton.ac.uk

University of Southampton, UK

Abstract

Cutting planes are a well-known, widely used, and very effective technique for Integer
Linear Programming (ILP). However, cutting plane techniques are seldom used in Pseudo-
Boolean Optimization (PBO) algorithms. This paper addresses the utilization of Gomory
mixed-integer and clique cuts, in Satisfiability-based algorithms for PBO, and shows how
these cuts can be used for computing lower bounds and for learning new constraints. A
side result of learning new constraints is that the utilization of cutting planes enables non-
chronological backtracking. Besides cutting planes, the paper also shows that the utilization
of search restarts in PBO can be effective in practice, allowing the computation of tighter
lower bounds each time the search restarts. The more aggressive lower bounds result from
the constraints learned due to the utilization of cutting planes. Experimental results show
that the integration of cutting planes and search restarts in a SAT-based algorithm for
PBO yields a competitive new solution for PBO.

Keywords: Pseudo-Boolean Optimization, Cutting Planes, Search Restarts

Submitted October 2005; revised December 2005; published March 2006

1. Introduction

Motivated by recent advances in algorithms for Boolean Satisfiability (SAT) [20, 21], algo-
rithms for Pseudo-Boolean (PB) Solving (PBS) and Optimization (PBO) have also been the
subject of significant improvements [3, 9, 12]. As a result, the most effective Boolean Satisfi-
ability (SAT) techniques, including clause learning, lazy data structures and conflict-driven
branching heuristics, have been extended to PBO. In addition to the significant amount of
work on extending SAT techniques to PBS, there has also been work specific to PBO, which
entails techniques specific for optimizing the cost function in PBO formulations [18, 19].

This paper proposes to apply the identification of Gomory mixed-integer cuts and clique
cuts [7, 15, 16] in SAT-based PBO algorithms. The objective is to use these cutting plane
techniques for computing more accurate lower bounds, and consequently obtaining addi-
tional pruning ability. Moreover, the paper shows how to exploit the computation of cutting
planes for creating new constraints, which enable non-chronological backtracking from lower
bounding information. This paper also shows that search restarts [14] (commonly used in
state-of-the-art SAT solvers) can also be very effective for PBO. Since cutting plane thech-
niques are also used for generating new constraints, it is reasonable to assume that search
restarts may yield tighter lower bounds each time the search is restart.

c©2006 Delft University of Technology.

V.M. Manquinho and J. Marques-Silva

The paper is organized as follows. The following sections address, respectively, def-
initions, a survey of PBO algorithms, and a brief survey of cutting planes techniques.
Afterwards, section 4 outlines the integration of cutting planes in SAT-based PBO algo-
rithms, and afterwards we address the utilization of search restarts. Next, we address our
submission to the pseudo-boolean evaluation and experimental results. Finally, the paper
concludes in section 8.

2. Preliminaries

In a propositional formula, a literal lj denotes either a variable xj or its complement x̄j . A
literal is said to be a positive literal if it denotes a variable xj . Otherwise is said to be a
negative literal. If a literal lj = xj and xj is assigned value 1 or lj = x̄j and xj is assigned
value 0, then the literal is said to be true. Otherwise, the literal is said to be false. An
instance P of the Pseudo-Boolean Optimization (PBO) problem can be defined as follows:

minimize
n
∑

j=1
cj · xj

subject to
n
∑

j=1
aijlj ≥ bi, xj ∈ {0, 1}, aij , bi ∈ N

+
0 , i ∈ {1..m},

(1)

where cj is a non-negative integer cost associated with variable xj , and aij denote the coeffi-
cients of the literals lj in the set of m linear constraints. Every pseudo-boolean formulation
can be rewritten such that all coefficients aij and right-hand side bi be non-negative.

In a given constraint, if all aij coefficients have the same value k, then it is called a
cardinality constraint, since it only requires that dbi/ke literals be true. A pseudo-boolean
constraint where any literal set to true is enough to satisfy the constraint, can be interpreted
as a propositional clause. This occurs when the value of all aij coefficients are greater than
or equal to bi. If every constraint can be interpreted as a propositional clause then P is
an instance of the binate covering problem (BCP). When all literals of the propositional
clauses are positive then P is an instance of the unate covering problem (UCP). Covering
formulations have been the subject of thorough research work [10, 17, 18, 24]. Observe
that a linear pseudo-boolean optimization problem can also be viewed as a special case of
linear integer programming problem. The linear integer programming formulation for the
constraints can be obtained if we replace literals x̄j by 1 − xj .

Throughout the paper we refer extensively to backtrack search algorithms. Most if not
all backtrack search SAT algorithms apply the unit clause rule [11]. If a clause is unit, then
the sole free literal must be assigned value 1 for the formula to be satisfiable. In this case,
the value of the literal and of the associated variable are said to be implied. The iterated
application of the unit clause rule is often referred to as unit propagation. In the following
sections we often need to associate dependencies (or an explanation) with each implied
variable assignment. Dependencies represent sufficient conditions for variable assignments
to be implied. For example, let x = vx be a truth assignment implied by applying the unit
clause rule to a unit clause clause ω. Then the explanation for this assignment is the set
of assignments associated with the remaining literals of ω, which are assigned value 0. In
addition, pseudo-Boolean inference techniques of [9, 12] are assumed.

200

On Using Cutting Planes in Pseudo-Boolean Optimization

3. Pseudo-Boolean Optimization Algorithms

This section addresses algorithms for PBO that are relevant to the work described in the
paper. We briefly overview branch-and-bound algorithms for the Binate Covering Problem
(BCP), representing a well-known restriction of PBO [10], where the notion of lower bound-
ing has been extensively used, and address SAT-based algorithms for PBO. Moroever, we
describe the utilization of linear programming relaxations, a key technique in branch-and-
bound algorithms for ILP, but also extremely effective in PBO algorithms that utilize lower
bounding.

3.1 SAT-Based Algorithms

The SAT-based approach for PBO is based on the Davis-Logemann-Loveland [11] procedure
augmented with conditions on the value of the cost function [6]. The algorithm performs
a linear search on the possible values of the cost function, starting from the highest value,
and at each step requiring the next computed solution to have a cost lower than the pre-
vious one. If the resulting instance is not satisfiable, then the solution is given by the last
recorded solution. The generalization of recent advances in SAT to PB constraints resulted
in new effective algorithms [3, 9, 12] for several classes of PB instances. The most relevant
techniques include non-chronological backtracking in the search tree, conflict-based learning
mechanisms and lazy data structures.

3.2 Branch-and-Bound Algorithms

Unlike SAT-based algorithms, branch-and-bound algorithms [10, 17] have proved to be
very effective for instances where it is not hard to find a variable assignment that satisfies
all constraints. In general, these algorithms are able to prune the search tree earlier by
using estimates on the value of the cost function. In branch-and-bound algorithms upper
bounds on the value of the cost function are identified for each solution to the constraints,
and lower bounds on the value of the cost function are estimated considering the current
variable assignments. For a given instance P of PBO, let P.upper denote the upper bound
on the value of the cost function. The search is pruned whenever the lower bound estimation
is larger than or equal to P.upper. In this case it is guaranteed that a better solution cannot
be found with the current variable assignments and therefore the search can be pruned. The
algorithms described in [10, 17, 18, 24] for the binate covering problem follow this approach.

For several classes of instances, specially for less constrained instances, the tightness of
the lower bounding procedure is crucial for the algorithm’s efficiency, because with higher
estimates of the lower bound, the search can be pruned earlier. Several procedures can
be used for lower bound estimation, namely the approximation of a maximum indepen-
dent set of constraints (MIS) [10, 18], linear-programming relaxations [17] or Lagrangian
relaxations [2].

In the remainder of the paper, we refer to lower bound conflicts to denote the situations
when the search process backtracks because the lower bound estimate is greater than or
equal to a previously computed upper bound on the value of the cost function.

201

V.M. Manquinho and J. Marques-Silva

3.3 Linear Programming Relaxations

Linear programming relaxation (LPR) has been used with success [17, 19] in solving PBO
since it often provides tighter bounds than other methods. Moreover, LPR have long been
used as a lower bound estimation procedure in branch-and-bound algorithms for solving
ILP problems [7, 22]. The general formulation of the LPR for a pseudo-boolean problem
instance is obtained from (1) as follows:

minimize zlpr =
n
∑

j=1
cj · xj

subject to
n
∑

j=1
aijxj ≥ bi 0 ≤ xj ≤ 1, aij , bi ∈ Z

(2)

The solution of (1) is referred to as z∗pbo, whereas the solution of (2) is referred to as z∗
lpr. It

is well-known that the solution z∗lpr of (2) is a lower bound on the solution z∗pbo of (1) [22].
Basically, any solution of (1) is also a feasible solution of (2), but the converse is not true.
Moreover, for a given solution of (2) where x ∈ {0, 1}n, we necessarily have z∗pbo = z∗lpr.
Hence, the result follows.

4. Cutting Planes

Work on cutting planes can be traced back to Gomory [15]. Gomory introduced a cutting
plane technique that derives new linear inequalities in order to exclude some non-integer
solutions from (2). However, the new linear inequalities are valid for the original integer
linear program and so can be safely added to the original problem. Moreover, solving (2)
with the added inequalities may yield a tighter lower bound estimate.

Since Gomory’s original work, a large number of cutting plane techniques have been
proposed [7, 22]. This section addresses Gomory mixed-integer and clique cuts, as well as
their integration in a SAT-based PBO solver. Moreover, we also establish conditions in
order to backtrack non-chronologically in the search tree when a conflict arises involving
learned cutting planes.

4.1 Gomory Mixed-Integer Cuts

Section 3.3 describes the utilization of linear programming relaxation (LPR) for estimat-
ing lower bounds in Pseudo-Boolean Optimization (PBO). In simplex-based solutions for
solving the LPR from (2), the simplex method adds a set S of slack variables (one for each
constraint) such that,

n
∑

j=1
aijxj − si = bi si ≥ 0, aij , bi ∈ Z (3)

This formulation is called the slack formulation and it is used to create the original simplex
tableau [22].

If the solution x∗ of the LPR is integral, then x∗ provides the optimal solution to the
original problem. Otherwise, choose a basic1 variable xj such that its value on the LPR

1. See for example [22] for a definition of basic and non-basic variables.

202

On Using Cutting Planes in Pseudo-Boolean Optimization

solution is not integral. Since xj is a basic variable, after the pivot operations performed
by the simplex algorithm on (3), there is a row in the simplex tableau of the form,

xj +
∑

i∈P

αixi +
∑

i∈Q

βisi = x∗
j (4)

where P and Q are the sets of indexes of non-basic variables (problem variables and slack
variables, respectively). In [15], Gomory proves that the inequality,

∑

i∈P

f(αi)xi +
∑

i∈Q

f(βi)si ≥ f(x∗
j) f(y) = y − byc, y ∈ < (5)

is violated by the solution of the LPR, but satisfied by all non-negative integer solutions
to (4). Hence, it is also satisfied by all solutions to the original problem as formulated in (1)
and can be added to the LPR. Solving the LPR with the new restriction will yield a tighter
lower bound estimate on the value of the PBO instance. Several methods for strengthening
the original Gomory cuts have been proposed [5, 8, 16]. In [16], Gomory proves that the
cut

∑

i∈P

g(αi)xi +
∑

i∈Q

g(βi)si ≥ 1

where g(y) =







f(y)
f(x∗

j
) : f(y) ≤ f(x∗

j)

1−f(y)
1−f(x∗

j
) : f(y) > f(x∗

j)

(6)

is stronger than (5) and satisfied by all solutions of (3).
Observe that from (3) each slack variable depends only from the original problem vari-

ables and can be replaced in (6) by si =
∑n

j=1 aijxj − bi. Afterwards, if we apply the
rounding operation on the non integer coefficients we obtain a new pseudo-boolean con-
straint valid for the original PBO instance as defined in (1), since the rounding operation
will only weaken the constraint.

One should note that in a modern SAT-based algorithm, a conflict analysis procedure is
carried out whenever a conflict arises [20, 21]. Therefore, if the generated cutting plane is
involved in the conflict analysis process, it must be able to determine its logical dependen-
cies in order to backtrack to a valid node of the search tree. In the section 4.3 we propose
conditions for associating dependencies with computed cutting planes, thus enabling con-
straint learning and non-chronological backtracking from constraints inferred with cutting
plane techniques.

4.2 Clique Cuts

Like Gomory cuts, Clique cuts [7, 22] also provide a method that adds new inequalities in
order to cut non-integral solutions from the LPR, hence improving the tightness of lower
bound estimates. To show the use of Clique cuts, suppose that among other constraints in
our pseudo-boolean formula we have,

x1 + x̄2 ≤ 1 x1 + x3 ≤ 1 x̄2 + x3 ≤ 1 (7)

From these constraints, we can infer that the set of assignments x1 = 1, x2 = 0 and x3 = 1
are not compatible in the pseudo-boolean formula and so we can safely add a new clique
constraint,

x1 + x̄2 + x3 ≤ 1 (8)

203

V.M. Manquinho and J. Marques-Silva

Note that when solving the LPR for the formula with the new inferred constraint (8), several
possible solutions for the LPR are cut. For example, the assignments x1 = x2 = x3 = 0.5
satisfy the original constraints (7), but do not satisfy (8). In general, we can build a conflict
graph in order to represent all incompatible assignments for a pseudo-boolean formula (see
details in [4]). In the conflict graph, each node represents an assignment to a problem
variable and each edge between two nodes represents an assignment incompatibility. For
each clique C in the conflict graph we can add a new constraint of the form,

∑

i∈C

li ≤ 1 (9)

where li is the literal at node i of clique C. One should note that we are interested in finding
all maximum cliques in the conflict graph, but it is well-known that that the problem of
finding a maximum clique in an undirected graph is NP-Hard [22]. As a result, a heuristic
greedy procedure is often used.

4.3 Dependencies from Gomory Mixed-Integer Cuts

In order to integrate Gomory mixed-integer cuts in a SAT-based approach we must associate
with each cutting plane a set of literals ωcut that define the cutting plane dependencies2.
When one literal in ωcut is set to 1, the cut will no longer be active (i.e. the associated
constraint will be satisfied). In order for the generated cut to be safely added to the set of
pseudo-boolean constraints, we must add all literals lj ∈ ωcut to the cut. The coefficient
of each added literal lj must be large enough (i.e. the value of the right-hand-side of the
cutting plane) in order to satisfy the constraint whenever lj = 1.

One should note that the tableau constraint (4), from which the Gomory mixed-integer
cut is inferred, depends on the pivot operations performed while solving the LPR. As a
result, the tableau constraint (4) contains the slack variables assigned value 0 from the
constraints from which it depends.

Let S be the set of constraints with slack variables assigned value 0 in the tableau
constraint (4). If the literals assigned value 0 in these constraints were to have a different
value, the tableau constraint might not be inferred in the LPR. Therefore, we can consider
the assignments to those literals as the responsible for inferring the cut and we can define
ωcut as:

ωcut = {l : l = 0 ∧ l ∈ ωi ∧ ωi ∈ S} (10)

Note that the generated cut might not depend on all decision assignments. Hence, if a
conflict occurs involving generated cuts at node N with its dependences determined as
in (10), it is possible to backtrack to a node higher than N in the search tree, i.e. a non-
chronological backtrack step. Moreover, the generated cuts can also be used in different
parts of the search tree, in addition to the subtree with root at the node N .

4.4 Dependencies from Clique Cuts

It was shown in section 4.2 that a clique cut is generated from a clique in a conflict graph
representing incompatible assignments to problem variables. The set of dependencies of the

2. In [5], an approach is proposed to generate global Gomory mixed-integer cuts that are valid in all nodes
of the search tree. However, these do not readily apply to SAT-based PBO.

204

On Using Cutting Planes in Pseudo-Boolean Optimization

clique cut is the set of dependencies of all edges in the clique. Therefore, for a given clique
cut generated from a clique C in the conflict graph, the set of dependences ωcut can be
defined as ωcut =

⋃

e∈C ωe, i.e. the set union of all dependencies of each edge in C where
ωe is the set of dependencies of the edge e ∈ C.

As described in [4], an edge is added to the conflict graph through a procedure based on
probing assignments. For example, if in the probing of assignment xj = 1 we deduce that
xi = 1 is a necessary assignment, then xj = 1 and xi = 0 are incompatible assignments and
an edge between nodes xj and x̄i can be added to the conflict graph. The dependencies of
an edge between these two nodes can be defined as the literals assigned value 0 (at previous
levels of the search tree) in the constraints involved in the deduction procedure used to
infer that xi = 1 is a necessary assignment if xj = 1. If any of those literals were to have
a different value, the probing procedure might not have been able to deduce that xj = 1
implies xi = 1.

5. Search Restarts

Search restarts have been proposed by Gomes et al. [14] and have been successfully applied
to SAT [21]. However, despite its success in SAT, search restarts have seldom been used
in PBO. Our motivation to use search restarts is that our algorithm not only learns new
propositional clauses when conflicts arise, but also learns new constraints by using cutting
plane techniques. Hence, at each search restart, the new lower bound at the root node can
be higher than in the previous restart. Moreover, since the decision assignment procedure
is based on the information provided by the LPR solution, by restarting the search, it is
possible that the new decision assignments might drive the search into other areas of the
search space where new learned constraints are more effective at pruning the search.

There are several methods to guarantee completeness of backtrack search algorithms
with search restarts. One of the approaches is to keep a set of learned constraints (possibly
all learned constraints) in order to avoid exploring areas of the search space already explored.
However, in our algorithm, we simply increase the cutoff point after each search restart [21].
For each run of the algorithm there is a conflict counter that counts the number of conflicts
in that run. In the first run, the algorithm restarts when the counter equals a given number
k that defines the initial cutoff. Each time a new restart occurs, the cutoff limit is increased
by k. If during a given run of the algorithm, a new solution is found that improves the
upper bound value, we reset the conflict counter of that run since the algorithm is being
able to improve on its previous solution.

6. Pseudo-Boolean Evaluation

Our solver bsolo integrates several features as different lower bounding procedures, cutting
plane and problem simplification techniques, search restarts, among others. However, since
in the final submission for the Pseudo-Boolean Evaluation, we could only submit one version
of the solver, we tried to incorporate several techniques into a hybrid version of bsolo to be
more robust and provide solutions to a more diversified number of problem instances. For
a given instance, bsolo starts by using linear search on the value of the cost function and
search restarts, increasing the cut off at each restart (as described in section 5). However,

205

V.M. Manquinho and J. Marques-Silva

after a given number of restarts without improving on the best solution found, we run MIS
and LPR lower bound estimation procedures. If the lower bound value provided by MIS is
better than LPR or worst by 5% or less, we chose to use MIS. Otherwise, we use LPR with
cutting planes. The reason is that if the value of the MIS bound is at least close to the
value provided by LPR, then we should use MIS since the overhead of computing the LPR
is much larger. Overall, the results for the final version of the solver were largely better than
the previous versions submitted for the first stage. Our solver was able to prove optimality
in 196 instances and find approximate solutions for another 353 instances. Moreover, we
were also able to prove unsatisfiability for 136 instances.

7. Experimental Results

In order to empirically evaluate the techniques described in the paper, we ran bsolo on
PBO instances from logic synthesis [25]. The bsolo solver also incorporates SAT-based
techniques, namely unit propagation, non-chronological backtracking in the search tree
and conflict-based learning mechanisms [18, 19]. The results presented in the paper were
obtained by configuring bsolo to use the constraint strengthening technique described in [12]
and the simplification techniques described in [24]. Besides bsolo, we also ran Pueblo [23],
minisat+ [13] and the commercial MILP solver CPLEX (version 7.5) [1]. The experimental
results are shown in Table1 1. After the column with the instance name, there is the
indication of the optimum value of the cost function. Observe that there are some instances
for which no solver was able to prove optimality. For bsolo we present results for different
configurations: using cutting planes described in the paper and using cuts and restarts with
different initial cutoffs (100 and 200). The last line in the table provides the total number
of instances for which the optimum value was found. The CPU times presented are from a
AMD Athlon processor at 1.9 GHz with 1 GB of physical memory. The time limit for each
instance was set to one hour. If the time limit is reached, we provide an indication of which
was the best upper bound value found when the search was stopped.

Experimental results in Table 1 show that methods based in linear search on the value
of the cost function are not suitable to deal with these instances due to their lack of lower
bound estimation procedures. On the other hand, CPLEX and bsolo are able to prove
optimality for most of these instances. Moreover, by using search restarts, bsolo is able to
prove optimality for instance alu4.b and find a better solution than CPLEX for e64.b and
test4.pi. One should note that CPLEX is faster than bsolo for some instances since CPLEX
is a commercial tool, with highly optimized code. Code tuning in bsolo is expected to allow
significant improvements. Overall the results provide evidence that bsolo becomes quite
robust with the integrated utilization of cutting planes and search restarts. Indeed, bsolo is
able to solve instances no other solver can solve, and for other instances bsolo is the solver
that achieves the lowest upper bound.

8. Conclusions

This paper describes the integration of Gomory mixed-integer cuts and clique cuts in SAT-
based algorithms for Pseudo-Boolean Optimization. Moreover, the paper outlines conditions
for performing constraint learning and non-chronological backtracking based on previously

206

On Using Cutting Planes in Pseudo-Boolean Optimization

bsolo

Benchmark sol. Pueblo minisat+ CPLEX Cuts rst 100 rst 200
5xp1.b 12 237.53 3244.01 4.43 3.01 3.02 3.01

9sym.b 5 16.75 0.24 0.14 0.78 0.79 0.78
alu4.b 50 ub 53 ub 52 ub 50 ub 50 408.10 2472.00
apex4.a 776 ub 798 ub 848 3.92 55.04 55.02 55.65
bench1.pi 121 ub 209 ub 173 2.89 36.09 36.06 36.44
clip.b 15 45.14 6.65 0.36 0.88 0.84 0.84
count.b 24 88.42 1835.46 0.45 1.07 1.08 1.07
e64.b – ub 59 ub 52 ub 49 ub 49 ub 48 ub 48

ex5.pi 65 ub 99 ub 85 40.59 33.62 33.59 33.63

exam.pi 63 ub 136 ub 90 4.36 409.63 138.94 244.54
f51m.b 18 53.19 1336.66 0.89 3.38 4.30 3.36
jac3 15 ub 20 ub 15 0.09 2.46 2.44 2.44
max1024.pi 259 ub 304 ub 279 11.41 ub 260 286.25 1425.00
prom2.pi 287 ub 445 ub 438 3.34 117.74 118.41 120.13
rot.b 115 ub 147 ub 123 71.56 ub 117 323.99 507.64
sao2.b 25 1605.05 ub 26 0.50 3.00 3.00 3.12
test4.pi – ub 179 ub 180 ub 103 ub 104 ub 97 ub 98
Opt. Found 6 5 14 12 15 15

Table 1. Results for logic synthesis instances

inferred cutting planes. These conditions provide novel mechanisms for extending the most
effective SAT techniques to PBO, including the ability for backtracking non-chronologically
from lower bound conflicts. The paper also proposes the utilization of search restarts, and
shows that the constraints learned from identified cutting planes can be useful for accurating
the computed lower bounds. Hence, the constraints inferred from identified cutting planes
motivate the utilization of search restarts.

Experimental results, obtained on representative binate and unate covering instances (a
particular case of PBO), demonstrate that the utilization of cutting planes can be extremely
effective. Its integration into a SAT-based framework results in a competitive PBO solver.
Besides solving instances that other solvers are unable to solve, for instances which no
existing solver is able to solve bsolo can obtain tighter approximation values to the optimum.

References

[1] CPLEX MILP solver. http://www.ilog.com/products/cplex/.

[2] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and Appli-
cations. Pearson Education, 1993.

[3] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. Generic ILP versus specialized 0-1
ILP: An update. In International Conf. on Computer Aided Design, pages 450–457,
November 2002.

[4] A. Atamturk, G. Nemhauser, and M. Savelsbergh. Conflict graphs in solving integer
programming problems. European Journal of Operational Research, 121:40–55, 2000.

207

V.M. Manquinho and J. Marques-Silva

[5] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj. Gomory cuts revisited. Operations
Research Letters, 19:1–9, 1996.

[6] P. Barth. A Davis-Putnam Enumeration Algorithm for Linear Pseudo-Boolean Opti-
mization. Technical Report MPI-I-95-2-003, Max Plank Institute for Computer Science,
1995.

[7] R. E. Bixby. Progress in linear programming. ORSA Journal on computing, 6(1):15–22,
1994.

[8] S. Ceria, G. Cornuéjols, and M. Dawande. Combining and strengthening Gomory cuts.
In Springer-Verlag, editor, Lecture Notes in Computer Science, volume 920. E. Balas
and J. Clausen (eds.), 1995.

[9] D. Chai and A. Kuehlmann. A Fast Pseudo-Boolean Constraint Solver. In Design
Automation Conference, pages 830–835, 2003.

[10] O. Coudert. On Solving Covering Problems. In Design Automation Conference, pages
197–202, June 1996.

[11] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Communications of the Association for Computing Machinery, 5:394–397, July 1962.

[12] H. Dixon and M. Ginsberg. Inference Methods for a Pseudo-Boolean Satisfiability
Solver. In National Conference on Artificial Intelligence, pages 635–640, 2002.

[13] N. Eén and N. Sörensson. Translating pseudo-boolean constraints into sat. Journal on
Satisfiability, Boolean Modeling and Computation, 2:1–25, 2006. Special Issue on SAT
2005 competition and evaluations.

[14] C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through ran-
domization. In National Conference on Artificial Intelligence, pages 431–437, July
1998.

[15] R. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin
of the American Mathematical Society, 64:275–278, 1958.

[16] R. Gomory. An algorithm for the mixed-integer problem. Technical Report RM-2597,
Rand Corporation, 1960.

[17] S. Liao and S. Devadas. Solving Covering Problems Using LPR-Based Lower Bounds.
In Design Automation Conference, pages 117–120, June 1997.

[18] V. Manquinho and J. Marques-Silva. Search pruning techniques in SAT-based
branch-and-bound algorithms for the binate covering problem. IEEE Transactions
on Computer-Aided Design, 21(5):505–516, May 2002.

[19] V. Manquinho and J. P. Marques-Silva. Effective lower bounding techniques for pseudo-
boolean optimization. In Design, Automation and Test in Europe Conference, March
2005.

208

On Using Cutting Planes in Pseudo-Boolean Optimization

[20] J. P. Marques-Silva and K. A. Sakallah. GRASP: A new search algorithm for satisfi-
ability. In International Conf. on Computer-Aided Design, pages 220–227, November
1996.

[21] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Engineering an efficient
SAT solver. In Design Automation Conference, pages 530–535, June 2001.

[22] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John
Wiley & Sons, 1988.

[23] H. Sheini and K. Sakallah. Pueblo: A hybrid pseudo-boolean sat solver. Journal on
Satisfiability, Boolean Modeling and Computation, 2:157–181, 2006. Special Issue on
SAT 2005 competition and evaluations.

[24] T. Villa, T. Kam, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Explicit and
Implicit Algorithms for Binate Covering Problems. IEEE Transactions on Computer
Aided Design, vol. 16(7):677–691, July 1997.

[25] S. Yang. Logic Synthesis and Optimization Benchmarks User Guide. Microelectronics
Center of North Carolina, January 1991.

209

