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Abstract

In this paper we describe two Propositional Satisfiability-based algorithms for solving 0-1 integer linear pro-

grams (ILP). The algorithms are specifically targeted at ILP instances that are highly constrained, i.e. instances for

which the constraints are hard to satisfy. The two algorithms are based on recent algorithms for solving instances of

Propositional Satisfiability (SAT) which are also highly constrained. In particular we illustrate how the algorithms

for solving ILPs can be improved with search pruning techniques commonly used in SAT algorithms. The usefulness

of the proposed algorithms is illustrated on a practical application for which instances are in general highly con-

strained.



1 Introduction

The vast majority of practical and commercial algorithms for solving generic integer linear programs (ILPs) are

based on branch-and-bound search using linear-programming relaxations (LPR) [9]. These algorithms perform in

general better than other algorithmic solutions on a large number of applications. Nevertheless, other algorithmic

solutions can often be preferred for specific applications [2, 7]. For example, for 01-ILPs1, and in different applica-

tion domains, one often finds highly constrained classes of instances, i.e. instances for which the constraints are hard

to satisfy. In these cases, ILP algorithms based on branch-and-bound with LPR may be unable to even find, in a rea-

sonable amount of time, an assignment to the variables that satisfies the constraints. This can happen, for example,

whenever the search algorithm enters portions of the search space where an assignment satisfying the constraints can-

not be found and the algorithm takes too long to figure that out. As a result, and for highly constrained ILPs, we

would like to enable search-based ILP algorithms with the ability to quickly identifying portions of the search space

where satisfying assignments to the constraints cannot be found. One possible approach for solving this problem is to

use Propositional Satisfiability (SAT) algorithms, which in general face hard to satisfy constraints. We start by

reviewing SAT-based ILP algorithms from [2, 12]. Afterwards, we describe how the usual organization of branch-

and-bound search can be easily extended to handle highly constrained ILPs. The procedure we propose applies search

pruning concepts to the basic branch-and-bound algorithm which have been developed for Propositional Satisfiability

(SAT) in recent years [3, 11]. The proposed organization of the branch-and-bound algorithm implements both the

commonly used bound-based pruning techniques as well as pruning techniques derived from SAT algorithms.

The paper is organized as follows. In Section 2 the notational framework used throughout the paper is introduced.

Afterwards, we briefly review backtrack search algorithms for SAT and describe some of the most commonly used

search pruning techniques. In Section 4 we describe two different organizations for SAT-based ILP algorithms, tar-

geted at solving highly constrained integer programs. The next step consists of describing an application of these

algorithms, i.e. the computation of minimum-size prime implicants of Boolean functions [10]. Preliminary results

obtained on different benchmarks clearly justify using the proposed ILP algorithms and strongly suggest that com-

monly used ILP solvers may be inadequate for specific classes of instances. Finally, Section 6 concludes the paper by

suggesting potential applications as well as improvements to the proposed algorithms.

2 Definitions

A 0-1 ILP is defined as follows,

(1)

where  denotes the cost function and  denote the set of linear constraints. Without loss

of generality and for simplifying the description of the algorithms, we assume that all entries inA are defined in the

set . Such restriction basically enables each constraint to be viewed as a propositional clause [2], thus

1. A restricted form of ILPs where variables assume binary values.
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allowing SAT algorithms to be readily used for solving ILPs. For the more general case where the entries inA are

integers, the SAT algorithms must be adapted to handle generalized clauses, as detailed in [2]. Moreover, the tech-

niques described in the paper can also be applied to the more general case where the entries inA andb are real num-

bers.

A propositional formulaϕ in Conjunctive Normal Form (CNF) denotes a boolean function ,

ϕ consists of a product of clauses, where each clauseω is a sum of literals, and a literall is either a variable  or its

complement . For a backtrack search algorithm for SAT [3, 11], aconflict is said to be identified when all literals

of a clause are assigned value 0. A clause  denotes a constraint which can also be viewed as a lin-

ear inequality,  [2, 7]. We use this alternative representation when appropriate. Furthermore, since a

literal  can also be defined by , we shall in general use this latter representation when viewing

clauses as linear inequalities.

3 Backtrack Search Satisfiability Algorithms

A significant number of algorithmic solutions for SAT are based on backtrack search [2, 3, 6-8, 11, 13]. In this sec-

tion we briefly outline the most effective search pruning techniques developed for SAT algorithms in recent years [3,

11]. All these techniques result fromconflict diagnosis, and all basically exploit the information that can be derived

from diagnosis the causes of conflicts identified during backtrack search. As empirically shown in [3, 11], conflict

diagnosis techniques are crucial for solving instances of SAT from real-world applications. Among the different tech-

niques, the following play a key role in pruning the amount of search:

• A non-chronological backtracking search strategy. This backtracking strategy potentially permits skipping over

large portions of the decision tree for some instances of SAT, thusproving the CNF formula (i.e. the constraints)

to be unsatisfied in those portions of the search space.

• Selectiveclause recording. During the search process, and as conflicts are diagnosed, new clauses are created

from the causes of the conflicts. These new clauses are then used for pruning the subsequent search. Moreover,

bounds on the size of recorded clauses can be imposed for preventing an excessive growth of the resulting CNF

formula.

• In most practical situations, instances of SAT can have highly structured CNF representations. The intrinsic

structure of these representations can be exploited by SAT algorithms, after diagnosing the causes of conflicts,

by identifyingnecessary assignments required for preventing conflicts from being identified during the search.

• In addition, other pruning techniques, as for example the ones commonly used in covering problems [5], can be

straightforwardly applied to SAT algorithms.

As we show in the next section, with a suitable organization of the ILP algorithm, each of these search pruning

techniques can also be applied in solving ILPs.
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4 SAT-Based Search Algorithms for Solving 0-1 ILPs

One of the first SAT-based algorithms for solving 0-1 ILP isopbdp, described in [2]. This algorithm iterates, in

decreasing order, through the possible valuesk of the cost function. At each stage a new clause is added to the set of

constraints, which basically requires the cost function to be no greater than the current iteration valuek of the cost

function. The resulting set of constraints is solved as an instance of SAT, in which generalized clauses are

assumed [2]. The process is iterated until an unsatisfied instance is reached, thus defining the solution to the ILP as

the previous value ofk. This algorithm will henceforth be referred to as the SAT-basedlinear-search ILP

algorithm [12] (ls_ilp) and is further analyzed in Section 4.1 where some of its main drawbacks are summarized.

Besides the linear-search ILP algorithm, we describe in Section 4.2 abranch-and-bound ILP algorithm (bb_ilp) also

built around a SAT solver.

4.1 SAT-Based Linear Search Algorithm

Let us consider the cost function . The possible values assumed by the cost function for the different assign-

ments to the variables are in the range , where,

(2)

(LLB denotes thelowest lower bound on the value of the cost function.) The ILP algorithm consists of applying the

following sequence of steps, starting from an upper bound of  on the value of the cost function:

1. Create a new inequality .

2. Solve the resulting instance of satisfiability. (Note that the resulting instance of satisfiability assumes arithmetic

operations, but updating most SAT algorithms for handling this generalization is straightforward.)

3. If the instance of SAT is satisfiable, then decrementk (i.e. iterate target value of the cost function) and go back

to step 1. Otherwise, report that the solution to the ILP is .

Note that this ILP algorithm allows for any SAT algorithm to be used as the underlying SAT testing engine. The

proposed ILP algorithm is illustrated in Figure 1, and follows the one in [12]. For the current implementation of

ls_ilp, thesolve_sat() function call invokes the GRASP SAT algorithm [11].

4.2 SAT-Based Branch and Bound Algorithm

The branch-and-bound algorithm for solving ILPs extends the general backtrack search algorithm for solving SAT

described in Section 3. Besides implementing backtrack search, additional pruning can be achieved throughbound-

ing. This added pruning ability is illustrated in Figure 2. Let UB denote the lowestcomputed upper bound on the solu-

tion of (1), LBe denote anestimated lower bound on the solution of (1) and OPT denote the solution of (1), i.e. the

least feasible value of  when the variables assume binary values. If the estimated lower bound is less than the

already computed upper bound (as shown in Figure 2-(a)), then the search cannot be bound since it may still be possi-

ble to reduce the value of the upper bound. Clearly, the search can be bound whenever the estimated lower bound to
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the value of  is larger than or equal to the existing upper bound on the value of , as illustrated in Figure 2-

(b). Finally, observe that Figure 2-(c) denotes the conditions after which the upper bound will no longer be updated

during the search (i.e. ).

Moreover, since the branch and bound procedure is embedded in the backtrack search SAT algorithm, every prun-

ing technique used by the SAT algorithm can also be used in solving the ILP. This is particularly useful whenever a

constraint of (1) becomes unsatisfied, since in this situation conflict diagnosis can be applied. The branch-and-bound

algorithm is shown in Figure 3, and it consists of the following main steps:

1. Initialize the upper bound to highest possible valueHUB (thehighest upper bound on the cost function) plus 1.

Observe that this value is given by,

Figure 1: SAT-based linear search algorithm

int ls_ilp (ϕ)
{

; // Using (3)
while (  ) { // Using (2)

;

status = solve_sat (ϕ); // Invoke SAT solver
;

if ( status == SATISFIABLE ) {

; // Get a tighter value for k

−− ;

} else { ++ ; break; }

return ;

}
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Figure 2: Using bounding in the ILP algorithm
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. (3)

2. If no decision can be made (i.e. a solution to the constraints has been identified), then compute an upper bound

on the minimum value of the cost function . Update current upper bound and issue a conflict to guarantee

that the search is bound. Otherwise, branch on a given decision variable (i.e. make decision assignment).

3. Apply boolean constraint propagation [13], viaDeduce(), for identifying necessary assignments. If a conflict

is reached, then diagnose the conflict, record relevant clauses, and either proceed with the search process or

backtrack if required.

4. Estimate lower bound. If this value is larger than or equal to the current upper bound, then issue a conflict,

diagnose the conflict, backtrack, and continue the search from step 2.

Whereas upper bounds to the cost function  are updated as feasible assignments are identified, lower bounds

to the current set of variable assignments are estimated. Different lower bound estimation procedures can be used,

includinglinear programming relaxations and lagrangian relaxations [1, 9]. In our current implementation we have

used the lower bound estimation procedures described in [5], since these procedures are the most suitable for the tar-

get application described in Section 5.

The two ILP algorithms,ls_ilp andbb_ilp have significantly different organizations. In general, we believebb_ilp

to be a better solution since clauses are not explicitly added to the original set of constraints. In general, clauses

involving the cost function contain a large number of literals, which may affect negatively the effectiveness of the

search pruning techniques described in Section 3. In the current implementation both algorithms,bb_ilp andls_ilp,

use the GRASP SAT solver [11] as the back-end SAT engine, but other SAT solvers could also be used [3]. Moreover,
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Figure 3: SAT-based branch and bound ILP algorithm

int bb_ilp (ϕ)
{

_UB = ; // Using (3)
while (TRUE) {

if (Solution_found() || Decide() != DECISION) { // Elect assignment
Update_UB();

Issue_UB_based_conflict();

}

while (Deduce() == CONFLICT) { // Find necessary assignments
if (Diagnose() == CONFLICT) { return _UB; } // Diagnose conflict

}

while (Estimate_LB()  _UB) {

Issue_LB_based_conflict();

if (Diagnose() == CONFLICT) { return _UB; }

}

}

}
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we note that forbb_ilp the ILP algorithm is defined as a new layer on top of the SAT solver, whereas forls_ilp the

ILP algorithm explicitly invokes the SAT solver.

5 An Application: Computing Minimum-Size Prime Implicants

In this section we describe an application that in general yields highly constrained ILPs. Given a propositional for-

mula ϕ in Conjunctive Normal Form (CNF), denoting a boolean functionf, the problem of computing a minimum-

size assignment (in the number of literals) that satisfiesf is referred to as theminimum-size prime implicant problem.

Minimum-size prime implicants find application in many areas including, among others, Automated Reasoning, Non-

Monotonic Reasoning and Electronic Design Automation. As we describe below, the minimum-size prime implicant

computation problem can be formulated as an ILP. We note, however, that instances of SAT, which can in general be

hard to satisfy, yield ILPs that are accordingly highly constrained. As we show in Section 5.2, the proposed branch-

and-bound ILP algorithm is extremely competitive in solving this problem.

5.1 The ILP Model

Given a description of a Boolean function in CNF, it is straightforward to formulate the computation of the mini-

mum-size prime implicant as an integer linear program [10]. For this purpose we describe a simplified version of the

ILP formulation introduced in [10]. Given a CNF formulaϕ, which is defined on a set of variables , and

which denotes a Boolean function , apply the following transformation:

1. Create a new set of boolean variables , where  is associated with literal , and  is

associated with literal .

2. For each clause , replace each literal  with  if , or with  if .

3. For each pair of variables,  and , require that at most one is set to one. Hence, .

4. The set of inequalities obtained from steps 2. and 3. can be viewed as a single set of inequalities .

Finally, define the cost function to be,

(4)

It is clear that the minimum value of (4), that satisfies the given constraints, denotes a minimum-size prime impli-

cant of the original CNF formulaϕ (see [10] for additional details).

5.2 Experimental Results

In this section we include experimental results of the two ILP algorithms,bb_ilp andls_ilp, for computing mini-

mum-size prime implicants of Boolean functions. We also compare these two SAT-based ILP algorithms with other

ILP solvers,lp-solve[4], opbdp [2], and the commercial optimizerCPLEX. Moreover, the binate covering tool

scherzo [5] is also evaluated, since minimum-size prime implicant computation can also be viewed as a restricted

form of the binate covering problem (or alternatively as a 01-ILP). For this purpose we use a representative set of the
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satisfiable instances of the DIMACS benchmarks [8], that are mapped to instances of the minimum size prime impli-

cant problem. The experimental results, obtained on a SUN 5/85 machine with 64 MByte of physical memory, are

shown in Table 1. For each benchmark and for each tool were allowed 3000 seconds of CPU time. Columnmin indi-

cates the size of the minimum-size prime implicant, when this size is known. (Observe that for some of the bench-

marks the minimum size prime implicant is still unknown.) In Table 1 and for each algorithm, columnT denotes the

CPU time and columnUB denotes the computed upper bound on the minimum size prime implicant for each bench-

mark. When a given algorithm terminates, it reports the minimum size prime implicant if it was identified, otherwise

the lowest computed upper bound is reported provided at least one upper bound was identified. For the results shown,

whenever a tool quits earlier than 3000 sec, then the tool exceeded the available virtual memory (i.e. 64 MByte).

As can be concluded, general-purpose ILP solvers, such asCPLEX and lp-solve, are inadequate for computing

minimum-size prime implicants. Similarly, despite the very promising results as an algorithm for solving binate cov-

Benchmark min
CPLEX lp-solve [4] scherzo [5] opbdp [2] ls_ilp bb_ilp

UB T UB T UB T UB T UB T UB T

aim-50-1_6-yes1-1 50 50 116.5 — > 3,000 50 2.33 50 0.09 50 0.05 50 0.05

aim-50-2_0-yes1-2 50 50 109.5 — > 3,000 50 5.65 50 0.64 50 0.02 50 0.03

aim-50-3_4-yes1-3 50 50 62.9 50 377.1 50 0.57 50 0.40 50 0.08 50 0.05

aim-50-6_0-yes1-4 50 50 26.9 50 96.8 50 0.73 50 0.48 50 0.07 50 0.04

aim-100-1_6-yes1-2 100 — > 3,000 — > 3,000 — > 1,000 100 > 3,000 100 0.09 100 0.07

aim-100-2_0-yes1-3 100 — > 3,000 — > 3,000 100 691.57 100 42.45 100 0.17 100 0.11

aim-100-3_4-yes1-4 100 — > 3,000 — > 3,000 100 35.47 100 0.81 100 0.47 100 0.15

aim-100-6_0-yes1-1 100 100 294.3 — > 3,000 100 2.78 100 0.18 100 0.32 100 0.11

aim-200-1_6-yes1-3 200 — > 3,000 — > 3,000 — > 345 — > 3,000 200 0.22 200 0.20

aim-200-2_0-yes1-4 200 — > 3,000 — > 3,000 — > 1,705 — > 3,000 200 0.83 200 0.71

aim-200-3_4-yes1-1 200 — > 3,000 — > 3,000 — > 3,000 200 41.84 200 4.32 200 0.70

aim-200-6_0-yes1-2 200 — > 3,000 — > 3,000 200 619.38 200 4.59 200 3.58 200 5.18

ii8a1 54 54 63.3 54 786.90 54 0.98 54 1.93 54 861.53 54 9.34

ii8b2 — 388 > 3,000 474 > 3,000 — > 3,000 — > 3,000 379 > 3,000 379 > 3,000

ii8c2 — 629 > 3,000 668 > 3,000 — > 3,000 — > 3,000 525 > 3,000 525 > 3,000

ii8d2 — 588 > 3,000 — > 3,000 — > 3,000 — > 3,000 540 > 3,000 540 > 3,000

ii8e2 — 653 > 3,000 — > 3,000 — > 3,000 — > 3,000 494 > 3,000 494 > 3,000

jnh1 92 93 > 3,000 — > 3,000 92 70.00 92 2.24 92 17.96 92 3.79

jnh7 89 90 > 3,000 — > 3,000 89 5.35 89 0.45 89 9.06 89 0.91

jnh12 94 94 2,529 — > 3,000 94 3.07 94 0.12 94 0.58 94 0.27

jnh17 95 95 873.9 — > 3,000 95 17.28 95 0.30 95 2.53 95 0.77

ssa7552-038 — 1449 > 3,000 1450 > 3,000 — > 223 1452 > 3,000 1448 > 1,205 1448 > 500

Table 1: Results on selected benchmarks



ering problems [5],scherzo performs particularly poorly when computing minimum-size prime implicants. The three

SAT-based ILP solvers can handle a large number of benchmarks and, in general,ls_ilp andbb_ilp perform better and

are more robust thanopbdp. For the JNH benchmarks,opbdp performs better because the amount of search is similar

and the overhead of the underlying GRASP SAT algorithm is larger. One key drawback ofls_ilp derives from using

an ILP layer around the SAT algorithm which creates large additional clauses. For the minimum-size prime implicant

problem, these additional clauses involveall variables in the problem representation. Hence, conflicts involving this

clause necessarily lead to chronological backtracking2, and so the most useful features of GRASP [11] cannot be

exploited. Finally, as we expected and as the experimental results confirm,bb_ilp tends to be a more efficient search

algorithm thanls_ilp. From the obtained experimental results, it can also be concluded that the computation of the

minimum-size prime implicant can be a particularly hard problem for specific sets of instances. This is the case, for

example, with the ii8 and ssa7552 benchmarks.

6 Conclusions

In this paper we describe a new branch-and-bound algorithm,bb_ilp, for solving Integer Linear Programs (ILPs),

that is based on backtrack search algorithms for Propositional Satisfiability (SAT) and that can incorporate powerful

search pruning techniques commonly used in SAT algorithms. In addition, we describe another ILP algorithm,ls_ilp,

which is based on the SAT-based ILP algorithm described in [2], but which implements more effective search pruning

techniques. Bothbb_ilp andls_ilp are the first ILP algorithms that incorporate pruning techniques based on conflict

diagnosis, thus implementing non-chronological backtracking, clause recording techniques and identification of nec-

essary assignments. These pruning techniques are known to be effective in solving hard instances of SAT [3, 11], and

consequently are targeted at highly constrained integer programs, for which the constraints are also hard to satisfy.

One potential application of both algorithms is the computation of minimum-size prime implicants of Boolean func-

tions, for whichbb_ilp, ls_ilp and other SAT-based ILP algorithms are particularly well-suited for.

Despite the promising results given in the previous section for a specific application, SAT-based ILP algorithms

still need to be significantly improved before becoming competitive with other ILP algorithms in more general appli-

cation domains. Nevertheless, the preliminary results are promising, and are expected to continue to be so for applica-

tion domains where most instances are highly constrained.

Future improvements tobb_ilp involve the incorporation of new search pruning techniques, including for example

the ones commonly utilized in solving set covering problems [5]. Furthermore, improved lower bounding procedures,

based onlinear programming relaxations and lagrangian relaxations [1, 4, 9], are being developed.
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