Satisfiability-Based Algorithms for 0-1 Integer Programming

Vasco M. Manquinho, Jo&o P. Marques Silva, Arlindo L. Oliveira and Karem A. Sakallah

Cadence European Laboratories / INESC
Instituto Superior Técnico
R. Alves Redol, 9, 1
1000 Lisboa, Portugal
{vmm, jpms,aml}@algos.inesc.pt, karem@eecs.umich.edu

Abstract

In this paper we describe two Propositional Satisfiability-based algorithms for solving 0-1 integer linear pro-
grams (ILP). The algorithms are specifically targeted at ILP instances that are highly constrained, i.e. instances for
which the constraints are hard to satisfy. The two algorithms are based on recent algorithms for solving instances of
Propositional Satisfiability (SAT) which are also highly constrained. In particular we illustrate how the algorithms
for solving ILPs can be improved with search pruning techniques commonly used in SAT algorithms. The usefulness
of the proposed algorithms is illustrated on a practical application for which instances are in general highly con-
strained.

1 Introduction

The vast majority of practical and commercial algorithms for solving generic integer linear programs (ILPs) are
based on branch-and-bound search using linear-programming relaxations (LPR) [9]. These algorithms perform in
general better than other algorithmic solutions on a large number of applications. Nevertheless, other algorithmic
solutions can often be preferred for specific applications [2, 7]. For example, for 31-4bBsn different applica-
tion domains, one often finds highly constrained classes of instances, i.e. instances for which the constraints are hard
to satisfy. In these cases, ILP algorithms based on branch-and-bound with LPR may be unable to even find, in a rea-
sonable amount of time, an assignment to the variables that satisfies the constraints. This can happen, for example,
whenever the search algorithm enters portions of the search space where an assignment satisfying the constraints can-
not be found and the algorithm takes too long to figure that out. As a result, and for highly constrained ILPs, we
would like to enable search-based ILP algorithms with the ability to quickly identifying portions of the search space
where satisfying assignments to the constraints cannot be found. One possible approach for solving this problem is to
use Propositional Satisfiability (SAT) algorithms, which in general face hard to satisfy constraints. We start by
reviewing SAT-based ILP algorithms from [2, 12]. Afterwards, we describe how the usual organization of branch-
and-bound search can be easily extended to handle highly constrained ILPs. The procedure we propose applies search
pruning concepts to the basic branch-and-bound algorithm which have been developed for Propositional Satisfiability
(SAT) in recent years [3, 11]. The proposed organization of the branch-and-bound algorithm implements both the
commonly used bound-based pruning techniques as well as pruning techniques derived from SAT algorithms.

The paper is organized as follows. In Section 2 the notational framework used throughout the paper is introduced.
Afterwards, we briefly review backtrack search algorithms for SAT and describe some of the most commonly used
search pruning techniques. In Section 4 we describe two different organizations for SAT-based ILP algorithms, tar-
geted at solving highly constrained integer programs. The next step consists of describing an application of these
algorithms, i.e. the computation of minimum-size prime implicants of Boolean functions [10]. Preliminary results
obtained on different benchmarks clearly justify using the proposed ILP algorithms and strongly suggest that com-
monly used ILP solvers may be inadequate for specific classes of instances. Finally, Section 6 concludes the paper by
suggesting potential applications as well as improvements to the proposed algorithms.

2 Definitions

A 0-1 ILP is defined as follows,

minimize cT X)
subjectto Alk=b x0{0 1"

wherecT [x denotes the cost function ahdx = b, x O {0, 1} N denote the set of linear constraints. Without loss
of generality and for simplifying the description of the algorithms, we assume that all en&iesdrdefined in the
set {—1, 0, 1} . Such restriction basically enables each constraint to be viewed as a propositional clause [2], thus

1. Arestricted form of ILPs where variables assume binary values.

allowing SAT algorithms to be readily used for solving ILPs. For the more general case where the ehtaes in
integers, the SAT algorithms must be adapted to handle generalized clauses, as detailed in [2]. Moreover, the tech-
nigues described in the paper can also be applied to the more general case where thefeatri#sare real num-

bers.

A propositional formula in Conjunctive Normal Form (CNF) denotes a boolean fundtiofi0, 1} ", {0, 1} ,
¢ consists of a product of clauses, where each clausa sum of literals, and a litetaks either a variablexi or its
complememxi' . For a backtrack search algorithm for SAT [3, 1ddnéict is said to be identified when all literals

of a clause are assigned value 0. A clause (I1 +...+ Ik) denotes a constraint which can also be viewed as a lin-
ear inequality,l1 +...+ Ikz 1 [2, 7]. We use this alternative representation when appropriate. Furthermore, since a
literal | = x;' can also be defined by= 1-x, , we shall in general use this latter representation when viewing

clauses as linear inequalities.

3 Backtrack Search Satisfiability Algorithms

A significant number of algorithmic solutions for SAT are based on backtrack search [2, 3, 6-8, 11, 13]. In this sec-
tion we briefly outline the most effective search pruning techniques developed for SAT algorithms in recent years [3,
11]. All these techniques result frazonflict diagnosis and all basically exploit the information that can be derived
from diagnosis the causes of conflicts identified during backtrack search. As empirically shown in [3, 11], conflict
diagnosis techniques are crucial for solving instances of SAT from real-world applications. Among the different tech-
nigues, the following play a key role in pruning the amount of search:

* A non-chronological backtrackingearch strategy. This backtracking strategy potentially permits skipping over
large portions of the decision tree for some instances of SATptavimgthe CNF formula (i.e. the constraints)
to be unsatisfied in those portions of the search space.

» Selectiveclause recording During the search process, and as conflicts are diagnosed, new clauses are created
from the causes of the conflicts. These new clauses are then used for pruning the subsequent search. Moreover,
bounds on the size of recorded clauses can be imposed for preventing an excessive growth of the resulting CNF
formula.

« In most practical situations, instances of SAT can have highly structured CNF representations. The intrinsic
structure of these representations can be exploited by SAT algorithms, after diagnosing the causes of conflicts,
by identifyingnecessary assignmentsquired for preventing conflicts from being identified during the search.

» In addition, other pruning techniques, as for example the ones commonly used in covering problems [5], can be
straightforwardly applied to SAT algorithms.

As we show in the next section, with a suitable organization of the ILP algorithm, each of these search pruning
technigues can also be applied in solving ILPs.

4 SAT-Based Search Algorithms for Solving 0-1 ILPs

One of the first SAT-based algorithms for solving 0-1 ILBpbdp described in [2]This algorithm iterates, in
decreasing order, through the possible vakuekthe cost function. At each stage a new clause is added to the set of
constraints, which basically requires the cost function to be no greater than the current iteratikrofveieecost
function. The resulting set of constraints is solved as an instance of SAT, in which generalized clauses are
assumed [2]. The process is iterated until an unsatisfied instance is reached, thus defining the solution to the ILP as
the previous value ok. This algorithm will henceforth be referred to as the SAT-bdsexhr-search ILP
algorithm [12] (s_ilp) and is further analyzed in Section 4.1 where some of its main drawbacks are summarized.
Besides the linear-search ILP algorithm, we describe in Sectionbdaheh-and-boundLP algorithm pb_ilp) also
built around a SAT solver.

4.1 SAT-Based Linear Search Algorithm

. T
Let us consider the cost functiean (kX . The possible values assumed by the cost function for the different assign-

ments to the variables are in the rafdeL B, ..., HUB} , Where,
LLB = Z c 2)
c Oc'Oc. <0
(LLB denotes thdéowest lower bounan the value of the cost function.) The ILP algorithm consists of applying the
following sequence of steps, starting from an upper boukd-ofHUB on the value of the cost function:

1. Create a new inequalityT k<k

2. Solve the resulting instance of satisfiability. (Note that the resulting instance of satisfiability assumes arithmetic
operations, but updating most SAT algorithms for handling this generalization is straightforward.)

3. If the instance of SAT is satisfiable, then decrerkdnt. iterate target value of the cost function) and go back
to step 1. Otherwise, report that the solution to the ILEHL

Note that this ILP algorithm allows for any SAT algorithm to be used as the underlying SAT testing engine. The
proposed ILP algorithm is illustrated in Figure 1, and follows the one in [12]. For the current implementation of
Is_ilp, thesol ve_sat () function call invokes the GRASP SAT algorithm [11].

4.2 SAT-Based Branch and Bound Algorithm

The branch-and-bound algorithm for solving ILPs extends the general backtrack search algorithm for solving SAT
described in Section 3. Besides implementing backtrack search, additional pruning can be achievedatnokdgh
ing. This added pruning ability is illustrated in Figure 2. Let UB denote the lawegtiutedupper bound on the solu-
tion of (1), LB, denote arestimatedower bound on the solution of (1) and OPT denote the solution of (1), i.e. the
least feasible value af (x when the variables assume binary values. If the estimated lower bound is less than the
already computed upper bound (as shown in Figure 2-(a)), then the search cannot be bound since it may still be possi-
ble to reduce the value of the upper bound. Clearly, the search can be bound whenever the estimated lower bound to

int Is_ilp (¢)
{
k = HUB; I/l Using (3)
while (k=2 LLB_) { Il Using (2)
o =00{c k<k};
status = solve_sat (¢); I/l 1 nvoke SAT sol ver
¢ =¢—{c k<k};
if (status == SATI SFIABLE) {
k = c: /l Get a tighter value for k
——k;xi =1
} else { ++Kk; break; }
return k;
}
Figure 1: SAT-based linear search algorithm
A A A A
-+ uB —f— UB —+— LBg
— LB,
A+ LB, —— OPT +— UB
—+——— UB=0PT
—— OPT ——— LB, —— OPT
(a) Bounding cannot be applied (b) Bounding can be applied
A A
-+ UB=OPT — LB,
4 LB, —+——— UB=0PT
(c) UB cannot decrease
Figure 2: Using bounding in the ILP algorithm
T . L T . -
the value oft ' [k is larger than or equal to the existing upper bound on the valugiof , as illustrated in Figure 2-

(b). Finally, observe that Figure 2-(c) denotes the conditions after which the upper bound will no longer be updated
during the search (i.&JB = OPT).

Moreover, since the branch and bound procedure is embedded in the backtrack search SAT algorithm, every prun-
ing technique used by the SAT algorithm can also be used in solving the ILP. This is particularly useful whenever a
constraint of (1) becomes unsatisfied, since in this situation conflict diagnosis can be applied. The branch-and-bound
algorithm is shown in Figure 3, and it consists of the following main steps:

1. Initialize the upper bound to highest possible vl (thehighest upper boundn the cost function) plus 1.
Observe that this value is given by,

int bb_ilp (¢)
{
_UB = HUB+1; /I Using (3)
while (TRUE) {
if (Solution_found() || Decide() !'= DECISION) { // El ect assignnent
Updat e_UB() ;
I ssue_UB_based_conflict();
}
whi | e (Deduce() == CONFLICT) { /I Find necessary assignments
if (Diagnose() == CONFLICT) { return _UB; } /I Di agnose conflict
}
while (Estimate_ LB() = _UB) {
I ssue_LB based_conflict();
if (Diagnose() == CONFLICT) { return _UB; }
}
}
}

Figure 3: SAT-based branch and bound ILP algorithm

HUB = Z c. 3)
c Oc Dci >0

2. If no decision can be made (i.e. a solution to the constraints has been identified), then compute an upper bound
. . T . .
on the minimum value of the cost function(X . Update current upper bound and issue a conflict to guarantee
that the search is bound. Otherwise, branch on a given decision variable (i.e. make decision assignment).

3. Apply boolean constraint propagation [13], Daduce(), for identifying necessary assignments. If a conflict
is reached, then diagnose the conflict, record relevant clauses, and either proceed with the search process or
backtrack if required.

4. Estimate lower bound. If this value is larger than or equal to the current upper bound, then issue a conflict,
diagnose the conflict, backtrack, and continue the search from step 2.

Whereas upper bounds to the cost funcdgntk are updated as feasible assignments are identified, lower bounds
to the current set of variable assignments are estimated. Different lower bound estimation procedures can be used,
includinglinear programming relaxationsandlagrangian relaxationg1, 9]. In our current implementation we have
used the lower bound estimation procedures described in [5], since these procedures are the most suitable for the tar-
get application described in Section 5.

The two ILP algorithmds_ilp andbb_ilp have significantly different organizations. In general, we belivép
to be a better solution since clauses are not explicitly added to the original set of constraints. In general, clauses
involving the cost function contain a large number of literals, which may affect negatively the effectiveness of the
search pruning techniques described in Section 3. In the current implementation both algobitiipmand|s_ilp,
use the GRASP SAT solver [11] as the back-end SAT engine, but other SAT solvers could also be used [3]. Moreover,

we note that fobb_ilp the ILP algorithm is defined as a new layer on top of the SAT solver, wherdssilfpthe
ILP algorithm explicitly invokes the SAT solver.

5 An Application: Computing Minimum-Size Prime Implicants

In this section we describe an application that in general yields highly constrained ILPs. Given a propositional for-
mula ¢ in Conjunctive Normal Form (CNF), denoting a boolean fundtighe problem of computing a minimum-
size assignment (in the number of literals) that satisigeeferred to as thminimum-size prime implicant problem
Minimume-size prime implicants find application in many areas including, among others, Automated Reasoning, Non-
Monotonic Reasoning and Electronic Design Automation. As we describe below, the minimum-size prime implicant
computation problem can be formulated as an ILP. We note, however, that instances of SAT, which can in general be
hard to satisfy, yield ILPs that are accordingly highly constrained. As we show in Section 5.2, the proposed branch-
and-bound ILP algorithm is extremely competitive in solving this problem.

5.1 The ILP Model

Given a description of a Boolean function in CNF, it is straightforward to formulate the computation of the mini-
mum-size prime implicant as an integer linear program [10]. For this purpose we describe a simplified version of the
ILP formulation introduced in [10]. Given a CNF formdlawhich is defined on a set of variabl{exl, ey X} , and
which denotes a Boolean functién { 0, 1} ", {0,1} , apply the following transformation:

1. Create a new set of boolean variabl{eysl, y2n} , legfe_ 1 is associated with)titeral y2iand is
associated with Iiterati'

2. For each clause = (I1+ +Im) , replace each Iitdajral w&lip_l IJ. i X, , or wﬂp I]. i xi'
3. For each pair of variableg,. ; amg , require that at most one is set to one.yenge; y,,. <1

4. The set of inequalities obtained from steps 2. and 3. can be viewed as a single set of inegjilitids
Finally, define the cost function to be,

2n
min ! z yj] (4)
=1

It is clear that the minimum value of (4), that satisfies the given constraints, denotes a minimum-size prime impli-
cant of the original CNF formulé (see [10] for additional details).

5.2 Experimental Results

In this section we include experimental results of the two ILP algoritbimslp andls_ilp, for computing mini-
mum-size prime implicants of Boolean functions. We also compare these two SAT-based ILP algorithms with other
ILP solvers,Ip-solve[4], opbdp [2], and the commercial optimiz& PLEX Moreover, the binate covering tool
scherzo[5] is also evaluated, since minimum-size prime implicant computation can also be viewed as a restricted
form of the binate covering problem (or alternatively as a 01-ILP). For this purpose we use a representative set of the

CPLEX Ip-solve[4] scherzo[5] opbdp[2] Is_ilp bb_ilp
Benchmark min
uB T uB T uB T uB T uB T uB T

aim-50-1_6-yes1-1 50 50 1165 +— >3,000 (50 2.33 | 50 0.09 | 50 0.05| 50
aim-50-2_0-yes1-2 50 50 1095 +— >3,000 |50 5.65 | 50 0.64 | 50 0.02| 50
aim-50-3_4-yes1-3 50 50 629 50 377.1 |50 0.57 | 50 0.40 | 50 0.08| 50
aim-50-6_0-yes1-4 50 50 269 50 96.8 |50 Q.73 |50 0.48 | 50 0.07 | 50
aim-100-1_6-yes1-2 100 + >3,000 — >3,000 |— >1,000 (100 > 3,000 | 100 0.09| 100
aim-100-2_0-yes1-3 100 +— >3,000 — >3,000 100 691.57 |100 42.45| 100 0.17] 100
aim-100-3_4-yes1-4 100 + >3,000 — >3,000 100 3%.47 |100 0.81 | 100 0.47| 100
aim-100-6_0O-yes1-1 100 100 2943 |— >3,000 {100 .78 |100 0.18 | 100 0.32| 100
aim-200-1_6-yes1-3 200 -— >3,000 — >3,000 |— >345 |— >3J/000 |200 0.22 | 200
aim-200-2_0-yes1-4 200 + >3,000 — >3,000 |— >1,/05 | — > 3,000 |200 0.83| 200
aim-200-3_4-yes1-1 200 + >3,000 — >3,000 |— >3,000 200 41.84 | 200 4.32| 200
aim-200-6_0-yes1-22 200 +— >3,000 — >3,000 200 619.38 |200 459 | 200 3.58| 200
ii8al 54/ 54 63.3 54 786.90 54 098 b4 193 |54 861.53 | 54 <
ii8b2 —| 388 >3,000 474 >3,000 — >3000 (— >3,000 879 >3J000 (379 >3
ii8c2 —| 629 >3,000 668 >3,000 — >3,000 — >3,000 525 >3J000 |525 >3
ii8d2 —| 588 >3,000 —+ >3000 -+ >3,000 +— >3000 540 >3,000 540 >3,
ii8e2 —| 653 >3,000 — >3,000 -+ >3000 +— >3,000 494 >3,000 |494 >3,
jnhl 92 93 >3,000 — >3,000 92 70.00 92 2124 |92 17.96 | 92 <
jnh7 89 90 >3,000 —+ >3,000 89 585 89 0145 |89 9.06 | 89 C
jnh12 94 94 2529 —+ >3,000 94 3.07 94 0{12 |94 0.58 | 94 C
jnh17 95 95 873.9 — >3,000 95 17.28 |95 0130 |95 253 | 95 C
ssa7552-038 — 1449 >3,000 1450 >3,000 | — >[223 1452 > 3,000 1448 >1,205 1448

Table 1: Results on selected benchmarks

satisfiable instances of the DIMACS benchmarks [8], that are mapped to instances of the minimum size prime impli-
cant problem. The experimental results, obtained on a SUN 5/85 machine with 64 MByte of physical memory, are
shown in Table 1. For each benchmark and for each tool were allowed 3000 seconds of CPU timem@oindin

cates the size of the minimum-size prime implicant, when this size is known. (Observe that for some of the bench-
marks the minimum size prime implicant is still unknown.) In Table 1 and for each algorithm, cbldemotes the

CPU time and columb/B denotes the computed upper bound on the minimum size prime implicant for each bench-
mark. When a given algorithm terminates, it reports the minimum size prime implicant if it was identified, otherwise
the lowest computed upper bound is reported provided at least one upper bound was identified. For the results shown,
whenever a tool quits earlier than 3000 sec, then the tool exceeded the available virtual memory (i.e. 64 MByte).

As can be concluded, general-purpose ILP solvers, su€iPBEX andlp-solve are inadequate for computing
minimume-size prime implicants. Similarly, despite the very promising results as an algorithm for solving binate cov-

ering problems [5]scherzagperforms particularly poorly when computing minimum-size prime implicants. The three
SAT-based ILP solvers can handle a large number of benchmarks and, in ¢erigralhdbb_ilp perform better and

are more robust thaspbdp For the JNH benchmarkspbdpperforms better because the amount of search is similar
and the overhead of the underlying GRASP SAT algorithm is larger. One key drawlsdkpaferives from using

an ILP layer around the SAT algorithm which creates large additional clauses. For the minimum-size prime implicant
problem, these additional clauses involdevariables in the problem representation. Hence, conflicts involving this
clause necessarily lead to chronological backtra@kiagd so the most useful features of GRASP [11] cannot be
exploited. Finally, as we expected and as the experimental results cdfiriip,tends to be a more efficient search
algorithm thanls_ilp. From the obtained experimental results, it can also be concluded that the computation of the
minimume-size prime implicant can be a particularly hard problem for specific sets of instances. This is the case, for
example, with the ii8 and ssa7552 benchmarks.

6 Conclusions

In this paper we describe a new branch-and-bound algotihnilp, for solving Integer Linear Programs (ILPS),
that is based on backtrack search algorithms for Propositional Satisfiability (SAT) and that can incorporate powerful
search pruning techniques commonly used in SAT algorithms. In addition, we describe another ILP algoitithm,
which is based on the SAT-based ILP algorithm described in [2], but which implements more effective search pruning
techniques. Botlbb_ilp andls_ilp are the first ILP algorithms that incorporate pruning technigues based on conflict
diagnosis, thus implementing non-chronological backtracking, clause recording techniques and identification of nec-
essary assignments. These pruning techniques are known to be effective in solving hard instances of SAT [3, 11], and
consequently are targeted at highly constrained integer programs, for which the constraints are also hard to satisfy.
One potential application of both algorithms is the computation of minimum-size prime implicants of Boolean func-
tions, for whichbb_ilp, Is_ilp and other SAT-based ILP algorithms are particularly well-suited for.

Despite the promising results given in the previous section for a specific application, SAT-based ILP algorithms
still need to be significantly improved before becoming competitive with other ILP algorithms in more general appli-
cation domains. Nevertheless, the preliminary results are promising, and are expected to continue to be so for applica-
tion domains where most instances are highly constrained.

Future improvements tab_ilp involve the incorporation of new search pruning techniques, including for example
the ones commonly utilized in solving set covering problems [5]. Furthermore, improved lower bounding procedures,
based orinear programming relaxationsandlagrangian relaxationg1, 4, 9], are being developed.

References

[1] R.K.Ahuja, T. L. Magnanti and J. B. OrliNetwork Flows: Theory, Algorithms, and ApplicatipRsentice-Hall, 1993.

[2] P. Barth, “A Davis-Putnam Based Enumeration Algorithm for Linear Pseudo-Boolean Optimization,” Technical Report
MPI-1-95-2-003, Max-Planck-Institut fir Informatik, January 1995. (source code for opbdp available from ftp://ftp.mpi-

2. In such a situation, each conflict invohalsvariables and so backtracking is necessarily chronological, to the most
recent decision assignment [11].

(3]

[4]

5]
[6]

[7]
(8]
9]
[10]
[11]

[12]
[13]

sb.mpg.de/pub/guide/staff/barth/opbdp/opbdp.tar.Z.)

R. Bayardo Jr. and R. Schrag, “Using CSP Look-Back Techniques to Solve Real-World SAT Instancesgedifys of
the National Conference on Artificial Intelligence (AAAIS9TP97. (source code for rel_sat available from http:/
www.cs.utexas.edu/users/bayardo/bin/rel_sat.tar.Z.)

M. R. C. M. Berkelaar, UNIXM Manual Page of Ip-solve. Eindhoven University of Technology, Design Automation Sec-
tion, 1992. (source code for Ip_solve available from ftp://ftp.es.ele.tue.nl/pub/lp_solve/lp_solve_2.2.tar.gz.)

O. Coudert, “On Solving Covering Problems,”"Rnoceedings of the Design Automation Conferedaae 1996.

M. Davis and H. Putnam, “A Computing Procedure for Quantification Thedoyinal of the Association for Computing
Machinery vol. 7, pp. 201-215, 1960.

J.N. Hooker, “Logic-Based Methods for Optimization,” ORSA CSTS Newsletter, vol. 15, no. 2, pp. 4-11, 1994.

D. S. Johnson and M. A. Trick (edsSgcond DIMACS Implementation ChallenB8MACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, 1993. (DIMACS benchmarks available from ftp://Dimacs.Rutgers.EDU/pub/chal-
lenge/sat/benchmarks/cnf/.)

G. L. Nemhauser and L. A. Wolsdpteger and Combinatorial Optimizatipdohn Wiley & Sons, 1988.

C. Pizzuti, “Computing Prime Implicants by Integer ProgrammingPrioceedings of International Conference on Tools
with Artificial Intelligence November 1996.

J. P. M. Silva and K. A. Sakallah, “GRASP—A New Search Algorithm for SatisfiabilityPraceedings of the Interna-
tional Conference on Computer-Aided Desigdovember 1996. (source code for GRASP available from http:/
algos.inesc.pt/pub/users/jpms/soft/grasp/grasp.tar.gz.)

J. P. M. Silva, “On Computing Minimum Size Prime Implicants,Ihternational Workshop on Logic Synthesitay 1997.

R. Zabih and D. A. McAllester, “A Rearrangement Search Strategy for Determining Propositional SatisfiabHitg;” in
ceedings of the National Conference on Artificial Intelligepge 155-160, 1988.

