
Abstract

Minimum-size prime implicants of Boolean functions find application in many areas of Computer
Science including, among others, Electronic Design Automation and Artificial Intelligence. The main
purpose of this paper is to describe and evaluate two fundamentally different modeling and algorithmic
solutions for the computation of minimum-size prime implicants. One is based on explicit search meth-
ods, and uses Integer Linear Programming models and algorithms, whereas the other is based on
implicit techniques, and so it uses Binary Decision Diagrams. For the explicit approach we propose new
dedicated ILP algorithms, specifically target at solving these types of problems. As shown by the experi-
mental results, other well-known ILP algorithms are in general impractical for computing minimum-
size prime implicants. Moreover, we experimentally evaluate the two proposed algorithmic strategies.

1 Introduction

Given a propositional formulaϕ in Conjunctive Normal Form (CNF), denoting a boolean functionf, the

problem of computing a minimum-size assignment (in the number of literals) that satisfiesf is referred to as

the minimum-size prime implicant problem. Minimum-size prime implicants find several applications in

Artificial Intelligence and in Electronic Design Automation (EDA). For example, the computation of mini-

mum-size test patterns in testing is tightly related with the computation of the minimum size prime impli-

cant of a Boolean function [15]. In Artificial Intelligence, the identification of minimum-size prime

implicants (i.e. minimum-size satisfying assignments for propositional formulas) is commonly encountered

in Automated Reasoning and Non-Monotonic Reasoning [7, 13].

In this paper we describe and empirically compare two algorithms for computing minimum-size prime

implicants. One is an explicit algorithm, based on Integer Linear Programming (ILP), whereas the other uti-

lizes implicit techniques, and so it is based on Binary Decision Diagrams (BDDs). The explicit approach

merges in a single algorithm,bsolo, two commonly used search paradigms, namely branch and bound

search and backtrack search, applying search-pruning techniques from both paradigms. The implicit

approach,min-bdd, extends the prime implicant implicit representation of [3, 4]. An experimental compari-

son of the two approaches is provided in Section 5, which also provides empirical evidence validating the

proposed ILP algorithm against state of the art ILP solvers [2].

The paper is organized as follows. A few brief definitions are provided in Section 2. The ILP model and

algorithm for computing minimum-size prime implicants are described in Section 3. Section 4 is dedicated

to the implicit BDD-based approach. The two strategies are compared in Section 5, and the paper concludes

in Section 6.
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2 Definitions

A propositional formulaϕ in conjunctive normal form (CNF) defined onn variables  is a

conjunction ofm clauses ( , ... , ). A clause , , is a disjunction of literals,

and a literall is either a variable  or its complement . Each clause denotes a constraint which can also

be viewed as a linear inequality, . We use this alternative interpretation when appropriate.

Furthermore, since a literal  can also be defined by , we shall in general use the latter def-

inition when viewing clauses as linear inequalities. We can also interpret a CNF formula as denoting a bool-

ean function .

A product is a conjunction of literals (  ... ), , whose literals are built out of distinct variables

[3]. A productp is defined as an implicant off if and only if it evaluatesf to 1 and it is defined as a prime

implicant off if and only ifp is an implicant off, and there is no other implicantq of f whose literals are a

subset of the literals ofp. The minimum-size prime implicant is the prime implicant off with the least num-

ber of literals.

3 Explicit Methods

Existing explicit methods for the computation of minimum-size prime implicants use integer linear pro-

gramming (ILP) formulations. In this section we develop an ILP model for the computation of minimum-

size prime implicants which was proposed in [7] and [13]. In addition, we describe a SAT-based branch-

and-bound ILP algorithm,bsolo, targeted at solving highly constrained ILPs.bsolo uses powerful pruning

techniques from the SAT algorithm GRASP [14] as well as lower bounding procedures. We also address

some of the differences betweenbsolo and other SAT-based ILP algorithms proposed in [1] and [15].

3.1 Prime Implicant Computation Using Integer Programming

In order to find the minimum-size prime implicant of a boolean function, given its description in CNF,

we formulate the problem as an integer linear program [7, 13]. Given a CNF formulaϕ, which is defined on

a set of variables , and which denotes a Boolean function , apply the

following transformation:

1. Create a new set of boolean variables , where  is associated with literal , and

 is associated with literal .

2. For each clause , replace each literal  with  if , or with  if

.

3. For each pair of variables,  and , require that at most one is set to one. Hence,

.

4. The set of inequalities obtained from steps 2. and 3. can be viewed as a single set of inequalities

. Finally, define the cost function to be,

(1)

5. The complete ILP formulation is thus defined as follows:
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Examples illustrating the application of this ILP formulation can be found in [9, 13]. Moreover, it is

clear that the minimum value of (1) denotes a minimum-size prime implicant of the original CNF formula

ϕ, and from [13] we have,

Proposition 1.Given a CNF formulaϕ and associated boolean functionf, the solution of the optimization
problem (1) is a minimum-size prime implicant off.

We can easily see that the worst-case search space for this ILP model is . We should note that

for this model, and for a search-based ILP algorithm, a straightforward arrangement of the order of the

decision variables leads to a worst-case search space of  (since only 3 assignments are possible for each

of then pairs of variables), but unfortunately this information cannot in general be made available to the

ILP solver.

3.2 Search Algorithms for Solving ILPs

The idea of solving ILPs using a propositional satisfiability (SAT) algorithm was originally proposed in

[1]. However, the algorithm described in [1] is based on the Davis-Putnam [6] SAT procedure, which has

been shown to be particularly inefficient for a large number of instances of SAT [14]. In [15], instead of the

Davis-Putnam procedure, the GRASP SAT algorithm [14] is used with significantly better results. How-

ever, other algorithmic organizations can be envisioned. Next, we proposebsolo, a branch-and-bound SAT-

based ILP algorithm which, as the experimental results of Section 5 indicate, is an improvement over the

algorithms of [1, 15].

In this section we describebsolo which is an algorithm developed to solve highly constrained ILPs. This

algorithm builds a branch and bound procedure on top of a SAT algorithm. It uses the GRASP SAT algo-

rithm, which includes several powerful pruning techniques for reducing the amount of search associated

with instances of SAT. Among the pruning techniques included in GRASP, the following have been shown

to be particularly significant:

• GRASP implements anon-chronological backtracking search strategy. This backtracking strategy

potentially permits skipping over large portions of the decision tree for some instances of SAT.

• GRASP utilizes selectiveclause recording techniques. During the search process, and as conflicts are

diagnosed, new clauses are created from the causes of the conflicts. These new clauses are then used

for pruning the subsequent search. Moreover, bounds on the size of recorded clauses can be imposed

for preventing an excessive growth of the resulting CNF formula.

• In most practical situations, instances of SAT can have highly structured CNF representations. The

intrinsic structure of these representations can be exploited by GRASP, after diagnosing the causes of

conflicts, by identifyingnecessary assignments required to prevent conflicts from being identified

during the search.

• In addition, other pruning techniques, as for example the ones commonly used in covering problems

[5], can be straightforwardly applied to SAT algorithms.
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3.3 SAT-Based Branch and Bound Algorithm

Our algorithm follows a different organization than [1] consisting in the use of a variation of the branch

and bound procedure, where upper bounds to the cost function (1) are identified and lower bounds to the

current set of variable assignments are estimated. In our implementation, we have used the lower bounding

estimation procedures described in [5].

The operation of bounding for the proposed procedure is illustrated in Figure 1. Let UB denote the low-

estcomputed upper bound on the solution of (2), LBe denote anestimated lower bound on the solution of

(2) and OPT denote the solution of (2). If the estimated lower bound is less than the already computed

upper bound (as shown in Figure 1-(a)), then the search cannot be bound since it may still be possible to

reduce the value of the upper bound. Clearly, the search can be bound whenever the estimated lower bound

to the value of (1) is larger than or equal to the existing upper bound on the value of the cost function, as

illustrated in Figure 1-(b). Finally, observe that Figure 1-(c) denotes the conditions after which the upper

bound will no longer be updated during the search.

Moreover, since the branch and bound procedure is embedded in the SAT algorithm, every pruning

technique used by the SAT algorithm can also be used in solving the ILP. This is particularly useful when-

ever a constraint of (2) becomes unsatisfied. Consequently, the branch and bound procedure consists of the

following steps:

1. Initialize the upper bound to the highest possible value of the cost function.

2. If no decision can be made (i.e. a solution to the constraints has been identified), then compute an upper

bound on the minimum value of the cost function of the ILP formulation. Update current upper bound

and issue a conflict to guarantee that the search is bound. Otherwise, branch on a given decision

variable (i.e. make decision assignment).

3. Apply boolean constraint propagation [16]. If a conflict is reached, then diagnose conflict, record

relevant clauses, and proceed with the search process or backtrack if required.

4. Estimate lower bound. If this value is larger than or equal to the current upper bound, then issue a

conflict, diagnose the conflict, backtrack, and continue the search from step 2.

The pseudo-code for the algorithm is shown in Figure 2. We should note that the proposed branch and

bound SAT-based ILP algorithm has the following main differences with respect to the linear search ILP

algorithm from [1, 15]:

• No clauses involving the cost function are created. In the algorithm described in [15], the ILP layer

around the SAT algorithm creates additional clauses involving all the variables in the cost function. As

Figure 1: Using bounding in the ILP algorithm
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a consequence, whenever these clauses are the basis of a conflict, the algorithm backtracks

chronologically. Inbsolo, the exception to this rule occurs when the estimated lower bound is no less

than the computed upper bound. In this situation a clause involving some of the literals in the cost

function is temporarily created for causing the search procedure to backtrack. (See [14] for details of

the backtrack search SAT algorithm.)

• Lower bounding procedures are required. As mentioned earlier, the lower bounding procedures of [5]

are used, but other procedures based on linear-programming can also be used. Clearly, the tightness of

the lower bounding procedure is crucial for the efficiency of the branch and bound algorithm.

4 Implicit Methods

An orthogonal approach for computing minimum-size prime implicants is based on implicit techniques.

In this section we describemin-bdd, an algorithm for computing minimum-size prime implicants using

BDDs. We use the algorithm described in [4] in order to obtain a BDD with all prime implicants. After-

wards, the identification of one prime with minimum-size is straightforward.

4.1 Prime computation using BDDs

BDDs are widely known by their power of representation and manipulation of boolean functions. Their

efficiency in terms of time and space encourages its use in several domains, including logic synthesis, com-

binational equivalence checking and formal verification.

In this section we describe an implicit algorithm,min-bdd, for computing minimum-size prime impli-

cants using BDDs. We start by creating a BDD for the boolean function. Afterwards, the algorithm

Figure 2: SAT-based branch and bound algorithm

int bsolo(ϕ)
{

_UB = ;
while (TRUE) {

if (Solution_found() || Decide() != DECISION) {
_UB = Update_UB();

Issue_UB_based_conflict();

}

while (Deduce() == CONFLICT) {

if (Diagnose() == CONFLICT) {

return _UB;

}
}

while (Estimate_LB()  _UB) {

Issue_LB_based_conflict();

if (Diagnose() == CONFLICT) {

return _UB;

}
}

}

}
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described in [4] is used for obtaining a BDD with all prime implicants. Finally, we obtain the minimum-size

prime implicant through a straightforward breadth-first search on the BDD.

4.2 Variable Ordering

The variable ordering is crucial in order to be able to construct a BDD for a given boolean function. Dif-

ferent variable orderings may result in very different BDDs, therefore, in larger problems, only a good

ordering allows us to build the BDD. It is known that the problem of finding the best order which minimizes

the size of the BDD is NP-hard [10]. Consequently, the use of a heuristic method is vital.

With the purpose of finding a good ordering for the variables, we start by mapping the CNF formula into

a two-level circuit. Afterwards, we apply theDynamic Weight Assignment Method [10, 11] which uses the

topological information of the circuit to find an approximation for the best variable ordering. The mapping

process can be described as follows:

Given a CNF formulaϕ, defined on a set of variables , and which denotes a boolean func-

tion , we create a two-level circuit representingf. The circuit hasn inputs (one for

each variable) and one output which denotes the value off. For each clause  an OR-

gate is created withk inputs. These gates are the first-level of the circuit, whereas the second-level consists

of a single AND-gate whose inputs are the outputs of the first-level gates. Therefore, the output of this

AND-gate represents the functionf. Figure 4 shows an example circuit.

The Dynamic Weight Assignment Method heuristically identifies the input which most influences the

output in a topological sense. In terms of the CNF formula, this means it identifies the variable with most

control over the function. Since the variables with higher control of the function should be at higher posi-

tion in the BDD, this seem to be a good method to order the variable set of the boolean function. This heu-

ristic method was originally described as follows:

1. Each lead is assigned a weight, beginning with the assignment of a weight 1.0 to the primary outputs.

2. The weight is propagated toward the inputs as follows:

a. At each gate, the weight on the output is equally distributed to the inputs.

b. At each fan-out point, the weights of the fan-out branches are accumulated into the weight of the

fan-out stem.

3. Choose the primary input with largest weight.

4. Delete the part of the circuit which can beonly reached only from the chosen input. Go back to 1.

An example of this weight assignment is shown in Figure 4. However, our circuits always have the

same topology and we may simplify this process, since we are trying to maximize the weight at the primary

inputs independently of their logic value. Notice that the assigned weights at each OR-gate are always

x1 … xn, ,{ }
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n
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equal, therefore, there’s no need to make this assignments every time we chose a primary input and we may

fix them with value 1.0. So, the method can be simplified as follows:

1. Calculate the weight values of primary inputs  as,

(3)

where  are those gates which have  as input and  denotes the number of inputs of .
2. Choose the primary input with largest weight.

3. Delete the part of the circuit which can be reached only from the chosen input. Go back to 1.

4.3 Metaproducts

The metaproduct representation was first described in [3]. The purpose of metaproducts is to have a

canonical representation of sets of products which can be efficiently represented with BDDs.

In the metaproduct representation we use two new sets of variables. From the initial set ,

we create  and  and call them theoccurrence andsign variables, respectively.

ConsiderP as the set of strings where  is the empty string.P is the set of

products that can be built out of the initial set of variables. Let us also consider  as being the mapping

function from  toP, , where

As an example, with  we would have . It is straightforward that

 does not provide a one to one mapping since it maps a total of  elements into  elements. In [3] it is

suggested that we should consider the canonical representation of a product to be the set of all couples that

denote this product. In our example, the set  would be the canonical

representation of .

4.4 Computation of Minimum-Size Primes

In this section we present an algorithm to generate a BDD with all prime implicants of a boolean func-
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Figure 4: Example of Dynamic Weight Assignment Method
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tion, using the metaproduct representation introduced in Section 4.3. We assume that the BDD for the bool-

ean function has already been built. Afterwards, the process of finding the minimum-size prime is

straightforward.

Let f be a boolean function defined as  and  be the set of all its prime impli-

cants. Consider  in which  is the top node and,  and  are the functions

pointed to by 0- and 1-edges. In [3, 4] is suggested that  is the

best variable ordering to build the BDD, where  is a permutation of the integers . This permu-

tation is the same used to build the BDD off, according to the heuristic procedure described in Section 4.2.

Consider a boolean functionf represented in a BDD and let  be the top variable. The set of all prime

implicantsP(f) of f is the union of three sets of products, the ones where variable  doesn’t occur and

those where  occurs with positive and negative signs.

Let  and  be the functionf where  and , respectively.  and  denote the

primes of  and . Therefore, the intersection of these sets  denotes the primes off where

doesn’t occur. We can easily define the sets where variable  occurs with negative and positive sign as

 and . The set of primes of a boolean functionf can

be defined as [4]:

Given the prior definition, the BDD representing the set of prime implicants can be computed from the

BDD of the function as shown in Figure 4, which illustrates how to build the BDD using the metaproduct

representation.

As mentioned earlier, the minimum-size prime implicant can be obtained from this BDD through a

breadth-first search. This can be achieved by finding the path from the top node to a 1-terminal node with

the least number of 1-edges of the occurrence variables.

5 Experimental Results

In order to experimentally evaluate the different algorithms, some satisfiable instances of the DIMACS

benchmarks [8] were mapped onto instances of the minimum-size prime implication computation problem.

The experimental results forlp_solve [2], opbdp [1], bsolo andmin-bddare shown in Table 1. For each

benchmark, 2,000 sec. of CPU time were allowed. As can be concluded, for most of the benchmarks, the

explicit methods perform in most cases significantly better. (We should note, however, that for most exam-

ples the main difficulty withmin-bdd is in the construction of the initial BDD and not in the derivation of
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Figure 5: Computation of the prime set using metaproducts
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the set of prime implicants.) The performance difference is particularly significant for practical instances

derived from practical applications, as for example thessa benchmarks from testing. These benchmarks are

representative of practical applications of the algorithms described in the previous sections. Moreover, state

of the art ILP algorithms, such aslp_solve, may perform poorly in specific ILP instances as is the case of

the minimum-size prime implicant computation problem. Finally, we can also conclude that the techniques

of GRASP [14] are crucial for some benchmarks, and sobsolo performs significantly better thanopbdp for

those cases. Finally, we note that for several example benchmarks no algorithm is able to find the optimal

solution. For these examples onlybsolo, and in some casesopbdp, are able to identify upper bounds to the

optimum solution.

6 Conclusions

In this paper we describe two algorithms for computing minimum-size prime implicants. One is an

explicit search algorithm and the other is based on implicit techniques. The algorithm based on explicit

search performs in general better than the algorithm based on implicit techniques. Regarding the compari-

son ofbsolo with opbdp[1], the overhead of some pruning techniques used in GRASP [14] and inbsolo,

becomes apparent for some benchmarks. Nevertheless,bsolo performs in most cases better thanopbdp.

Furthermore, state-of-the-art ILP algorithms [2] are impractical for solving the ILPs associated with mini-

mum-size prime implicant computation. From the results contained in this paper we can conclude that for

solving these optimization problems, the explicit methods are in general preferable. However, all the evalu-

ated algorithms can easily find extreme difficulties in solving instances of the minimum-size prime impli-

cant problem. Hence, additional research work is necessary, trying to identify ever more effective search-

Benchmark min lp-solve opbdp bsolo min-bdd

aim-100-1_6-y1-2 100 — — 0.11 0.22
aim-100-2_0-y1-3 100 — 24.83 0.21 0.27
aim-100-3_4-y1-4 100 — 0.6 0.53 1.84
aim-200-1_6-y1-3 200 — — 0.36 0.63
aim-200-3_4-y1-1 200 — 22.16 1.31 85.72
aim-200-6_0-y1-2 200 — 2.89 1.68 2.67
ii8a1 54 399.07 1.2 1.46 —
ii8b2 — — — UB 369 —
ii8c2 — — — UB 525 —
jnh1 92 — 1.51 6.06 —
jnh7 89 — 0.56 1.81 —
jnh12 94 — 0.34 0.67 —
par8-1-c 64 4.41 0.17 0.07 0.32
par8-2 350 58.02 0.87 0.34 37.22
par16-1-c 317 — 225.17 1237.5 424.36
par16-2 1015 — 433.47 — —
par16-3-c 349 — 194.45 — 390.88
par16-4 1015 — 216.18 1454.9 —
ssa7552-038 — — UB 1452 UB 1448 —
ssa7552-159 — — UB 1327 UB 1327 —

Table 1: CPU times and computed upper bounds



pruning techniques for ILP algorithms.
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