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Abstract

Unit propagation-based (UP) lower bounds are used in the
vast majority of current Max-SAT solvers. However, lower
bounds based on UP have seldom been applied in Pseudo-
Boolean Optimization (PBO) algorithms derived from the
DPLL procedure for Propositional Satisfiability (SAT). This
paper enhances a DPLL-style PBO algorithm with an UP
lower bound, and establishes conditions that enable constraint
learning and non-chronological backtracking in the presence
of conflicts involving constraints generated by the UP lower
bound. From a theorical point of view, the paper highlights
the relationship between the recent UP lower bound and the
well-known Maximum Independent Set (MIS) lower bound.
Finally, the paper provides preliminary results that show the
effectiveness of the proposed approach for representativesets
of instances.

Introduction
The algorithmic improvements made to Boolean Satisfia-
bility (SAT) solvers over the last decade (Marques-Silva &
Sakallah 1996; Moskewiczet al. 2001; Eén & Sörensson
2003) motivated research work in a number of extensions of
SAT, including Pseudo-Boolean Optimization (PBO) (Aloul
et al. 2002; Chai & Kuehlmann 2003; Sheini & Sakallah
2006; Eén & Sörensson 2006) and Max-SAT (Li, Manyà, &
Planes 2005; Heras, Larrosa, & Oliveras 2007).

PBO solvers have improved significantly over the last few
years with the extensive use of the most effective SAT tech-
niques, commonly used in modern SAT solvers (Marques-
Silva & Sakallah 1996; Moskewiczet al. 2001; Eén &
Sörensson 2003). New practical applications are found for
PBO solvers every year and solvers are the subject of a reg-
ular evaluation (Manquinho & Roussel 2007). Somewhat
independently of the work in PBO, extensive research work
has been carried out in Max-SAT, with significant improve-
ments being reported in the last few years. Max-SAT solvers
also find a number of strategic applications, and they are also
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subject to a regular evaluation (Argelichet al. 2007). Moti-
vated by the specificity of the problem, algorithms for Max-
SAT have evolved somewhat differently from algorithms
for SAT and PBO. Max-SAT algorithms are often based on
branch and bound search, and employ sophisticated tech-
niques for computing lower bounds. Despite the improve-
ments made in these two areas of research, techniques used
in PBO have seldom been used in Max-SAT, and vice-versa.

This paper is a first attempt at integrating techniques from
these two research areas. As a result, the paper proposes
to integrate Unit Propagation-based (UP) lower bounds, of-
ten used in Max-SAT (Li, Manyà, & Planes 2005), with
constraint learning and non-chronological backtracking,two
techniques widely used in SAT and PBO (Marques-Silva &
Sakallah 1996). More concretely, the paper describes how to
augment SAT-based PBO algorithms with UP lower bound-
ing capabilities associated with information obtained from
the Pseudo-Boolean (PB) constraints and from the cost func-
tion. Moreover, the paper establishes conditions for learn-
ing new constraints from conflicts associated with the UP
lower bound. Finally, the paper shows that these new con-
straints can be used for performing non-chronological back-
tracking. From a more theoretical point of view, the pa-
per studies the relationship between the UP lower bound
and the well-known Maximum Independent Set (MIS) lower
bound (Coudert 1996). Experimental results on several
sets of problem instances coming from the Pseudo-Boolean
Evaluation 2007 (Manquinho & Roussel 2007) illustrate the
effectiveness of the proposed techniques.

The paper is organized as follows. The next section intro-
duces the notation and definitions used throughout the paper.
Afterwards, algorithms for PBO are briefly surveyed. Next,
the use of UP lower bounds in PBO is detailed, followed
by experimental results on representative problem instances.
Finally, the paper concludes and suggests directions for fur-
ther research work.

Preliminaries
This section introduces the notations and definitions for
SAT, Max-SAT and PBO, used in the remainder of the paper.

A propositional formulaϕ in Conjunctive Normal Form
(CNF) denotes a Boolean functionf : {0, 1}n → {0, 1}.
The formulaϕ consists of a conjunction of propositional
clauses, where each clauseω is a disjunction of literals, and



a literal l is either a variablexj or its complement̄xj . If
a literal assumes value 1, then the clause is satisfied. If all
literals of a clause assume value 0, the clause is unsatisfied.
Clauses with only one unassigned literal are referred to as
unit. Finally, clauses with more than one unassigned literal
are said to be unresolved. In a search procedure, a conflict is
said to be identified when at least one clause is unsatisfied.
In addition, observe that a clauseω = (l1 + . . .+ lk), k ≤ n,
can be interpreted as a linear inequalityl1 + . . . + lk ≥ 1,
and the complement of a variablexj , x̄j , can be represented
by 1 − xj .

When a clause is unit anassignmentcan be implied. The
variable associated with the only non-assigned literal needs
to be assigned in such a way that the clause is satisfied.
These logical implications correspond to the application of
the unit clause rule (Davis, Logemann, & Loveland 1962)
and the process of repeatedly applying this rule is calledUnit
Propagation.

Given a propositional formula in CNF, the goal of the
Propositional Satisfiability Problem(SAT) is to find an as-
signment for all the variables such that all clauses are sat-
isfied or show that there is none. The SAT problem isNP-
Complete(e.g. (Papadimitriou 1994)). It should be noted
that throughout the remainder of this paper some familiarity
with backtrack search SAT algorithms is assumed includ-
ing Unit Propagation,non-chronological backtrackingand
learningtechniques (Marques-Silva & Sakallah 1996).

An optimization version of the SAT problem is known as
Maximum Satisfiability(Max-SAT). Given a CNF formula,
the Max-SAT problem consists of finding an assignment for
all the variables such that the number of satisfied clauses is
maximized. The Max-SAT problem isNP-Hard (e.g. (Pa-
padimitriou 1994)). Current backtracking Max-SAT search
algorithms apply intensively Unit Propagation to prune the
search space as will be shown later.

An instanceP of thePseudo-Boolean Optimizationprob-
lem (Barth 1995a) can be defined as follows:

minimize
∑

j∈N

cj · xj

subject to
∑

j∈N

aij lj ≥ bi,

xj ∈ {0, 1}, aij, bi ∈ N
+

0 , i ∈ M
N = {1, . . . , n}, M = {1, . . . , m}

(1)

wherecj is a non-negative integer cost associated with vari-
ablexj , j ∈ N and aij denote the coefficients of the lit-
erals lj in the set ofm linear constraints. Every pseudo-
Boolean formulation can be rewritten such that all coef-
ficients aij and right-hand sidebi are non-negative. Ob-
serve that a linear pseudo-Boolean optimization problem can
also be viewed as a special case of integer linear program-
ming. The integer linear programming formulation for the
constraints can be obtained if each literalx̄j is replaced by
1 − xj .

Pseudo-Boolean constraints can be classified asproposi-
tional clauses, cardinality constraintsor general pseudo-
Boolean constraints. A constraint where all literal coeffi-
cientsaij are 1 and the right-hand sidebi is also 1 is said to
be a propositional clause. In a cardinality constraint, onecan

also have all literal coefficientsaij equal to 1, butbi > 1.
All constraints other than propositional clauses or cardinal-
ity constraints are classified as general pseudo-Boolean con-
straints.

If every pseudo-Boolean (PB) constraint represents a
propositional clause thenP is an instance of theBinate
Covering problem(BCP). Covering formulations and lower
bounds including themaximum independent set(MIS) have
been the subject of thorough research work (Coudert 1996;
Liao & Devadas 1997; Manquinho & Marques-Silva 2004).

Algorithms for Pseudo-Boolean Optimization
The most effective PBO algorithms can be organized into
two main classes. The majority of PBO algorithms perform
a linear search on the values of the cost function, and at each
step solving a set of PB constraints (Barth 1995a; Aloulet
al. 2002; Chai & Kuehlmann 2003; Sheini & Sakallah 2006;
Eén & Sörensson 2006). Another alternative approach is
to perform a branch and bound search, while integrating
the most effective SAT techniques (Manquinho & Marques-
Silva 2004). In this approach,upper boundson the value of
the cost function are identified for each solution to the con-
straints, andlower boundson the value of the cost function
are estimated considering the current set of variable assign-
ments. The search can be safely pruned whenever the lower
bound estimate is higher than or equal to the most recently
computed upper bound. This paper addresses branch and
bound algorithms for PBO, focusing on techniques for com-
puting tight lower bounds.

Several lower bound estimation procedures for PBO have
been presented in the recent literature such as the ones
based on linear-programming relaxations, Lagrangian relax-
ations, or the Log approximation approach (Manquinho &
Marques-Silva 2004). Nevertheless, the approximation of a
maximum independent set of clauses (Coudert 1996) is often
used, because it represents a good trade-off between accu-
racy of the lower bound and computational effort. Observe
that the tightness of the lower bounding procedure is crucial
for the algorithms efficiency, because with higher estimates
of the lower bound, the search can be pruned earlier.

With respect to the application of SAT to Boolean Opti-
mization, P. Barth (Barth 1995a) first proposed a SAT-based
approach for solving pseudo-Boolean optimization. This ap-
proach consists of performing a linear search on the possi-
ble values of the cost function, starting from the highest,
at each step requiring the next computed solution to have
a cost lower than the most recently computed upper bound.
Whenever a new solution is found which satisfies all the con-
straints, the value of the cost function is recorded as the cur-
rent lowest computed upper bound. If the resulting instance
of SAT is not satisfiable, then the optimum value is given
by the last recorded solution. More recent PBO solvers in-
tegrate the most effective SAT techniques, including clause
learning and non-chronological backtracking (Aloulet al.
2002; Chai & Kuehlmann 2003; Sheini & Sakallah 2006;
Eén & Sörensson 2006).

This paper focuses on theBSOLO branch and bound al-
gorithm presented in (Manquinho & Marques-Silva 2000).



Here, a different algorithmic organization is described, con-
sisting in the integration of several features from SAT algo-
rithms in a branch-and-bound procedure to solve PBO in-
stances. TheBSOLO algorithm incorporates the most sig-
nificant features from both approaches, namely the use of
lower bounding from branch and bound algorithms, and
the search pruning techniques from SAT algorithms, includ-
ing a non-chronological backtracking search strategy and
conflict-driven clause learning (Marques-Silva & Sakallah
1996). Mainly due to an effective conflict analysis proce-
dure which allows non-chronological backtracking steps to
be identified, it performs better than other branch-and-bound
algorithms in several classes of instances (Manquinho &
Marques-Silva 2000).

The main steps of theBSOLO algorithm can be described
as follows:

1. Initialize the upper bound to the highest possible value
(i.e. ub =

∑n

j=1
cj + 1).

2. Start by checking whether the current state yields a con-
flict. This is done by applying unit propagation and, in
case a conflict is reached, by invoking the conflict analysis
procedure, learning clauses and performing backtracking
if necessary.

3. If a solution to the constraints has been identified, update
the upper bound according toub =

∑n

j=1
cj · xj .

4. Estimate a lower bound given the current variable assign-
ments. If this value is higher than or equal to the current
upper bound, abound conflictarises and the conflict anal-
ysis procedure is invoked to determine to which part of
the search tree the algorithm has to backtrack to. Con-
tinue from step 2.

Two types of conflicts can be found in the algorithm de-
scribed above:logical conflicts that occur when at least
one of the problem instance constraints becomes unsatis-
fied, andbound conflictsthat occur when the lower bound is
higher than or equal to the upper bound. When logical con-
flicts occur, the unsatisfied PB constraint is given to acon-
flict analysis procedure(Marques-Silva & Sakallah 1996;
Manquinho & Marques-Silva 2004) whichlearns a new
clauseand determines to which point of the search proce-
dure should backtrack to. Observe that it is also possible
to learn a new PB constraint, as in (Chai & Kuehlmann
2003). In SAT and PBO, this procedure is often extremely
effective, allowingnon-chronological backtracking. Fur-
thermore, learned clauses may avoid visiting useless parts
of the search tree later during the search process. Similarly,
whenever a bound conflict is identified, a new clause ex-
plaining the bound conflict should be provided to the conflict
analysis procedure so that it can determine to which level of
the search tree the algorithm can safely backtrack to. The
approach for learning a new clause in the presence of bound
conflicts is outlined in the next section.

Lower Bounds
This section describes two different ways of computing
lower bounds for Pseudo-Boolean Optimization (PBO) and
shows how they can be integrated in a branch and bound

algorithm similar to the one described in the previous sec-
tion. Accordingly, this section also establishes conditions
for learning new propositional clauses from the bound con-
flicts so that the search procedure can benefit from non-
chronological backtracking. Finally, it outlines interesting
relations between both lower bounds.

Maximum Independent Set Lower Bound
The maximum independent setof constraints (MIS) is a
method to estimate a lower bound on the value of the cost
function based on an independent set of constraints. Since
maximizing the cost of MIS is an NP-hard problem, a greedy
computation is commonly used. The greedy procedure con-
sists of finding a set ofdisjoint constraints, i.e. constraints
with no literals in common among them.

The MIS lower bound was initially proposed to a spe-
cial case of PBO (Coudert 1996) where all constraints are
propositional clauses. In that approach, one would choose
to include in MIS the clauses that maximize the ratio be-
tween their weight (defined by the minimum cost to satisfy
the clause) and the number of literals. The minimum cost
for satisfying the independent set of constraints is a lower
bound on the optimal solution and can be defined as:

Cost(MIS) =
∑

ω∈MIS

Weight(ω) (2)

whereWeight(ω) is the minimum cost to satisfy constraint
ω. If all constraints were to be propositional clauses, we
could define it asWeight(ω) = minxj∈ω cj . However,
the minimum cost to satisfy a general pseudo-Boolean con-
straintω is given by:

minimize
∑

j∈C

cj · xj

subject to ω
(3)

whereC denotes the set of indexes of literals inω. Observe
that (3) is a special case of a PBO problem known asknap-
sack 0-1problem. Nevertheless, it is still an NP-Complete
problem (Karp 1972). Therefore, we use an approximation
algorithm for the problem of finding the minimum cost of
satisfying a pseudo-Boolean constraint by using a greedy al-
gorithm. First, we determine the minimum number of liter-
als that need to be true in order to satisfyω by reducing it to
a cardinality constraint (Barth 1995b).

Suppose thatω
′

denotes the cardinality constraint ob-
tained by the cardinality reduction algorithm applied toω:

ω
′

=
∑

j∈C

xj ≥ k (4)

a lower bound on the minimum cost to satisfyω is given by
accumulating the cost of the firstk literals in a sorted set of
literal coefficients in the problem cost function, startingwith
the lowestcj .

Unit Propagation Lower Bound
Given a PBO instance, aninconsistent subset of constraints
(or simply aninconsistent subset) is a subset of constraints
such that at least one of the constraints is always unsatisfied



by any assignment to the problem variables. Most of the
lower bounds in the Max-SAT literature are based on detect-
ing inconsistent subsets of propositional clauses. A general
method to detect inconsistent subsets by intensively using
Unit Propagation was already proposed for Max-SAT lower
bounding (Li, Manyà, & Planes 2005). Later, this technique
was generalized for theWeighted Max-SATproblem (Heras,
Larrosa, & Oliveras 2007) where each clause has an asso-
ciated cost, and the objective is to maximize the sum of the
costs of the satisfied clauses. In what follows, the Unit Prop-
agation lower bound for Max-SAT is extended for PBO.

To compute the Unit Propagation lower bound in PBO, we
use a structureUP that contains pairs of subsets of incon-
sistent constraints and their associated costs. The procedure
works as follows:

1. Initially UP = {}.

2. For each unassigned variablexj with cj > 0, add a new
unit clausēxj that we call virtual clauses with an associ-
ated cost ofcj.

(a) Apply Boolean propagation until a conflict is found,
that is, a constraint becomes unsatisfied. It is well-
known that one can retrieve a set of the constraintsSi

involved in the conflict by inspection of the implication
graph (Marques-Silva & Sakallah 1996). LetS′

i be a
subset ofSi that contains only the virtual clauses ofSi,
andmi is the minimum cost of the coefficients associ-
ated to the clauses inS′

i. Formally,

mi = min
x̄j∈ω ∧ ω∈S′

i

cj

(b) UP = UP ∪ {< Si, mi >}.
(c) Subtractmi to all the coefficients associated to the vir-

tual clauses inS′

i. Remove all virtual clauses inS′

i with
coefficient 0.

(d) Repeat steps from (a) to (c) until no more inconsistent
subsets are found.

The necessary lower bound value estimated by the Unit
Propagation lower bound in order to satisfy the PBO in-
stance is given by:

Cost(UP ) =
∑

<Si,mi>∈UP

mi

Bound Conflicts with Unit Propagation Lower
Bound
During the search process, a bound conflict arises whenever
the lower bound value higher than or equal to the upper
bound. In this case, it is guaranteed that the current par-
tial assignment cannot be extended such that a better solu-
tion can be found. For a given instanceP of PBO, a bound
conflict occurs whenP.path + P.lower ≥ P.upper, where
P.path is the cost of the assignments made from the root
node to the current node of the search tree,P.lower is a
lower bound estimate on the cost of satisfying the constraints
not yet satisfied (as given for example by MIS or Unit Propa-
gation lower bound), andP.upper is the best solution found
so far.

Next we focus on bound conflicts due to the value of
the Unit Propagation lower bound estimation procedure and
show that in these situations non-chronologicalbacktracking
in the search tree is possible. To achieve this goal, it is nec-
essary to identify a set of literals associated with the bound
conflict such that if one of those literals is assigned value 1,
then the bound conflicting condition is changed and may no
longer hold.

Clearly, the value ofP.path is independent of which
lower bound method is being used. Its value solely depends
on the assignments of value 1 to variables with positive co-
efficients in the objective function. Therefore, in order for
P.path to decrease, at least one literals inωpp must have
value 1, whereωpp is defined as follows:

ωpp = {x̄j : xj = 1 ∧ cj > 0}

It is also necessary to define a set of literalsωpl that ex-
plains the value ofP.lower when using the Unit Propagation
lower bounding procedure. In this case, literals assigned
value 0 in constraints of each subset of inconsistent con-
straintsSi are the ones that justifyP.lower. If these literals
were to have a different value, the Unit Propagation lower
bound value might decrease. Hence, the set of literalsωpl

can be defined as follows:

ωpl = {l : l = 0 ∧ l ∈ ω ∧ ω ∈ Si∧ < Si, mi >∈ UP}

Finally, given these sets of literals, it is possible to built a
new propositional clauseωbc that justifies the bound conflict
where

ωbc = ωpp ∪ ωpl

Observe thatωbc is unsatisfied at the current node of the
search tree. This new clause can then be used for performing
conflict analysis, learning a new clause, and possibly back-
tracking non-chronologically.

Relating MIS and UP Lower Bounds
This section briefly presents some properties relating the
MIS and Unit Propagation (UP) lower bounds. The follow-
ing propositions state that MIS lower bound can always be
simulatedusing the UP lower bound, but the converse is not
true.

Proposition 1 Let M = {ω1, . . . , ωn} be a maximum in-
dependent set of constraints of a formulaϕ found by any
greedy execution of the MIS lower bound. It always exists
some execution of the UP lower bound able to obtain the
MIS estimation.

Proof-Sketch 1 Each constraintωi selected by MIS lower
bound is inM since it exists a given number of literals inωi

with coefficientcj > 0 that must be assigned value 1 in order
for ωi to be satisfied. Hence, it is enough to propagate the
virtual clauses with literalslj associated with coefficients
with cj > 0 in the same way they appear sequentially in
constraints{ω1, . . . , ωn}.

Proposition 2 LetI = {I1, . . . , In} be a set of inconsistent
subsets of constraints of a formulaϕ found by any greedy
execution of the UP lower bound. There may not exist an
execution of the MIS lower bound able to obtain the same
estimation.



Proof-Sketch 2 Supposec1 = c2 = 1 andc3 = 0 are the
objective coefficients of variablesx1, x2 andx3. Consider
that the problem contains the constraintsx1 + x3 ≥ 1 and
x̄3 + x2 ≥ 1. In this case, the MIS lower bound estimation
procedure returns 0 since the minimum cost to satisfy each
constraint is 0. However, the UP lower bound procedure
would return 1 since it would be able to find an inconsistent
set with virtual clauses̄x1 andx̄2.

The next propositions state that the estimation obtained
with UP cannot be improved further by applying the MIS
lower bound after the UP lower bound. However, in some
cases, the MIS lower bound can be improved by later apply-
ing the UP lower bound procedure.
Proposition 3 LetI = {I1, . . . , In} be a set of inconsistent
subsets of constraints of a formulaϕ found by any greedy
execution of the UP lower bound. Afterwards, no greedy
execution of MIS lower bound can improve the previous es-
timation.

Proof-Sketch 3 After applying the UP lower bound, it does
not exist any constraint such that its minimum cost to satisfy
is greater than 0 and is disjoint from all constraints inI.
Otherwise, the UP lower bound procedure would be able
to find another inconsistent set. Hence, MIS lower bound
applied to the remaining constraints does not improve the
UP lower bound estimation.

Proposition 4 LetM = {ω1, . . . , ωn} be a maximum inde-
pendent set of clauses of a formulaϕ found by any greedy
execution of the MIS lower bound. Afterwards, a greedy
execution of UP lower bound may improve the previous es-
timation.

Proof-Sketch 4 Suppose thatc1 = c2 = 1 andc3 = 0 are
the objective coefficients of variablesx1, x2 andx3. Con-
sider that the problem contains the constraintsx1 + x3 ≥ 1
and x̄3 + x2 ≥ 1 and thatx1 andx2 do not appear in any
constraint inM . Then, in this case, the application of the
UP lower bound would increase the lower bound estimation
provided byMIS.

Since MIS and UP lower bounds are greedy algorithms
we cannot compare them directly. Nevertheless, from the
last proposition, we can conclude that a good strategy would
be to execute first the MIS lower bound, and later improve
its estimation with the UP lower bound.

Experimental Results
This section evaluates the techniques described in the pa-
per and compares them with other state of the art Pseudo-
Boolean Optimization solvers. The experimental results
were conducted on representative instances of the optimiza-
tion of digital filters (Aksoyet al. 2007; Manquinho &
Roussel 2007) and are shown in Table 1. The first column
identifies each problem instance. The second column gives
the optimum value (if unknown, then it is replaced with –).
The rest of columns present the CPU time for each solver in
seconds. The CPU times were obtained on a 3 GHz Xeon
5160 server with 4 GB of RAM running RHE Linux. If
the time limit of 1800 seconds was reached, the table pro-
vides an indication of which was the best upper bound (ub)

value found when the search was stopped (for example, ub10
means that the best solution found was 10).

The Unit Propagation lower bound was implemented in
theBSOLO solver and compared with other Pseudo-Boolean
solvers, namelyMINISAT + (Eén & Sörensson 2006) and
PUEBLO (Sheini & Sakallah 2006). Moreover, we also
present results forMINIMAXSAT (Heras, Larrosa, & Oliv-
eras 2007) a Max-SAT solver that uses a Max-SAT Unit
Propagation lower bound procedure and can also handle
Pseudo-Boolean optimization instances. ForBSOLOwe pro-
vide results when using both MIS and the UP lower bound-
ing procedure.

Results in Table 1 show that Pseudo-Boolean solvers are
more effective thanMINIMAXSAT . Moreover, results also
show the performance improvements ofBSOLOby using the
proposed lower bound procedure. We can observe that the
use of MIS is not effective in these instances, but UP lower
bound is able to provide tighter lower bound values, allow-
ing the solver to prune the search earlier. As a result, not
only there are more instances that can be solved, but better
upper bounds can be found when the solver was stopped at
the time limit. For these instances,BSOLO with UP lower
bound is able to perform much better than the other state of
the art PBO solvers.

Conclusions
The paper describes the integration of the Max-SAT UP
lower bound technique in SAT-based algorithms for Pseudo-
Boolean Optimization, and outlines conditions for perform-
ing constraint learning and non-chronological backtracking
based on computed lower bounds. These conditions pro-
vide novel mechanisms for extending the most effective SAT
techniques to the use of the UP lower bound in PBO. Pre-
liminary experimental results indicate that the utilization of
the UP lower bound can be effective for instances of op-
timization of digital filters. Moreover, for the most well-
known PBO solvers that do not integrate lower bounding
techniques, the experimental results indicate that accurate
lower bounding can be essential for representative instances
of pseudo-Boolean optimization.
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Eén, N., and Sörensson, N. 2003. An extensible SAT
solver. InSixth International Conference on Theory and
Applications of Satisfiability Testing, 502–518.
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