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Abstract extensions of similar techniques proposed in the Boolean
Satisfiability (SAT) domain, where they have been shown
Covering problems are widely used as a modeling tool to be highly effective [14]. In particular, and to our
in Electronic Design Automation (EDA). Recent years best knowledge, we provide for the first time conditions
have seen dramatic improvements in algorithms for the which enable branch-and-bound algorithms to backtrack
Unate/Binate Covering Problem (UCP/BCP). Despite these non-chronologicallyvhenever upper and lower bound con-
improvements, BCP is a well-known computationally hard ditions require bounding to take place.
problem, with many existing real-world instances that cur-  This paper is organized as follows. In Section 2 the
rently are hard or even impossible to solve. In this paper we notation used throughout the paper is introduced. After-
apply search pruning techniques from the Boolean Satisfi-wards, branch-and-bound covering algorithms are briefly
ability (SAT) domain to BCP. Furthermore, we generalize reviewed, giving emphasis to solutions based on SAT al-
these techniques, in particular the ability to backtrackino  gorithms. In Section 4 we propose new techniques for re-
chronologically, to exploit the actual formulation of cov- ducing the amount of search. In particular we show how
ering problems. Experimental results, obtained on repre- effective search pruning techniques from the SAT domain
sentative instances of the Unate and Binate Covering Prob-can be generalized and extended to the BCP domain. Ex-
lems, indicate that the proposed techniques provide signifi perimental results are presented in Section 5, and the paper
cant performance gains for different classes of instances. concludes in Section 6.

2. Preliminaries

1. Introduction
An instanceC' of a covering problem is defined as fol-

The Binate Covering Problem (BCP) finds many appli- [OWS:

cations in Electronic Design Automation (EDA), examples
of which include logic and sequential synthesis (state mini
mi;ati_on and exactencod_ing), cell-library binding and min subjectto A-z>b, z € {0,1}"
imization of Boolean relations [12]. In recent years, saler
powerful algorithmic techniques have been proposed forwherec; is a non-negative integer cost associated with vari-
solving BCP, allowing dramatic improvementsin the ability ablez;,1 < j < nandA -z > b,z € {0,1}" denote
to solving large and complex instances of BCP. Examplesthe set of linear constraints. If every entfyn x n) of
of these techniques include, among others, partitioniifig [3 matrix A is in the set{0,1} andb; = 1,1 < i < m,
limit-lower bound [4], negative-thinking [8] (for unate ¢o thenC is an instance of thenate covering problerfuUCP).
ering), and linear-programming lower bounds [10]. Despite Moreover, if the entries;; of A belong to{—1,0,1} and
these improvements, and as with other NP-hard problemsp, = 1 — |{a;; : a;; = —1}|, thenC' is an instance of the
new effective techniques allow in general very significant binate covering problentBCP). It is interesting to observe
gains, both in the amount of search and in the runtimes. Thethat if C is an instance of the binate covering problem, then
ultimate consequence of proposing new algorithmic tech- each constraint can be interpreted as a propositionalelaus
nigues is the potential ability for solving new classes ef in Conjunctive Normal Form (CNF) formulas are intro-
stances. duced next. Because the set of constraints of an instance
The main objective of this paper is to propose ad- C of BCP is equivalentto a CNF formula, and also because
ditional techniques for pruning the amount of search in some of the search pruning techniques described in the re-
branch-and-bound algorithms for solving covering prob- mainder of the paper are easier to convey in this alternative
lems. These techniques correspond to generalizations andepresentation.
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A propositional formulap in Conjunctive Normal Form  can be used, namely the ones based on linear-programming
(CNF) denotes a boolean functigh: {0,1}"™ — {0, 1}. relaxations [10] or lagrangian relaxations [13], but the ap
The formulay consists of a conjunction of propositional proximation of a maximum independent set of clauses [4] is
clauses, where each clausés a disjunction of literals, and  the most common one. The tightness of the lower bounding
a literal [ is either a variable:; or its complement;. If procedure is crucial for the algorithm’s efficiency, be@us
a literal assumes value 1, then the claussatsfied If with higher estimates of the lower bound, the search can
all literals of a clause assume value 0, the clausenis be pruned sooner. For a better understanding, a method of
satisfied Clauses with only one unassigned literal are re- approximation of a maximum independent set of clauses is
ferred to asunit. Finally, clauses with more than one unas- described in section 3.3.
signed literal are said to benresolved In a search pro- Covering algorithms also incorporate several powerful
cedure, aonflictis said to be identified when at least one reduction techniques such as clause and variable domi-
clause is unsatisfied. We should also observe that a claus@ance, row consensus, Gimpel's reduction [7], the limit
w=(l4+---+1),k < n, canbe interpreted as a linear in- lower bound theorem [4] and partitions [3]. A comprehen-
equalityl; +- - -+ > 1, and the complement of a variable sive overview of these methods can be found in [2, 15].
xj, Zj, can be represented iy ;. In the next few sections we briefly review alternative ap-

When a clause is unit (with only one unassigned literal) proaches for solving BCP, which are known to be competi-
an assignment can be implied. For instance, consider dive for specific types of instances, e.g. when the condain

propositional formulg which contains clause = (z; + are hard to solve. These approaches, namely the ones based
Z2) and assume that, = 1. Fory to be satisfiedy; must on boolean satisfiability algorithms, have different prun-
be assigned value 1 duedo Therefore, we say that, = 1 ing strategies which are not commonly used in branch and
impliesz; = 1 due tow or that clausev explainsthe as- bound algorithms for solving BCP. In section 3.2 an algo-

signmentz; = 1. These logical implications correspond rithm which combines features from both approaches is de-

to the application of the unit clause rule [5] and the pro- scribed.

cess of repeatedly applying this rule is callsablean con-

straint propagation[14]. We should note that throughout 3.1. SAT-Based Linear Search Algorithm

the remainder of this paper some familiarity with backtrack

search SAT algorithms is assumed. The interested reader In [1] P. Barth describes how to solve pseudo-boolean

is referred to the bibliography (see for example [1, 14] for optimization (i.e. a generalization of BCP) using a propo-

additional references). sitional satisfiability (SAT) algorithm. However, the algo
Covering problems are often solved by branch and boundrithm described in [1] is based on the Davis-Putnam [5]

algorithms[3, 8, 15]. In these cases, each node of the searciprocedure, which has been shown to be particularly inef-

tree corresponds to a selected unassigned variable and thécient for a large number of instances of SAT. In [11], a

two branches out of the node represent the assignment of new algorithm based on the GRASP SAT algorithm [14] is

and 0 to that variable. These variables are nadesision proposed, which is able to obtain better experimental re-

variables The first node is called theot (or the top node)  sults. Both these two algorithms interpret the binate cover

of the search tree and corresponds tofits¢ decision level  ing problem (BCP) as a SAT problem defined by the con-
Hence, the top nodes define the first decision levels of thestraintsA - z > b, but with the additional constraint of hav-
search tree. ing to find a solution with cost lower than an existing upper

bound value. The possible values assumed by the cost func-
. . tion for the different assignments to the problem variables
3. Backtrack Search Algorithms for Covering {z1,...,z,} range from 0, when all variables are assigned
Problems value 0, to)_"_, ¢;, when all variables witl; > 0 are as-
signed value 1. Initially, the upper bound on the value of

The most widely known approach for solving covering the cost function is given by:
problems is the classical branch and bound procedure [9], n
in which upper bound®n the value of the cost function are ub = Z cj+1 (2)
identified andlower boundsof the cost function are esti- j=1
mated considering the current set of variable assignments.

. SAT-based linear search algorithms perform a linear
The search can be pruned whenever the lower bound estima- X . !
A search on the possible values of the cost function, starting
tion is higher than or equal to the current upper bound. In

from the highest possible value. Whenever a new solution
these cases we can guarantee that a better (lower cost) solu- . .
. : . . is found that satisfies all the constraints, the upper baind
tion cannot be found with the current variable as;5|gnmentsiS undated to:
and therefore the search can be pruned. The algorithms de- P '

scribed in [3, 10, 15] follow this approach. ub = Z ¢ (3)
There are several lower bound estimation procedures that =1



int mnprine(y) {
ub = cj
while (ub>0) {

e=¢ U {D ¢ z; <ubl;
status = solvessat(yp);

p=9—{d> ¢z <ub};
if (status == SATI SFI ABLE)

ub:ZCj-xj;

el se break;

}

return ub;

}
Figure 1. SAT-based linear search algorithm

If the resulting SAT problem is not satisfiable, then the so-
lution to the BCP problem is given hyb. Starting with the

ub given by (2), SAT-based linear search algorithms consist
on the application of the following steps:

1. Create a new constraijf;_, ¢; - z; < ub. This
inequality basically requires that a computed solution
must have a cost lower than the best one found so far.

2. Solve the resulting instance of a satisfiability prob-
lem, defined on linear inequalities. The modification
of most SAT algorithms to deal with this generaliza-
tion is straightforward.

3. If the instance is satisfiable, then updabeaccording
to (3) and go back to step 1. Otherwise, the solution to
the covering problem igb. In those cases where the

int bsolo(g) {
ub=>c; +1;
while (TRUE) {
if (!reduce_problemn())

return ub;
identifypartitions();
deci de();
if (!consistent state())
return ub;

while (EstimteLB() > ub) {
| ssue_LB_based_conflict();
if (!consistent state())

return ub;
}
}
}
int consistent state() {
do {
whi | e (Deduce() == CONFLICT)
if (diagnose() == CONFLI CT)

return FALSE;
appl y_deduction = FALSE;
if (Solutionfound()) {
Updat e_ub() ;
| ssue_UB_based_conflict();
appl y_deduction = TRUE;

} while (apply-deduction);
return TRUE;

}

Figure 2. SAT-based branch and bound algo-
rithm

initial upper bound is never updated, the problem does in [11]. However, non-chronological backtracking was lim-

not have a solution.

ited to just one specific type of conflict. In section 4 we de-

scribe an extension which allows non-chronological back-
tracking for all types of conflicts. The main steps of the

3.2. SAT-Based Branch and Bound Algorithm
1.

Additional SAT-based BCP algorithms have been pro-
posed. In [11] a new algorithmic organization is described, o
consisting in the integration of several features from SAT
algorithms in a branch and bound procedislq to solve
the binate covering problem. This new framework from
bsoloincorporates the main features from both approaches,
namely the bounding procedure and reduction techniques
from branch and bound algorithms, and search pruning 3.
techniques from SAT algorithms.

Originally, the algorithm presented in [11] already in-
corporated the main pruning techniques of the GRASP
SAT algorithm [14]. To our knowledgehsolo was the
first branch and bound algorithm for solving BCP that im-
plemented a non-chronological backtracking search strat-
egy, clause recording and identification of necessary assig
ments. Mainly due to an effective conflict analysis proce-
dure which allows non-chronological backtracking steps to
be identified,bsoloperforms better than other branch and 5.
bound algorithms in several classes of instances, as shown

algorithm (fig. 2) can be described as:

Initialize the upper bound to the highest possible value
as defined in (2).

. Apply functionreduceproblemto reduce the problem

dimension by applying the techniques from standard
branch and bound covering algorithms. Afterwards,
identify problem partitions and branch on a given de-
cision variable (i.e. make a decision assignment).

The functiorconsistentstateverifies whether the cur-
rent state doesn’t have any conflicts. This is done by
applying boolean constraint propagation and if a con-
flict is reached, apply the conflict analysis procedure,
record relevant clauses and proceed with the search
procedure or backtrack if necessary.

4. If a solution to the constraints has been identified, up-

date the upper bound according to (3) and issuepmn
per bound conflicto backtrack on the search tree.

Estimate a lower bound given the current variable as-
signments. If this value is higher than or equal to the



current upper bound, issud@wver bound conflicand

bound the search by applying the conflict analysis pro- maxi mal i ndependent set () {

MS = empty set;

cedure to determine the node to backtrack to (using do{
function consistensstatd. Continue the search from w = choose.cl ause(y) ;
p = deletelintersectingclauses(yp, w);
) } while (¢ not enpty);
3.3. Maximum Independent Set of Clauses return M'S;
}
The estimation of lower bounds on the value of the cost Figure 3. Algorithm for computing a MIS

function is a very effective method to prune the search €€ lause. This literal basically states that in order to avoél

and the accuracy of the used procedure is critical to identif conflict one possibility is certainly to have the assignment

e e e search pace, T secton descrbes £ espectvelye, — 1. Clany, by consructo, o
g y : X : PEM%er the clause is built its state is unsatisfied. Conseqyentl
dent set of clauses that is outlined for example in [4].

This procedure consists in findina a setof disioint the conflict analysis procedure has to be called to determine
P ) ) . 9 J to which decision level the algorithm must backtrack to.
unate clauses, i.e., with no literals in common between

them. Since maximizing the cost 6fis a NP-hard prob- cnce the search s bound.
Ier?w ;51 grec(:a%y ?omputa%oneisczzed Iisk: the_ose d%;)cr}bed We start by studying upper bound conflicts. In these sit-
in fig. 3. The effectiveness of this method largely depends uations, one possible approach to build a clause to bound

on the clauses added fo Usually. it is chosen the clause the search would be to include all decision variables in the
. o ) y, It : ) search tree. In this case, the conflict would always depend
which maximizes the ratio between its weight and its num-

ber of elements on the last decision \_/ariable. Therefore,_backtracking dL!e
The minimurﬁ cost to satisfy is a lower bound of the to upper bound confhcts quld necessarily be chronologl-
problem and is given by cal (i.e. to thef previous decision level), hence guarantgei
that the algorithm would be complete.
The previous strategy can also be used for lower bound

Cost(I) = ) Weight(w) where  (4) conflicts. By building a clause involving all decision as-

_ wel ] signments present in the search tree, we guarantee that the
Weight(w) = glgul) Cj (5) search is bound and ensure that the algorithm is complete.
Suppose that the sty = 1,20 = 0,23 = 0,24 = 1}
3.4. Upper and Lower Bound Conflicts corresponds to those decisions angl is the clause to be

added. Then we would hava, = (Z; + 2 + 23 + Z4).
Again, the problem with this approach (which was used
in [11] for the originalbsoloalgorithm) is that backtracking

is always chronological, since it depends on all decisions
made. In sections 4.1 and 4.2 we will present new ways
for building these clauses, which enable non-chronoldgica
backtracking due to upper and lower bound conflicts.

From section 3.2 we know that imsolothere are three
types of conflicts which can ariséngical conflictsthat oc-
cur when one of the problem instance constraints is unsat-
isfiable, upper bound conflictthat occur when a solution
to the constraints is found, anower bound conflictshat
take place when the lower bound is higher than or equal to
the upper bound. When logical conflicts occur, the conflict ) .
analysis procedure from GRASP is applied and determines4. SAT-Based Pruning Techniques for BCP
to which decision level the search should backtrack to (pos-
sibly in a non-chronological manner). One of the main features tfsolois the ability to back-

However, the other two types of conflicts are treated dif- track non-chronologically when conflicts arise. This featu
ferently. Inbsolg whenever we have an upper or lower is enabled by the conflict analysis procedure inherited from
bound conflict, a new clausmustbe added to the prob- the GRASP SAT algorithm. However, as illustrated in sec-
lem instance in order for a logical conflict to be issued tion 3.4, in the originabsoloalgorithm non-chronological
and, consequently, to bound the search. This requiremenbacktracking was only possible for logical conflicts. In
is inherited from the GRASP SAT algorithm where, for the case of an upper or lower bound conflict all the search
guaranteeing completeness, both conflicts and implied vari tree decision assignments were used to explain the conflict.
able assignmentaustbe explained in terms of the existing Therefore, these conflicts would always depend on the most
variable assignments [14]. With respect to conflicts, eachrecent decision assignment and backtracking would always
recorded conflict clause is built using the assignments thatbe chronological.
are deemed responsible for the conflict to arise. If the as- In this section we will show that it is possible to com-
signmentr; = 1 (orz; = 0) is considered responsible, the pute sets of assignments which are responsible for upper
literal z; (respectively, literak;) is added to the conflict  and lower bound conflicts. Moreover, since the assignments



that explain each conflict can be from earlier decision kevel whereC.pathis the cost of the assignments already made,
in the search tree, non-chronological backtracking cae tak C.loweris a lower bound estimate on the cost for satisfying

place. the clauses not yet satisfied, afidipperis the best (lowest
cost) solution found so far. From the previous equation, we
4.1. Dependencies in Upper Bound Conflicts can readily conclude th&.pathandC.lowerare the unique

components involved in each lower bound conflict. (Notice
that C.upperis just the value of the cost function for a so-
WHtion computed earlier in the search process.) Therefore,
we will analyze both components in order to establish the
of the conflict analysis procedure, the bounding process re-2sSignments responsible for a given lower bound conflict.
quires creating a new conflict clause. Moreover, in the orig- . e start by studyingC.path Clearly, the variable as-
inal version ofbsoloall decision variables were present in Signments that cause the value@pathto grow are solely

this clause, thus preventing non-chronological backsack t0se assignments with a value of 1. Hence, we can define a
from occurring. However, it is straightforward to conclude S€tOf literalsu.,, such that each variabledn,, has positive

that the assignments which characterize the computed solu€0St and is assigned value 1:

tion are the ones that allow the value of the cost function _

to grow, i.e., the assignments of 1 to variables with positiv wep = {l = 7 : Cost(z;) > 0N wj =1} ©)
cost in the cost function. Therefore, we should backtrack

As mentioned in Section 3.4, upper bound conflicts cor-
respond to the process of bounding the search when a ne
solution (with lower cost) is found. Ibsolg and because

which basically states that to decrease the value of the cost

: . function (i.e. C.path at least one variable that is assigned
is toggled to its complemented value. Lef, be the clause value 1 has instead to be assigned value O.

added due to an upper bound conflict. This clause is defined We now consideC.lower. Let MIS be the independent

by: . . ;
_ set of clauses, obtained by the method described in sec-
wup = {l = 7 : Cost(z;) > 0N w; =1} (8)  tion 3.3, that determines the value Gflower Note that
Consequently, it becomes possible to backtrack non-€ach clause in MIS is part of MIS because it is neither sat-
chronologically after identifying an upper bound conflict. isfied nor covered by some other clause in MIS. Clearly, for

This is illustrated next. each clausa; these conditions only hold due to the literals
Let f (1, x9, 23, 24) = 21 + 2o +23 be the cost function in w; that are assigned value 0. If any of these literals was
to minimize, and the set of constraints be: assigned value 1y; would certainly not be in MIS. Conse-

guently, we can define a set of literals that explain the value
(1 4+ 24) - (g +To) - (3 +24) - (T3 +24)  (7) of C.lower

Let us assume the sequence of decision assignments we ={l:1=0Al€w; Aw; € MIS} (10)
z1 = 1l andze = 0. Suppose that the next decision as- o
signment isz; = 1, that impliesz, = 1. Then all clauses ~ Now, as stated above, a lower bound conflictis solely due to

are satisfied, and the value of the cost function is 2. Next, the two component§.pathandC.lower. Hence, this lower

an upper bound conflict is issued' and the Cldl_«fs!e_i_ ES) bound COﬂflICt will hold as |0ng as the fO”OWing Clausﬁ
is created (observe that the assignment= 0 is irrelevant is unsatisfied:
for being able to reduce the current upper bound estimate). Wip = Wep U we (11)

Afterwards, the assignment = 0 is implied, which again
implies x4 = 1, thus satisfying all clauses. In this case
the value of the cost function is 1. Now, since the value of
x3 is implied, we can readily create the clayge), which
indicates that we should backtraichmediatelyto the deci-
sion stage where the assignment= 1 is defined. Hence,
we backtrack non-chronologically, skipping the backtrack
to the decision assignment = 0.

As long as this clause is unsatisfied, the value€ gfath
andC.lowerwill remain unchanged, and so the lower bound
conflict exists. We can thus use this unsatisfied clause
wyp to analyze the lower bound conflict and decide where
to backtrack to, using the conflict analysis procedure of
GRASP [14]. We should observe that backtracking can be
non-chronological, because clausg does not necessarily
depend on all decision assignments.
L . With respect to (11) a more careful analysis allows us to
4.2. Dependencies in Lower Bound Conflicts conclude that not all of the literals from.,, are necessary.
Suppose that the lower bound is higher than the upper bound
A lower bound conflict in a binate covering problem and define this difference aBff = C.path + C.lower —
(BCP)C arises when the lower bound is equal to or higher C.upper. It is possible to remove some literals fram,
than the upper bound and we can write this condition assuch that the sum of the cost of the corresponding assign-
follows: ments is lower thanliff. This is possible due to the fact
C.path + C.lower > C.upper (8) that the conflict will still hold no matter the value of these



assignments. For implementing this technique one interest

ing problem is to decide which literals should be removed. Benchmark | min CPbUSO'ODec CPBCherZODec
In bsoloan heuristic procedure is used for removing the lit- Sxplb| 12 | 181.02| 1640 | 45| 2234
erals that have been assigned at the most recent levels of the 9sym.b 5| 2791 135 3.6 320
decision tree. Consequently, the likelihood of backtragki alud.b — | ub51] time - time
non-chronologically is higher, since these conflicts wél b apex4.a| 776 | ub78l| ftime | 874 | 48359
. benchl.pi — | ub123 | time - time
more dependent on the earlier levels of the search tree. Sipb [ 15 | 67.00 | 1313 06 97
It is interesting to observe that a clause resulting from countb | 24 | 1227 102 | 478.0 | 299780
a lower bound conflict can be simpler. We have only de- e64.b — | ub487 time — | mem.
scribed how simplifications can be made to @pathcom- ex5pi| —| ub68] time - time
ponent (.,), but other simplifications can also be applied ‘?;’:ft’)' 5 g? gg lt'g;el o ltg‘;;
to the literals added due to the independent set of clauses ja(;s =i tme 79 535
(MIS) (we). Suppose we have a literal = z;, with max1024.pi — | ub262 time = time
x; € wq andletr; = 0. If z; only belongs to one clausg prom2.pi — [ ub 297 time - time
of the independent set and its cost is higher than or equal to rot.b — | ub120 | time - time
the minimum cost of;, thenl can be removed from;;. To sao2b| 25] 958| 281 09 279
. . test4.pi — | ub102 | time - time
better understand how this is possible, supposexthat 1.
In this situationw; would not be in the independent set (it Table 1. Results for bsoloand scherzo
would be a satisfied clause) and thdower component Letwy;, be a clause that must be added in order to explain
would be lower'. However, since the cost of the variable is ipe assignment; = 0, which is implied by applying the
higher than or equal to the minimum costaf theC'path limit lower bound theorem. Notice that this theorem is ap-

component would be higher, and hence the conflict would plied because of the values 6fpath andC.lower. Thus,
still hold. So, the assignment; = 0 is irrelevant for the  the assignments that explain these two values are also the
conflict to arise and can be removed frona;,. explanation sought for the assignment= 0. Therefore,
clausewy;; is constructed as follows,
4.3. Handling Reduction Techniques
Wiih = Wep Uwea U {if]} (13)

As mentioned in the previous sections, for implement-
ing non-chronological backtracking each implied variable X ) .
assignment needs to be properly explained, in order to guar!" ¢-path andC.lower, as described in section 4.2. There-
antee that the resulting branch-and-bound algorithm is-com fo.re, witb becf’mes a new unit clause and consequently im-
plete. Consequently, it is necessary that, whenever tkere i p_I|es the assignment; = 0. (Hence, we say that the as-
a variable assignment implied due to the application of a Signments; = O is explained byus.)
reduction technique (e.g., variable dominance, limit lowe
bound theorem, etc.), a new clause is built and added to5. Experimental Results
the problem instance as an explanation for that assignment.

Clearly, we could create this new clause by using all deci-  |n this section we include experimental results of several
sion assignments in the decision tree, but this would nega-algorithms in two different sets of benchmarks. The first
tively affect the ability of the search algorithm to backka  two tables have results from the MCNC benchmark set [16],
non-chronologically. As before, we must identify condi- while the others are from minimum-size test pattern prob-
tions for using a reduced set of assignments instead of alllems [6]. All execution times are from a SUN Sparc Ultra |,
decision assignments. In this section we illustrate how thi running at 170MHz, and with 100 MB of available physical
is done for assignments implied due to the application of the memory. The run time of every experiment was limited to 1
limit lower bound theorem. For the other reduction tech- hour.

wherew,, andw,; are the literals which explain the values

niques, a similar approach can be used. _ Whenever an algorithm was not able to find the optimum
The limit lower bound theorem [3] is applied to a vari- value for a given problem instance, the best computed upper
ablex; whenever, bound is shown (provided the algorithm was able to com-

pute one). In some situations, the reason for the algorithm
C.upper — (C.path + C.lower) < Cost(zj)  (12) 44 aport is shown. This can be because the time limit was
In these cases, the assignment= 0 is implied. reached or because the available memory was not enough.
In table 1 we present a comparison betwésnloand
!n fact, if the C.lower would be recomputed all over again, itis not scherzoin the MCNC benchmark set.scherzo[3] is a
guaranteed that it would decrease. Nevertheless, we knatwithout classical branch and bound algorithm with powerful prob-
clausew satisfied byz; = 1, MIS\{w} it is still an independent set . . L .
of clauses. Thereforel/75\{w} can be used as a low estimation of €M reduction techniques and very effective in this set of

C.lower. benchmarks, since most clauses only have positive literals




bsolo no LB explanation bsolo LB explanation

Benchmark | min. CPU | Dec. | NCB | Jump Benchmark| min. | CPU | Dec. | NCB | Jump
cordicFa2@0 6 0.14 48 14 5 cordicFa2@0 6 0.21 47 14 4
cordicFa2@1 6 0.25 94 6 3 cordicFaz@1 6 0.24 99 6 3
cordicFa3@0 6 0.16 53 14 5 cordic Fa3@0 6 0.18 52 14 4
cordicFa3@1 6 0.25 100 6 4 cordicFa3@1 6 0.27 105 6 4
cordicFa4@1 6 0.17 84 4 3 cordicFad@1 6 0.18 84 4 3
cordic Fa6@0 6 0.17 58 8 3 cordic Fa6@0 6 0.20 58 8 3
misex1FdO@1 4 0.36 39 0 1 misex1Fdo0@1 4 0.25 25 0 1
misex1Fd1@0 4 0.32 53 3 5 misex1Fd1@0 4 0.18 38 4 5
misex1Fd2@0 3 0.28 39 3 4 misex1Fd2@0 3 0.23 35 3 4
misex1Fd3@1 3 0.36 48 5 4 misex1Fd3@1 3 0.28 39 4 4
misex1lFy@0 5 0.04 12 1 3 misex1Fy@0 5 0.03 12 1 3
misexLFy@1 5 0.04 10 1 2 misexLFy@1 5 0.04 10 1 2
misex3Fa@0 9 | 112.60| 1352 34 7 misex3Fa@0 9 | 52.02 834 78 14
misex3Fa@1 9 42.09 756 25 5 misex3Fa@1 9 | 30.58 642 56 9
misex3Fb@0 9 | 313.87 | 1887 24 6 misex3Fb@0 9 | 95.83 | 1152 119 9
misex3Fb@1 8 96.27 | 1078 26 6 misex3Fb@1 8 | 79.69 978 70 8
pcler8 Fi@0 2 0.26 40 14 2 pcler8 Fi@0 2 0.31 40 14 2
pcler8Fi@1 2 0.41 78 9 2 pcler8 Fi@1 2 0.39 78 9 2
pcler8Fj@1 4 0.21 87 11 2 pcler8Fj@1 4 0.21 87 11 2
pcler8 Fk@1 4 0.53 119 3 2 pcler8 Fk@1 4 0.51 121 4 2
terml1Fa@0 4 0.12 56 1 2 term1Fa@0 4 0.12 56 1 2
term1Fb@0 7 0.37 125 10 3 term1Fb@0 7 0.31 90 6 3
term1Fb@1 7 0.31 140 13 3 termlFb@1 7 0.27 100 7 3
term1Fc@0 4 0.30 77 9 4 term1Fc@0 4 0.29 74 9 4
termlFd@1 4 0.39 92 10 9 termlFd@1 4 0.32 85 10 8

Table 2. Not using lower bound explanations Table 3. Using lower bound explanations

Clearly,scherzds able to solve more problems and is faster Poorly. The same is true facherzowhich is not able to

in most problems. In this benchmark set, the main features2PPly its main features in solving these instances. In ta-
of bsoloare not extensively used. We note however that PI& 5 we present the results for the SAT-based algorithms.
there are some problems in which fewer decisions are made he SAT-based linear search algorithambdp[1] andmin-

We should note that the bookkeeping required for the Prime [11] are able to solve all benchmarks. Moreover,
correctimplementation of the SAT-based techniques can in-bsoloresults are §|gn|f|cantly better than the results pf both
troduce noticeable computational overheadbgola For ~ OPbdpand min-prime mainly due to the new techniques
the above instances, the gain obtained from the SAT-base®"0P0sed in this paper.
techniques is low since non-chronological backtracking is
almost non-existing, suggesting that further work must be 6. Conclusions
done towards reducing the computed sets of dependencies.

As noted earlier, SAT-based BCP algorithms are better  This paper extends well-known search pruning tech-
suited for instances whose constraints are hard to satisfyniques, from the Boolean Satisfiability domain, to branch-
In tables 2 and 3 we present the result®sblofor bench- and-bound algorithms for solving Unate and Binate Cover-
marks from minimum-size test pattern problems [6]. For ing Problems. Besides detailing a branch-and-bound BCP
these tables, and besides the CPU time and the number o&lgorithm built on top of a SAT solver, the paper describes
decisions, the number of non-chronological backtracks andconditions that allow for non-chronological backtracking
the highest jump made in the search tree are also includedthe presence of upper and lower bound conflicts. In ad-
In the first table bsolodoes not use the lower bound ex- dition, the paper also describes how reduction techniques,
planation described in section 4 and the non-chronologicalcommonly used in BCP solvers, can be re-defined and uti-
backtracks are just due to logical or upper bound conflicts. lized within a conflict analysis procedure, in such a way
In table 3 the lower bound explanation of section 4 is used that non-chronological backtracking is enabled. To out bes
and we can see théisolois able to increase the number knowledge, this is the first time that branch-and-bound al-
of non-chronological backtracks while significantly reduc gorithms are augmented with the ability for backtracking
ing the amount of search and the execution time for mostnon-chronologically in the presence of conflicts that resul
instances. from upper and lower bound conditions.

Finally, in tables 4 and 5 we present a comparison be- Preliminary results obtained on several instances of the
tween several algorithms for this set of instances. Table 4Unate and Binate Covering problems indicate that the pro-
clearly shows that general purpose algorithms for solving posed techniques are indeed effective and can be of crucial
01-Integer Linear Programdp¢solve and cpleX perform significance for specific classes of instances.



Ip-solve | scherzo | cplex

Benchmark | min. CPU CPU CPU
cordicFa2@0 6 200.3 64.02 2.77
cordicFa2@1 6 time 94.90 12.22
cordic Fa3@0 6 969.5 67.84 2.20
cordicFa3@1 6 ub7 97.37 9.02
cordicFad@1 6 time 84.13 3.12
cordic Fa6@0 6 time 202.65 2.47
misex1Fd0O@1 4 261.7 0.39 59.47
misex1Fd1@0 4 60.7 0.47 | 149.73
misex1Fd2@0 3 24.9 0.43 | 108.50
misex1Fd3@1 3 24.0 0.26 72.07
misexLFy@0 5 16.5 0.17 11.12
misex1LFy@1 5 15.2 0.30 28.15
misex3Fa@0 9 time mem. time
misex3Fa@1 9 time mem. time
misex3Fb@0 9 time mem. time
misex3Fb@1 8 time mem. time
pcler8 Fi@0 2 12.1 2.58 1.17
pcler8Fi@1 2 19.8 2.37 3.52
pcler8Fj@1 4 9.3 0.39 1.10
pcler8Fk@1 4 8.2 0.28 5.48
term1Fa@0 4 2.2 285.73 1.20
term1Fb@0 7 513.2 mem. 27.63
term1lFb@1 7 404.6 | 256.42 | 22.83
term1Fc@O0 4 75.4 0.86 9.95
termlFd@1 4 150.3 1.50 11.82

Table 4. Algorithm comparison

A key aspect of the proposed techniques is the identifi- [7]
cation of a small set of dependencies explaining each iden-

tified conflict. In each case the main goal is to minimize

the size of this set of dependencies, while guaranteeirg tha (8]
the resulting set still provides a sufficient explanation fo

the given conflict to occur. Future research work will nat-

urally include seeking further simplification of the classe

created for each type of conflict. Moreover, additional tech
nigues from the SAT domain can potentially be applied to

El

solving BCP. These techniques are likely to be significant [10]

for instances of covering problems with sets of constraints

that are hard to satisfy.
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