Lower Bounding Techniques for SAT-based Boolean

Optimization
Vasco M. Manquinho Joao Marques-Silva
vmm@sat.inesc. pt Jgpms@sat.inesc. pt
Polytechnical Institute of Portalegre Technical University of Lisbon, INESC/CEL
Portalegre, Portugal Lisbon, Portugal
Abstract

This paper addresses the problem of integrating different lower bounding techniques
into Satisfiability-based algorithms for the Binate Covering Problem (BCP), a well-
known restriction of Boolean Optimization. The most significant aspect of integrating
lower bounding techniques into Satisfiability-based algorithms for BCP is the ability to
backtrack non-chronologically whenever lower bounding is applied. The lower bounding
techniques considered include the well-known linear programming relaxations and max-
imum independent sets, among others. Besides establishing conditions for backtracking
non-chronologically, we also develop conditions for simplifying the sets of explanations
that are utilized for implementing non-chronological backtracking.

1 Introduction

The generic Boolean Optimization problem as well as several of its restrictions are well-
known computationally hard problems, widely used as modeling tools in Computer Science
and Engineering. These problems have been the subject of extensive research work in the
past (see for example [1]). In this paper we address the Binate Covering Problem (BCP),
one of the restrictions of Boolean Optimization. BCP can be formulated as the problem
of finding a satisfying assignment for a given Conjunctive Normal Form (CNF) formula
subject to minimizing a given cost function. As with generic Boolean Optimization, BCP
also finds many applications, including the computation of minimum-size prime implicants,
of interest in Automated Reasoning and Non-Monotonic Reasoning [12], and as a modeling
tool in Electronic Design Automation (EDA) [3, 14].

The main objective of this paper is to describe how different lower bounding techniques
can be incorporated into SAT-based branch-and-bound algorithms for the binate covering
problem. Among other we study the utilization of liner programming relaxations and max-
imum independent sets, among others. For all the lower bounding techniques described
we provide conditions that enable the search algorithm to backtrack non-chronologically
whenever lower bounding is applied.

The paper is organized as follows. In Section 2 the notation used throughout the paper
is introduced. Afterwards, we briefly review SAT-based branch-and-bound algorithms for
BCP, and in section 4 describe different lower bounding procedures. In subsequent sections,
we describe techniques for backtracking non-chronologically whenever lower bounding is
applied. Moreover, we also provide conditions for simplifying the explanations that are
used for backtracking non-chronologically.

Experimental results are presented in Section 6, and the paper concludes in Section 7.

2 Preliminaries

An instance C' of a covering problem is defined as follows,

n
minimize 2. €T
j=1 (1)

subject to A-x >b, x € {0,1}"

where ¢; is a non-negative integer cost associated with variable z;,1 < j <nand A-2 >
b,z € {0,1}" denote the set of m linear constraints. If every entry in the (m x n) matrix A is
in the set {0,1} and b; = 1,1 <4 < m, then C is an instance of the unate covering problem
(UCP). Moreover, if the entries a;; of A belong to {—1,0,1} and b; = 1 — [{ai; : a;; =
—1,1 < j < n}|, then C is an instance of the binate covering problem (BCP). Observe that
if C is an instance of the binate covering problem, then each constraint can be interpreted
as a propositional clause.

Conjunctive Normal Form (CNF) formulas are introduced next. The use of CNF for-
mulas is justified by noting that the set of constraints of an instance C' of BCP is equivalent
to a CNF formula, and because some of the search pruning techniques described in the
remainder of the paper are easier to convey in this alternative representation.

A propositional formula ¢ in Conjunctive Normal Form (CNF) denotes a boolean func-
tion f:{0,1}" — {0,1}. The formula ¢ consists of a conjunction of propositional clauses,
where each clause w is a disjunction of literals, and a literal [is either a variable z; or its
complement z;. If a literal assumes value 1, then the clause is satisfied. If all literals of a
clause assume value 0, the clause is unsatisfied. Clauses with only one unassigned literal
are referred to as unit. Finally, clauses with more than one unassigned literal are said to
be unresolved. In a search procedure, a conflict is said to be identified when at least one
clause is unsatisfied. In addition, observe that a clause w = (I +--- +lx),k < n, can be
interpreted as a linear inequality I; +---+1[; > 1, and the complement of a variable z;, 7;,
can be represented by 1 — z;.

When a clause is unit (with only one unassigned literal) an assignment can be implied.
For example, consider a propositional formula ¢ which contains clause w = (21 4+ z2) and
assume that zo = 1. For ¢ to be satisfied, £1 must be assigned value 1 due to w. Therefore,
we say that zo = 1 implies £1 = 1 due to w or that clause w ezplains the assignment z; = 1.
These logical implications correspond to the application of the unit clause rule [5] and the
process of repeatedly applying this rule is called boolean constraint propagation [13, 16]. It
should be noted that throughout the remainder of this paper some familiarity with backtrack
search SAT algorithms is assumed. The interested reader is referred to the bibliography
(see for example [1, 13] for additional references).

Covering problems are often solved by branch-and-bound algorithms [4, 7, 14]. In these
cases, each node of the search tree corresponds to a selected unassigned variable and the
two branches out of the node represent the assignment of 1 and 0 to that variable. These
variables are named decision variables. The first node is called the root (or the top node)
of the search tree and corresponds to the first decision level. The decision level of each
decision is defined as one plus the decision level of the previous decision.

3 Search Algorithms for Covering Problems

The most widely known approach for solving covering problems is the classical branch-and-
bound procedure [14], in which upper bounds on the value of the cost function are identified
for each solution to the constraints, and lower bounds on the value of the cost function are
estimated considering the current set of variable assignments. The search can be pruned
whenever the lower bound estimate is higher than or equal to the most recently computed
upper bound. In these cases we can guarantee that a better solution cannot be found with
the current variable assignments and therefore the search can be pruned. The algorithms
described in [4, 7, 14] follow this approach.

The most commonly used lower bound estimation procedure for BCP is the approxima-
tion of a maximum independent set of clauses [3]. However, other procedures can be used,
namely the ones based on linear-programming relaxations [7], Lagrangian relaxations [11]
or the Log-approximation approach [3]. The tightness of the lower bounding procedure is
crucial for the algorithm’s efficiency, because with higher estimates of the lower bound, the
search can be pruned earlier. For a better understanding of lower bounding mechanisms,
different methods will be described with more emphasis on linear programming relaxations
and the Log-approximation approach. Covering algorithms also incorporate several power-
ful reduction techniques, a comprehensive overview of which can be found in [3, 14].

With respect to the application of SAT to Boolean Optimization, P. Barth [1] first pro-
posed a SAT-based approach for solving pseudo-boolean optimization (i.e. a generalization
of BCP). This approach consists of performing a linear search on the possible values of the
cost function, starting from the highest, at each step requiring the next computed solution
to have a cost lower than the most recently computed upper bound. Whenever a new solu-
tion is found which satisfies all the constraints, the value of the cost function is recorded as
the current lowest computed upper bound. If the resulting instance of SAT is not satisfiable,
then the solution to the instance of BCP is given by the last recorded solution.

Additional SAT-based BCP algorithms have been proposed. In [9] a different algorithmic
organization is described, consisting in the integration of several features from SAT algo-
rithms in a branch-and-bound procedure, bsolo, to solve the binate covering problem. The
bsolo algorithm incorporates the most significant features from both approaches, namely
the bounding procedure and the reduction techniques from branch-and-bound algorithms,
and the search pruning techniques from SAT algorithms.

The algorithm presented in [9] already incorporates the main pruning techniques of the
GRASP SAT algorithm [13]. Hence, bsolo is a branch-and-bound algorithm for solving
BCP that implements a non-chronological backtracking search strategy, clause recording
and identification of necessary assignments. Mainly due to an effective conflict analysis
procedure which allows non-chronological backtracking steps to be identified, bsolo performs
better than other branch-and-bound algorithms in several classes of instances, as shown
in [9]. However, non-chronological backtracking is limited to one specific type of conflict.
In [10] is described how to apply non-chronological backtracking to all types of conflicts
when using the approximation of a maximum independent set of clauses. In section 5 we
describe how to apply the same concepts when using other lower bound estimation methods.

The main steps of a simplified version of the bsolo algorithm can be described as follows:

1. Initialize the upper bound to the highest possible value as defined (i.e. given by
Ub = Z?:l Cj +].)

2. Start by checking whether the current state yields a conflict. This is done by applying
boolean constraint propagation and, in case a conflict is reached, by invoking the
conflict analysis procedure, recording relevant clauses and proceeding with the search
procedure or backtrack if necessary.

3. If a solution to the constraints has been identified, update the upper bound according
to ub = Z;’:l ¢; - ;. (Observe that the only way to reduce the value of the current
solution is to backtrack with the objective of finding a solution with a lower cost.)

4. Estimate a lower bound given the current variable assignments. If this value is higher
than or equal to the current upper bound, issue a bound conflict and bound the
search by applying the conflict analysis procedure to determine which decision node
to backtrack to. Continue from step 2.

3.1 Bound Conflicts

In bsolo two types of conflicts can be identified: logical conflicts that occur when at least
one of the problem instance constraints becomes unsatisfied, and bound conflicts that occur
when the lower bound is higher than or equal to the upper bound. When logical conflicts
occur, the conflict analysis procedure from GRASP is applied and determines to which
decision level the search should backtrack to (possibly in a non-chronological manner).

However, the other type of conflict is handled differently. In bsolo, whenever a bound
conflict is identified, a new clause must be added to the problem instance in order for
a logical conflict to be issued and, consequently, to bound the search. This requirement
is inherited from the GRASP SAT algorithm where, for guaranteeing completeness, both
conflicts and implied variable assignments must be explained in terms of the existing variable
assignments [13]. With respect to conflicts, each recorded conflict clause is built using the
assignments that are deemed responsible for the conflict to occur. If the assignment z; = 1
(or z; = 0) is considered responsible, the literal Z; (respectively, literal z;) is added to the
conflict clause. This literal basically states that in order to avoid the conflict one possibility
is certainly to have instead the assignment z; = 0 (respectively, z; = 1). Clearly, by
construction, after the clause is built its state is unsatisfied. Consequently, the conflict
analysis procedure has to be called to determine to which decision level the algorithm must
backtrack to. Hence the search is bound.

Whenever a bound conflict is identified, one possible approach to building a clause to
bound the search would be to include all decision variables in the search tree. In this case,
the conflict would always depend on the last decision variable. Therefore, backtracking
due to bound conflicts would necessarily be chronological (i.e. to the previous decision
level), hence guaranteeing that the algorithm would be complete. Suppose that the set
{1 = 1,29 = 0,23 = 0,24 = 1} corresponds to all the search tree decision assignments
and wy. is the clause to be added due to a bound conflict. Then we would have wp, =
(Z1 + 29 + z3 + x4). Again, the drawback of this approach (which was used in [9]) is that
backtracking due to bound conflicts is always chronological, since it depends on all decision
assignments made. In section 5 we propose a new procedure to build these clauses, which
enables non-chronological backtracking due to bound conflicts.

4 Computation of Lower Bounds

The estimation of lower bounds on the value of the cost function is a very effective method
to prune the search tree and the accuracy of lower bounding procedures is critical for
identifying areas of the search space where solutions to the constraints with lower values of
the cost function cannot be found. In this section we review methods commonly used to
estimate a lower bound on the value of the cost function in instances of BCP.

4.1 Maximum Independent Set of Clauses

The maximum independent set of clauses (MIS) is a greedy method to estimate a lower
bound on the value of the cost function based on an independent set of clauses. (A more
detailed definition can be found for example in [3]).

The greedy procedure consists of finding a set M IS of disjoint unate clauses, i.e. clauses
with only positive literals and with no literals in common among them. Since maximizing
the cost of M 1S is an NP-hard problem, a greedy computation is used. The effectiveness
of this method largely depends on the clauses included in MIS. Usually, one chooses the
clause which maximizes the ratio between its weight and its number of elements.

The minimum cost for satisfying M 1S is a lower bound on the solution of the problem
instance and is given by,

Cost(MIS) = Z Weight(w) where (2)
wEMIS
Weight(w) = mén ¢j (3)

4.2 Linear Programming Relaxations

Linear programming relaxations have long been used as lower bound estimation procedures
in branch-and-bound algorithms for solving integer programming problems [11]. For the
binate covering problem, the utilization of linear programming relaxations as a lower bound
estimation method is proposed in [7]. Moreover, it is also claimed that in most cases the
linear programming relaxation (LPR) bound is higher than the one obtained with the MIS
approach.

The general formulation of the LPR for a covering problem is obtained from (1) as
follows:

n
minimize zp, = Y ¢j - T
i=

subject to A-x >b (4)
z>0

For simplicity the constraints z < 1 are not included. The solution of (1) is referred to as
Zep, Whereas the solution of (4) is referred to as zj,,.

It is well-known that the solution z},,,. of (4) is a lower bound on the solution 27, of (1) [11].
Basically, any solution of (1) is also a feasible solution of (4), but the converse is not true.
Moreover, for a given solution of (4) where z € {0,1}", we necessarily have 27, = -
Hence, the result follows. Furthermore, different linear programming algorithms can be
used for solving (4), some of which with guaranteed worst-case polynomial run time [11].

greedy_solution(p) {
SOL = 0;
while (p #0) {

. Cost(var)
var = MiNygreVar(yp) F(

cov_clauses(var, ¢)) ;
¢ = p — cov_clauses(var,) ;
SOL = SOL U war;

}

return SOL;

}

Figure 1: Algorithm for computation of a greedy solution

4.3 Log-Approximation

It is well known that the MIS approach can be very far from the minimum cost solution in
specific cases of problem instance matrixes [4]. Given that the approximation provided by
the greedy algorithm is of poor quality, tighter lower bounds can be established. In [4] a
new lower bound computation algorithm for unate covering is introduced which guarantees
a logarithmic ratio bound on the minimum cost solution.

The algorithm in Fig. 1 describes a procedure for constructing a greedy solution for a
covering problem with a set ¢ of constraints to satisfy. At each step a decision variable var
is chosen, the clauses that become satisfied by var are removed from ¢ and a solution set is
updated. Observe that the algorithm was conceived to tackle unate covering problems [4],
but it can be easily modified in order to attempt to find greedy solutions for binate covering
instances'. The variable to add to the solution set is the one which minimizes the relation
between its cost and the value given by I'. Let v be a positive weighting function defined
on a set of clauses (e.g. the number of free literals). We can define T" as:

L) = vw) (5)

wey'

It can be shown [4] that based on the greedy solution given by the algorithm in Fig. 1,
it is possible to obtain a lower bound on the covering problem which is log-approximable
to the optimum value z7,. This result is also valid for binate covering whenever the greedy
algorithm is able to find a feasible solution. The lower bound is given by:

Cost(SOL)
Cost(sor))
maz i T(¢)
where r = Z 1/k (7)
k=1

5 SAT-Based Pruning Techniques for BCP

One of the main features of bsolo is the ability to backtrack non-chronologically when
conflicts occur. This feature is enabled by the conflict analysis procedure inherited from
the GRASP SAT algorithm. However, as illustrated in section 3.1, in the original bsolo
algorithm non-chronological backtracking was only possible for logical conflicts. In the case
of a bound conflict all the search tree decision assignments were used to explain the conflict.

n binate covering, the greedy algorithm is unable to guarantee that a solution is found.

Therefore, these conflicts would always depend on the last decision level and backtracking
would necessarily be chronological.

In this section we describe how to compute sets of assignments that explain bound
conflicts. In [10] it is shown that these assignments are not in general associated with
all decision levels in the search tree; hence non-chronological backtracking can take place.
However, in [10], it is only described how to backtrack non-chronologically when a bound
conflict occurs if the approximation of the maximum independent set of clauses (MIS) is
used. In this paper we show that it is possible to have non-chronological backtracks when
using linear-programming relaxations or the Log-approximation.

A bound conflict in an instance of the binate covering problem (BCP) C arises when
the lower bound is equal to or higher than the upper bound. This condition can be written
as C.path 4+ C.lower > C.upper, where C.path is the cost of the assignments already made,
C.lower is a lower bound estimate on the cost of satisfying the clauses not yet satisfied (as
given for example by an independent set of clauses), and C.upper is the best solution found
so far. From the previous equation, we can readily conclude that C.path and C.lower are
the unique components involved in each bound conflict. (Notice that C.upper is just the
lowest value of the cost function for the solutions of the constraints computed earlier in the
search process.) Therefore, we will analyze both C.path and C.lower components in order
to establish the assignments responsible for a given bound conflict.

We start by studying C.path. Clearly, the variable assignments that cause the value of
C.path to grow are solely those assignments with a value of 1. Hence, we can define a set
of literals wep, such that each variable in w., has positive cost and is assigned value 1:

wep = {l =7;: Cost(x;) >0ANz; =1} (8)

which basically states that to decrease the value of the cost function (i.e. C.path) at least
one variable that is assigned value 1 has instead to be assigned value 0.

We now consider C.lower. For simplicity suppose we are using the approximation of
the maximum independent set of clauses as lower bound mechanism. Let MIS be the
independent set of clauses, obtained by the method described in section 4.1, that determines
the value of C.lower. Observe that each clause in M IS is part of M IS because it is neither
satisfied nor has common literals with any other clause in MIS. Clearly, for each clause
w; € M1S these conditions only hold due to the literals in w; that are assigned value 0. If
any of these literals was assigned value 1, w; would certainly not be in M IS since it would
be a satisfied clause. Consequently, we can define a set of literals that explain the value of
C.lower:

wag={l:1=0Nl€wiNw, € MIS} (9)

Now, as stated above, a bound conflict is solely due to the two components C.path and
C.lower. Hence, this bound conflict will hold as long as the following clause wp, is unsatisfied:

Whe = Wep U wyy (10)

(Observe that the set union symbol in the previous equation denotes a disjunction of lit-
erals.) As long as this clause is unsatisfied, the values of C.path and C.lower will remain
unchanged, and so the bound conflict will exist. We can thus use this unsatisfied clause wp,
to analyze the bound conflict and decide where to backtrack to, using the conflict analysis
procedure of GRASP [13]. We should observe that backtracking can be non-chronological,
because clause wy, does not necessarily depend on all decision assignments. Moreover, due

to the clause recording mechanism, wp. can be used later in the search process to prune
the search tree. If these clauses would depend on all decision assignments, clause recording
would not be used since the same set of decision assignments is never repeated in the search
process.

Bound conflicts arise during the search process whenever we have C.path + C.lower >
C.upper. Notice that when a new solution is found, C.lower = 0 and C.path is equal to the
cost of the new upper bound. Therefore, when we update C.upper with the new value, we
have C.path + C.lower = C.upper and a bound conflict is issued in order to backtrack in
the search tree. These bound conflicts are just a particular case and the same process is
applied in order to build the conflict clause.

In order to build the bound conflict clause, we need to obtain the explanation for C.lower
(wer). If different lower bound estimation procedures are used, different procedures are
required for identifying an explanation for the bound conflict. In the remainder of this
section we present a theoretical framework which also allows non-chronological backtracking
when linear-programming relaxations or the Log-approximation are used.

5.1 Pruning with LP-Relaxation Lower Bounds

Linear programming relaxations (LPR) are a powerful method to estimate a lower bound
value for instances of the binate covering problem [7]. However, the resulting backtrack from
a bound conflict when using LPR has always been chronological. The naive approach to
build a clause to bound the search in bound conflicts when using LPR would be to include
all decision variables in the search tree. However, as stated in section 3.1, the resulting
backtrack would necessarily be chronological. In this section, we present a new framework
that allows non-chronological backtracking in bound conflicts when linear programming
relaxations are used to estimate the lower bound value.

Remember that a bound conflict occurs when C.path + C.lower > C.upper, in which
case a set of assignments that explains the conflict must be identified. Therefore, we must
identify the assignments that explain the value on C.path (w.p) and C.lower (w.;) in order
to build the bound conflict clause wy,. to bound the search. Notice that the value on C.path
is independent on the lower bound computation procedure and the bound conflict clause
can be built as in (8).

The approach to build w, must be different from (9), since C.lower depends on the
value given by the LP-solver. Therefore, the information provided by the LP-solver must
be used in order to backtrack non-chronologically in a lower bound conflict when using LPR
for bound computation.

Given the value of C.lower obtained with LPR as formulated in section 4.2, let S be
the set of constraints with slack ? variables assigned value 0. Observe that these are the
constraints which actually limit the value of C.lower, and so will be referred to as the active
constraints. When using LP-relaxations to compute the value of C.lower, the literals that
assume value 0 in the active constraints are directly responsible for the value of C.lower.
These literals correspond to the set w,; in the bound conflict clause. Applying this reasoning
to both assignments of a given variable, allows implementing non-chronological backtracking
and wg can be build as:

wag={l:1=0ANl€wiANw, €S} (11)

“See [8] for a definition of slack and artificial variables.

5.2 Reducing Dependencies in LPR Bound Conflicts

The previous section describes how to obtain an explanation on the value of C.lower when
using LPR. However, a more careful analysis allows the identification of some situations
where literals can be excluded from w,, as presented in (11), since if they were to have a
different value the conflict would still hold.

Suppose that in the solution of the LPR there is a variable z; = 1 and let S(z;) denote
the set of clauses from the active constraints set S where z; appears. For every other literal
l, € S(z;) we must have [, = 0 in the LPR solution, since otherwise these were not active
constraints. Remember that from (11) we say that all literals already assigned value 0
during the search process in clauses S(z;) are in wy. However that might not always be
the case.

Let S*(z;) denote the clauses from S(z;) where, in the search process, all unassigned
literals are positive. Therefore we must have [, = 0 in the LPR solution for all other literals
in ST (z;). Notice that if we decrease the value of z;, at least one z; must be raised by the
same value we decrease z; in order to keep all constraints satisfied in the LPR solution. If
we assume that all variables have the same cost in the cost function, decreasing the value
of 2; would not decrease C.lower given by the LPR solution whenever ||S™(z;)| > 1.

Notice that at least one clause in ST (z;) is enough to justify the assignment z; = 1 in
the LPR solution. All other clauses in S*(z;) may be considered irrelevant for the LPR
solution in terms of the final cost, since the costly assignment can be justified by only one
clause in S*(z;). If we assume that w; € ST (z;) is the one which justifies z; = 1, all other
clauses in ST (z;) can be excluded from the computation of w.. Choosing which clause w;
from ST (z;) justifies z; = 1 can be implemented by a greedy procedure in order to have
the smallest w.; as possible.

The same reasoning can easily be generalized for a set of assignments, instead of just
the assignment of 1 to a single positive literal. Suppose that during the search process,
we have an unresolved clause w; where all unassigned literals are positive. Given the LPR
solution, if w; € S then we must have a set V},, of m variables in w; such that Y>7"z; =1
and all other are assigned value 0, in order for this constraint to have a slack of 0. This is
the necessary condition for w; € S.

One should note that w; is sufficient to justify the assignment to V,,,. If we decrease the
value of any of the m variables in V,,,, another variable in the constraint must be raised by
the same cost in order for w; to be satisfied. Either another variable in V},, or a variable
assigned value 0 in the LPR solution. If we assume that all variables have the same cost
in the cost function, decreasing the value of any of the variables in V},, would not result in
a decrease on C.lower given by the LPR solution. Therefore, if there are other clauses in
S different from w; which are also satisfied due to the assignments in V,;,,, then those other
clauses in S are irrelevant for the final cost of the LPR solution and consequently irrelevant
for the bound conflict.

Consider the following example where wy = (21 + 2), wos = (z1 + z3), w3 = (z2 + x4),
wy = (z9 + x5) where 1 = 24 = 25 = 0,29 = 3 = 1 in the LPR solution. Notice that
clause w3 or w4 (just one of them) can be considered irrelevant for the final cost of the LPR,
as explained previously. If we analyze more carefully this situation we can also conclude
that clause wy (satisfied by z; = 0 in the LPR solution) can also be considered irrelevant
since if 21 was to have a different value, z3 had to be assigned value 0 and the cost of the
solution of the LPR would be the same.

Notice that if there is a clause w; € S such that all unassigned literals are negative, for
w; to be in §, there must be an assignment z; = 0 while all other variables are assigned
value 1 in the LPR solution. One should note that the assignments of 1 to the other
constraint variables is not because of w;, but due to other problem constraints. However,
w; might be constraining the set of the LPR solution cost by making that at least one of its
variables must be assigned value 0. Nevertheless, that is not always the case and in certain
circumstances, w; does not have to be considered in the w. calculation.

Suppose we have a clause w; € S such that all unassigned literals are negative (like
w1 in our example) and there is another clause wy € S where all unassigned literals in wy
are positive (like wy). If we have in the LPR solution z; = 0 satisfying w; and z; appears
at most in one clause wy (clause with only unassigned positive literals), then w; can be
considered irrelevant to the bound explanation. If z; would have a different value (raising
the cost of the LPR solution), it could only be balanced with lowering the literal which
satisfies wg. Since we are supposing that all literals have the same cost, the assignment
xj = 0 does not constrains the overall cost of the LPR solution. Considering again our
example, if there was another clause ws; = (1 +) where g = 1 in the LPR solution,
if £; could be assigned value 1, both z3 = ¢ = 0 would be possible assignments and the
LPR solution would be lower. Therefore, in this case, w; was essential in order to justify
the LPR solution and consequently the bound conflict. That is why x; can only appear at
most in one clause with all unassigned positive literals in the search process.

5.3 Pruning with Log-Approximation Lower Bounds

When Cllower is estimated using the Log-approximation method described in section 4.3,
its value depends on the variable assignments chosen by the greedy algorithm (see Fig. 1).
Notice that each time a variable assignment is chosen, it depends on the value of function
I'. Therefore, choosing a variable assignment depends on the clauses which become satisfied
with that assignment.

Suppose an assignment to variable x; is chosen at iteration £ of the greedy algorithm.
This assignment is due to the fact that there is a set of clauses given by cov_clauses(zj, p(k)")
which become satisfied and this set of clauses allows variable z; to be chosen by the algo-
rithm. Therefore, the clauses in cov_clauses provide an explanation for the assignment to
variable z;. Moreover, the literals assigned value 0 in cov_clauses(z;, ¢(k)') are the ones
deemed responsible since if they were to have a different value, cov_clauses(z;, p(k)") would
be a smaller set which could cause the assignment to variable z; not to be required and
hence C.lower could be lower. Notice that if any of the literals considered responsible were
to satisfy some of these clauses by having the opposite value, the set of clauses to satisfy
(given by cov_clauses) would be smaller and a lower value for C.lower could be obtained,
possibly solving the bound conflict situation.

Let C.lower be estimated using the Log-approximation method and let SOL be the
solution found by the greedy algorithm in n iterations which yields a bound conflict. In
that case, a bound conflict clause wp,. must be created to bound the search. The explanation
on C.path is determined as described previously in section 5, since it does not depend on
the lower bound estimation method. Moreover, the explanation on C.lower is given by:

wa={l:1=0ANl€EwjANw; € m(n)} (12)

*Notice that ¢(k)" denotes the set of clauses still to satisfy at iteration k of the greedy algorithm.

10

Ip-solve cplex | scherzo | opbdp | bsolo (MIS) | bsolo (LPR)

Benchmark | min. CPU CPU CPU CPU CPU CPU
aim-100-1_6-yes1-2 100 - - - 1104.5 0.28 0.24
aim-100-2_0-yes1-3 100 - - 235.84 12.14 0.26 0.27
aim-100-3_4-yes1-4 100 - - 11.56 0.19 0.68 11.46
aim-200-1_-6-yes1-3 200 - - - - 0.41 1.56
aim-200-3_4-yes1-1 200 - - - 9.60 2.86 172.95
aim-50-1_6-yes1-1 50 757.3 113.4 0.76 0.02 0.06 0.09
aim-50-2_0-yes1-2 50 1284.5 107.6 1.81 0.09 0.11 1.10
ii8al 54 162.8 63.0 0.33 0.62 0.52 2.77

ii8a2 - ub 149 ub 147 - ub 141 ub 140 ub 140

ii8b1 191 ub 243 840.4 - ub 191 1042.19 517.2

ii8cl - ub 364 ub 304 - ub 302 ub 302 ub 302

jnh12 94 - 2251.7 0.87 0.01 0.25 0.31

jnh17 95 - 842.5 4.90 0.06 0.88 61.40

jnh7 89 ub 89 ub 90 1.49 0.10 0.63 120.23

ssa7hb2-158 | 1327 ub 1327 | ub 1328 14.54 | ub 1327 3.26 842.25
ssa7552-160 | 1359 ub 1359 | ub 1359 — | ub 1359 9.26 ub 1359

Table 1: Algorithm comparison

where 7(n) is the set of all clauses covered by the assigned variables chosen until iteration
n which is equivalent to:

7(n) = cov_clauses(SOL[1], ¢(1)") U ... U cov_clauses(SOL[n], p(n)") (13)
where SOL[k] is the selected assignment at iteration k in the greedy algorithm.

Notice that at iteration n all clauses from ¢ (clauses that are not yet satisfied) are in
w(n), since all are covered at iteration n of the greedy algorithm. Nevertheless, it is possible
that the resulting bound conflict clause wp. does not depend on the last decision assignment
level and non-chronological backtracking can take place.

6 Experimental Results

In this section we include experimental results of several algorithms in two different sets
of benchmarks. The first table present results for instances of the MCNC benchmark
set [15], whereas the remaining tables present results for instances of the minimum-size prime
implicant problem for Boolean functions. These instances were obtained from satisfiable
instances of the DIMACS benchmark set [6], using the model described in [9, 12].

For the experimental results given below, the CPU times were obtained on a SUN Sparc
Ultra I, running at 170MHz, and with 100 MByte of physical memory. In all cases the
maximum CPU time that each algorithm was allowed to spend on any given instance was
1 hour. When the algorithm was unable to solve the instance due to time restrictions, the
best upper bound found at the time is shown. Otherwise, if no upper bound was computed,
the reason of failure was either due to the time or memory limits imposed. Besides the time
taken and the number of decisions made to solve the instances, it is also shown the number
of non-chronological backtracks and the highest jump made in the search tree.

The experimental procedure consisted of running a selected set of problem instances
with bsolo and several other algorithms. In table 1 we can observe the results of several
algorithms on instances of the minimum-size prime implicant problem. Clearly, Ip_solve [2]

11

bsolo (a) bsolo (b)
Benchmark | min. CPU | Dec. | NCB | Jump CPU | Dec. | NCB | Jump
aim-100-1_6-yes1-2 100 0.28 82 17 11 0.24 82 17 11
aim-100-2_0-yes1-3 100 2.46 97 21 8 0.27 74 15 3
aim-100-3_4-yes1-4 100 11.16 88 8 4 11.46 88 8 4
aim-200-1_6-yes1-3 200 1.58 56 9 8 1.56 56 9 8
aim-200-3_4-yes1-1 200 163.73 201 21 5 172.95 201 21 5
aim-50-1_6-yes1-1 50 0.07 34 7 7 0.09 34 7 7
aim-50-2_0-yes1-2 50 0.78 48 8 6 1.10 54 10 3
aim-50-3_4-yes1-3 50 1.92 34 4 3 1.93 34 4 3
ii8al 54 2.67 72 1 2 2.77 72 1 2
ii8b1 191 493.41 245 1 2 517.2 245 0 1
jnh12 94 0.33 14 2 2 0.31 14 2 2
jnh17 95 63.42 65 7 2 61.40 65 7 2
jnh7 89 119.23 34 2 2 120.23 34 2 2
ssa7h552-158 | 1327 810.45 382 0 1 842.25 382 0 1
ssa7h52-159 | 1327 | 2192.52 605 0 1| 2052.18 | 605 0 1

Table 2: Non-chronological backtracking using LPR (1)

bsolo (a) bsolo (b)
Benchmark | min. CPU Dec. | NCB | Jump CPU Dec. | NCB | Jump
5xpl.b 12 | 708.21 967 1 2 | 656.52 942 79 7
9sym.b 5 | 133.14 94 1 2 | 126.05 94 4 3
alud.b - ubb1 9007 0 1 ub51 9007 10 4
apex4.a — | ub788 1981 0 1| ub788 2186 8 3
benchl.pi 121 | 450.03 453 1 2 | 438.72 453 7 2
clip.b 15 48.68 413 1 2 45.97 413 1 2
count.b 24 7.85 16 1 2 8.52 16 0 1
e64.b - ub48 | 105395 0 1 ub48 | 84403 343 9
f51m.b 18 | 127.92 849 1 2 | 111.45 849 50 4
jac3 15 | 372.18 102 1 2 | 374.55 102 6 25
rot.b - | ubl2l 30765 0 1| ubl21 | 40738 5 5
sao2.b 25 | 324.67 1824 1 2 | 238.35 1824 17 2

Table 3: Non-chronological backtracking using LPR (2)

and cplezx (generic Integer Linear Programming solvers) are unable to solve almost all in-
stances given the time limit. Notice that only for a few problem instances was it able to find
an upper bound. scherzo [4], a state-of-the-art BCP solver that incorporates several pow-
erful pruning techniques in a classical branch-and-bound algorithm, is also unable to solve
most of the example instances. The SAT-based linear search algorithm opbdp [1] is able to
solve most instances, hence suggesting that these instances are well-suited for SAT-based
solvers. Notice however that the two versions of bsolo presented here (using the approxima-
tion of the maximum independent set (MIS) or the linear-programming relaxation (LPR) as
lower bounding mechanism) are able to solve almost every instance or give a better upper
bound on the optimum solution. These two versions differ significantly in terms of time
performance since in most cases the LP-solver incorporated in bsolo (LPR) was very slow in
solving the LPR. Nevertheless, because it provides a better lower bound estimation, bsolo
(LPR) makes fewer decisions than bsolo (MIS).

Table 2 shows how bsolo behaves using LPR as a lower bound procedure in a small set of
solvable instances. In bsolo(a) all bound-based conflicts backtrack chronologically, while in
bsolo(b) we apply the method presented in section 5 to explain the bound conflict. In these
instances, most of the non-chronological backtracks are from logical conflicts and not from

12

bsolo(LPR) bsolo(MIS) scherzo
Benchmark | min. CPU | Dec. CPU | Dec. | CPU Dec.
5xpl.b 12 | 656.52 942 181.02 | 1640 4.5 2234
9sym.b 5 | 126.05 94 27.91 135 3.6 320
alud.b - ubb1 | time ub 51 | time - time
apex4.a 776 | ub788 | time | ub 781 | time 87.4 48359
bench1.pi 121 | 438.72 453 | ub 123 | time — time
clip.b 15 45.97 413 67.09 | 1313 0.6 97
count.b 24 8.52 16 12.27 102 | 478.0 | 299780
e64.b - ub48 | time ub 48 | time - mem.
f51m.b 18 | 111.45 849 97.00 | 1671 1.9 1586
jac3 15 | 374.55 102 ub 17 | time 4.9 292
rot.b — | ubl2l | time | ub 120 | time - time
sao2.b 25 | 238.35 | 1824 9.58 281 0.9 279

Table 4: Results for bsolo and scherzo

bound-based ones. It was rarely observed non-chronological backtracks due to bound-based
conflicts. For a different benchmark set, as shown in table 3, we can observe that when
using bsolo (b) non-chronologically jumps due to bound conflicts occur in the search tree,
improving the algorithms performance.

In instances of the MCNC benchmark set, scherzo is considered to be one of the best
and fastest solvers. In table 4 we can observe the results of both scherzo and bsolo (using
LPR and MIS). Notice that bsolo (LPR) can be slower than bsolo (MIS) for some instances
but bsolo (LPR) makes fewer decisions than bsolo (MIS) since the LPR provides a much
tighter lower bound than the approximation of the maximum independent set (MIS). By
integrating linear-programming relaxations as a lower bound procedure, bsolo (LPR) is able
to solve a larger set of instances with less search effort. However, due to the fact that the
LP-solver is not yet properly integrated in bsolo, the overall time can be higher in some
instances.

7 Conclusions

This paper extends known search pruning techniques, from the Boolean Satisfiability do-
main, to branch-and-bound algorithms for solving the Binate Covering Problem. We present
conditions that allow for non-chronological backtracking in the presence of bound conflicts
when different lower bounding procedures are utilized. Among others, the lower bounding
procedures considered include linear programming relaxations and maximum independent
sets.

Previous work was already done regarding the integration of linear programming re-
laxations in boolean optimization algorithms. However, this is the first time an algorithm
using this lower bounding mechanism is augmented with the ability for backtracking non-
chronologically in the presence of bound conflicts. Moreover, we have established conditions
for reducing the size of bound conflict explanations, which further elicits non-chronological
backtracking. Preliminary results obtained on several instances of the Binate Covering
Problem indicate that the proposed techniques can reduce the amount of search, that can
potentially result in a more competitive algorithm.

Future research work will naturally include seeking further simplification of the bound
clauses created, applying techniques already used for other lower bounding procedures,
namely the approximation of maximum independent set of clauses. We can also preview

13

the generalization of the conditions we present for different variable costs. In addition, and
for obtaining more competitive experimental results, a more adequate integration of the LP
package with the search algorithm needs developed.

References

[1] P. Barth. A Davis-Putnam Enumeration Algorithm for Linear Pseudo-Boolean Optimization. Technical
Report MPI-1-95-2-003, Max Plank Institute for Computer Science, 1995.

2] M. R. C. M. Berkelaar. UNIX Manual Page of Ip-solve. Eindhoven University of Technology, Design

2] ge of Ip y gy, Desig
Automation Section, ftp://ftp.es.ele.tue.nl/pub/Ip_solve, 1992.

[3] O. Coudert. Two-Level Logic Minimization, An Overview. Integration, The VLSI Journal, vol.
17(2):677-691, October 1993.

[4] O. Coudert. On Solving Covering Problems. In Proceedings of the ACM/IEEE Design Automation
Conference, pages 197-202, June 1996.

5] M. Davis and H. Putnam. A Computing Procedure for Quantification Theory. Journal of the Associa-

g y

tion for Computing Machinery, vol. 7:201-215, 1960.

[6] D.S. Johnson and M. A. Trick. Second DIMACS Implementation Challenge. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 1994.

[7] S. Liao and S. Devadas. Solving Covering Problems Using LPR-Based Lower Bounds. In Proceedings
of the ACM/IEEE Design Automation Conference, pages 117-120, 1997.

[8] J. J. J. M. S. Bazaraa and H. D. Sherali. Linear Programming and Network Flows. 2nd Ed., John
Wiley & Sons, 1989.

9] V. M. Manquinho, P. F. Flores, J. P. M. Silva, and A. L. Oliveira. Prime implicant computation usin

[9] q : ; ; p p g
satisfiability algorithms. In Proceedings of the IEEE International Conference on Tools with Artificial
Intelligence, pages 232-239, November 1997.

[10] V. M. Manquinho and J. P. Marques-Silva. Conditions for non-chronological backtracking in boolean
optimization. In AAAI Workshop on the Integration of AI and OR Techniques for Combinatorial
Optimization,, August 2000.

[11] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons,
1988.

[12] C. Pizzuti. Computing Prime Implicants by Integer Programming. In Proceedings of the IEEE Inter-
national Conference on Tools with Artificial Intelligence, pages 332-336, November 1996.

[13] J. P. M. Silva and K. A. Sakallah. GRASP: A new search algorithm for satisfiability. In Proceedings of
the ACM/IEEE International Conference on Computer-Aided Design, pages 220-227, November 1996.

[14] T. Villa, T. Kam, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Explicit and Implicit Algorithms
for Binate Covering Problems. IEEE Transactions on Computer Aided Design, vol. 16(7):677-691, July
1997.

[15] S. Yang. Logic Synthesis and Optimization Benchmarks User Guide. Microelectronics Center of North
Carolina, January 1991.

[16] H. Zhang. SATO: An efficient propositional prover. In Proceedings of the International Conference on

Automated Deduction, pages 272-275, July 1997.

14

