
Lower Bounding Tehniques for SAT-based BooleanOptimizationVaso M. Manquinhovmm�sat.ines.ptPolytehnial Institute of PortalegrePortalegre, Portugal Jo~ao Marques-Silvajpms�sat.ines.ptTehnial University of Lisbon, INESC/CELLisbon, PortugalAbstratThis paper addresses the problem of integrating di�erent lower bounding tehniquesinto Satis�ability-based algorithms for the Binate Covering Problem (BCP), a well-known restrition of Boolean Optimization. The most signi�ant aspet of integratinglower bounding tehniques into Satis�ability-based algorithms for BCP is the ability tobaktrak non-hronologially whenever lower bounding is applied. The lower boundingtehniques onsidered inlude the well-known linear programming relaxations and max-imum independent sets, among others. Besides establishing onditions for baktrakingnon-hronologially, we also develop onditions for simplifying the sets of explanationsthat are utilized for implementing non-hronologial baktraking.1 IntrodutionThe generi Boolean Optimization problem as well as several of its restritions are well-known omputationally hard problems, widely used as modeling tools in Computer Sieneand Engineering. These problems have been the subjet of extensive researh work in thepast (see for example [1℄). In this paper we address the Binate Covering Problem (BCP),one of the restritions of Boolean Optimization. BCP an be formulated as the problemof �nding a satisfying assignment for a given Conjuntive Normal Form (CNF) formulasubjet to minimizing a given ost funtion. As with generi Boolean Optimization, BCPalso �nds many appliations, inluding the omputation of minimum-size prime impliants,of interest in Automated Reasoning and Non-Monotoni Reasoning [12℄, and as a modelingtool in Eletroni Design Automation (EDA) [3, 14℄.The main objetive of this paper is to desribe how di�erent lower bounding tehniquesan be inorporated into SAT-based branh-and-bound algorithms for the binate overingproblem. Among other we study the utilization of liner programming relaxations and max-imum independent sets, among others. For all the lower bounding tehniques desribedwe provide onditions that enable the searh algorithm to baktrak non-hronologiallywhenever lower bounding is applied.The paper is organized as follows. In Setion 2 the notation used throughout the paperis introdued. Afterwards, we briey review SAT-based branh-and-bound algorithms forBCP, and in setion 4 desribe di�erent lower bounding proedures. In subsequent setions,we desribe tehniques for baktraking non-hronologially whenever lower bounding isapplied. Moreover, we also provide onditions for simplifying the explanations that areused for baktraking non-hronologially.Experimental results are presented in Setion 6, and the paper onludes in Setion 7.1

2 PreliminariesAn instane C of a overing problem is de�ned as follows,minimize nPj=1 j � xjsubjet to A � x � b; x 2 f0; 1gn (1)where j is a non-negative integer ost assoiated with variable xj; 1 � j � n and A � x �b; x 2 f0; 1gn denote the set ofm linear onstraints. If every entry in the (m�n) matrix A isin the set f0; 1g and bi = 1; 1 � i � m, then C is an instane of the unate overing problem(UCP). Moreover, if the entries aij of A belong to f�1; 0; 1g and bi = 1 � jfaij : aij =�1; 1 � j � ngj, then C is an instane of the binate overing problem (BCP). Observe thatif C is an instane of the binate overing problem, then eah onstraint an be interpretedas a propositional lause.Conjuntive Normal Form (CNF) formulas are introdued next. The use of CNF for-mulas is justi�ed by noting that the set of onstraints of an instane C of BCP is equivalentto a CNF formula, and beause some of the searh pruning tehniques desribed in theremainder of the paper are easier to onvey in this alternative representation.A propositional formula ' in Conjuntive Normal Form (CNF) denotes a boolean fun-tion f : f0; 1gn ! f0; 1g. The formula ' onsists of a onjuntion of propositional lauses,where eah lause ! is a disjuntion of literals, and a literal l is either a variable xj or itsomplement �xj . If a literal assumes value 1, then the lause is satis�ed. If all literals of alause assume value 0, the lause is unsatis�ed. Clauses with only one unassigned literalare referred to as unit. Finally, lauses with more than one unassigned literal are said tobe unresolved. In a searh proedure, a onit is said to be identi�ed when at least onelause is unsatis�ed. In addition, observe that a lause ! = (l1 + � � � + lk); k � n, an beinterpreted as a linear inequality l1+ � � �+ lk � 1, and the omplement of a variable xj, �xj ,an be represented by 1� xj.When a lause is unit (with only one unassigned literal) an assignment an be implied.For example, onsider a propositional formula ' whih ontains lause ! = (x1 + �x2) andassume that x2 = 1. For ' to be satis�ed, x1 must be assigned value 1 due to !. Therefore,we say that x2 = 1 implies x1 = 1 due to ! or that lause ! explains the assignment x1 = 1.These logial impliations orrespond to the appliation of the unit lause rule [5℄ and theproess of repeatedly applying this rule is alled boolean onstraint propagation [13, 16℄. Itshould be noted that throughout the remainder of this paper some familiarity with baktraksearh SAT algorithms is assumed. The interested reader is referred to the bibliography(see for example [1, 13℄ for additional referenes).Covering problems are often solved by branh-and-bound algorithms [4, 7, 14℄. In theseases, eah node of the searh tree orresponds to a seleted unassigned variable and thetwo branhes out of the node represent the assignment of 1 and 0 to that variable. Thesevariables are named deision variables. The �rst node is alled the root (or the top node)of the searh tree and orresponds to the �rst deision level. The deision level of eahdeision is de�ned as one plus the deision level of the previous deision.
2

3 Searh Algorithms for Covering ProblemsThe most widely known approah for solving overing problems is the lassial branh-and-bound proedure [14℄, in whih upper bounds on the value of the ost funtion are identi�edfor eah solution to the onstraints, and lower bounds on the value of the ost funtion areestimated onsidering the urrent set of variable assignments. The searh an be prunedwhenever the lower bound estimate is higher than or equal to the most reently omputedupper bound. In these ases we an guarantee that a better solution annot be found withthe urrent variable assignments and therefore the searh an be pruned. The algorithmsdesribed in [4, 7, 14℄ follow this approah.The most ommonly used lower bound estimation proedure for BCP is the approxima-tion of a maximum independent set of lauses [3℄. However, other proedures an be used,namely the ones based on linear-programming relaxations [7℄, Lagrangian relaxations [11℄or the Log-approximation approah [3℄. The tightness of the lower bounding proedure isruial for the algorithm's eÆieny, beause with higher estimates of the lower bound, thesearh an be pruned earlier. For a better understanding of lower bounding mehanisms,di�erent methods will be desribed with more emphasis on linear programming relaxationsand the Log-approximation approah. Covering algorithms also inorporate several power-ful redution tehniques, a omprehensive overview of whih an be found in [3, 14℄.With respet to the appliation of SAT to Boolean Optimization, P. Barth [1℄ �rst pro-posed a SAT-based approah for solving pseudo-boolean optimization (i.e. a generalizationof BCP). This approah onsists of performing a linear searh on the possible values of theost funtion, starting from the highest, at eah step requiring the next omputed solutionto have a ost lower than the most reently omputed upper bound. Whenever a new solu-tion is found whih satis�es all the onstraints, the value of the ost funtion is reorded asthe urrent lowest omputed upper bound. If the resulting instane of SAT is not satis�able,then the solution to the instane of BCP is given by the last reorded solution.Additional SAT-based BCP algorithms have been proposed. In [9℄ a di�erent algorithmiorganization is desribed, onsisting in the integration of several features from SAT algo-rithms in a branh-and-bound proedure, bsolo, to solve the binate overing problem. Thebsolo algorithm inorporates the most signi�ant features from both approahes, namelythe bounding proedure and the redution tehniques from branh-and-bound algorithms,and the searh pruning tehniques from SAT algorithms.The algorithm presented in [9℄ already inorporates the main pruning tehniques of theGRASP SAT algorithm [13℄. Hene, bsolo is a branh-and-bound algorithm for solvingBCP that implements a non-hronologial baktraking searh strategy, lause reordingand identi�ation of neessary assignments. Mainly due to an e�etive onit analysisproedure whih allows non-hronologial baktraking steps to be identi�ed, bsolo performsbetter than other branh-and-bound algorithms in several lasses of instanes, as shownin [9℄. However, non-hronologial baktraking is limited to one spei� type of onit.In [10℄ is desribed how to apply non-hronologial baktraking to all types of onitswhen using the approximation of a maximum independent set of lauses. In setion 5 wedesribe how to apply the same onepts when using other lower bound estimation methods.The main steps of a simpli�ed version of the bsolo algorithm an be desribed as follows:1. Initialize the upper bound to the highest possible value as de�ned (i.e. given byub =Pnj=1 j + 1). 3

2. Start by heking whether the urrent state yields a onit. This is done by applyingboolean onstraint propagation and, in ase a onit is reahed, by invoking theonit analysis proedure, reording relevant lauses and proeeding with the searhproedure or baktrak if neessary.3. If a solution to the onstraints has been identi�ed, update the upper bound aordingto ub = Pnj=1 j � xj. (Observe that the only way to redue the value of the urrentsolution is to baktrak with the objetive of �nding a solution with a lower ost.)4. Estimate a lower bound given the urrent variable assignments. If this value is higherthan or equal to the urrent upper bound, issue a bound onit and bound thesearh by applying the onit analysis proedure to determine whih deision nodeto baktrak to. Continue from step 2.3.1 Bound ConitsIn bsolo two types of onits an be identi�ed: logial onits that our when at leastone of the problem instane onstraints beomes unsatis�ed, and bound onits that ourwhen the lower bound is higher than or equal to the upper bound. When logial onitsour, the onit analysis proedure from GRASP is applied and determines to whihdeision level the searh should baktrak to (possibly in a non-hronologial manner).However, the other type of onit is handled di�erently. In bsolo, whenever a boundonit is identi�ed, a new lause must be added to the problem instane in order fora logial onit to be issued and, onsequently, to bound the searh. This requirementis inherited from the GRASP SAT algorithm where, for guaranteeing ompleteness, bothonits and implied variable assignmentsmust be explained in terms of the existing variableassignments [13℄. With respet to onits, eah reorded onit lause is built using theassignments that are deemed responsible for the onit to our. If the assignment xj = 1(or xj = 0) is onsidered responsible, the literal �xj (respetively, literal xj) is added to theonit lause. This literal basially states that in order to avoid the onit one possibilityis ertainly to have instead the assignment xj = 0 (respetively, xj = 1). Clearly, byonstrution, after the lause is built its state is unsatis�ed. Consequently, the onitanalysis proedure has to be alled to determine to whih deision level the algorithm mustbaktrak to. Hene the searh is bound.Whenever a bound onit is identi�ed, one possible approah to building a lause tobound the searh would be to inlude all deision variables in the searh tree. In this ase,the onit would always depend on the last deision variable. Therefore, baktrakingdue to bound onits would neessarily be hronologial (i.e. to the previous deisionlevel), hene guaranteeing that the algorithm would be omplete. Suppose that the setfx1 = 1; x2 = 0; x3 = 0; x4 = 1g orresponds to all the searh tree deision assignmentsand !b is the lause to be added due to a bound onit. Then we would have !b =(�x1 + x2 + x3 + �x4). Again, the drawbak of this approah (whih was used in [9℄) is thatbaktraking due to bound onits is always hronologial, sine it depends on all deisionassignments made. In setion 5 we propose a new proedure to build these lauses, whihenables non-hronologial baktraking due to bound onits.
4

4 Computation of Lower BoundsThe estimation of lower bounds on the value of the ost funtion is a very e�etive methodto prune the searh tree and the auray of lower bounding proedures is ritial foridentifying areas of the searh spae where solutions to the onstraints with lower values ofthe ost funtion annot be found. In this setion we review methods ommonly used toestimate a lower bound on the value of the ost funtion in instanes of BCP.4.1 Maximum Independent Set of ClausesThe maximum independent set of lauses (MIS) is a greedy method to estimate a lowerbound on the value of the ost funtion based on an independent set of lauses. (A moredetailed de�nition an be found for example in [3℄).The greedy proedure onsists of �nding a set MIS of disjoint unate lauses, i.e. lauseswith only positive literals and with no literals in ommon among them. Sine maximizingthe ost of MIS is an NP-hard problem, a greedy omputation is used. The e�etivenessof this method largely depends on the lauses inluded in MIS. Usually, one hooses thelause whih maximizes the ratio between its weight and its number of elements.The minimum ost for satisfying MIS is a lower bound on the solution of the probleminstane and is given by, Cost(MIS) = X!2MISWeight(!) where (2)Weight(!) = minxj2! j (3)4.2 Linear Programming RelaxationsLinear programming relaxations have long been used as lower bound estimation proeduresin branh-and-bound algorithms for solving integer programming problems [11℄. For thebinate overing problem, the utilization of linear programming relaxations as a lower boundestimation method is proposed in [7℄. Moreover, it is also laimed that in most ases thelinear programming relaxation (LPR) bound is higher than the one obtained with the MISapproah.The general formulation of the LPR for a overing problem is obtained from (1) asfollows: minimize zlpr = nPj=1 j � xjsubjet to A � x � bx � 0 (4)For simpliity the onstraints x � 1 are not inluded. The solution of (1) is referred to asz�p, whereas the solution of (4) is referred to as z�lpr.It is well-known that the solution z�lpr of (4) is a lower bound on the solution z�p of (1) [11℄.Basially, any solution of (1) is also a feasible solution of (4), but the onverse is not true.Moreover, for a given solution of (4) where x 2 f0; 1gn, we neessarily have z�p = z�lpr.Hene, the result follows. Furthermore, di�erent linear programming algorithms an beused for solving (4), some of whih with guaranteed worst-ase polynomial run time [11℄.5

greedy solution(') fSOL = ;;while (' 6= ;) fvar = minvar2V ar(') Cost(var)�(ov lauses(var; '));' = '� ov lauses(var; ');SOL = SOL [var;greturn SOL;gFigure 1: Algorithm for omputation of a greedy solution4.3 Log-ApproximationIt is well known that the MIS approah an be very far from the minimum ost solution inspei� ases of problem instane matrixes [4℄. Given that the approximation provided bythe greedy algorithm is of poor quality, tighter lower bounds an be established. In [4℄ anew lower bound omputation algorithm for unate overing is introdued whih guaranteesa logarithmi ratio bound on the minimum ost solution.The algorithm in Fig. 1 desribes a proedure for onstruting a greedy solution for aovering problem with a set ' of onstraints to satisfy. At eah step a deision variable varis hosen, the lauses that beome satis�ed by var are removed from ' and a solution set isupdated. Observe that the algorithm was oneived to takle unate overing problems [4℄,but it an be easily modi�ed in order to attempt to �nd greedy solutions for binate overinginstanes1. The variable to add to the solution set is the one whih minimizes the relationbetween its ost and the value given by �. Let be a positive weighting funtion de�nedon a set of lauses (e.g. the number of free literals). We an de�ne � as:�('0) = X!2'0 (!) (5)It an be shown [4℄ that based on the greedy solution given by the algorithm in Fig. 1,it is possible to obtain a lower bound on the overing problem whih is log-approximableto the optimum value z�p. This result is also valid for binate overing whenever the greedyalgorithm is able to �nd a feasible solution. The lower bound is given by:Cost(SOL)r (6)where r = max'0�('0)Xk=1 1=k (7)5 SAT-Based Pruning Tehniques for BCPOne of the main features of bsolo is the ability to baktrak non-hronologially whenonits our. This feature is enabled by the onit analysis proedure inherited fromthe GRASP SAT algorithm. However, as illustrated in setion 3.1, in the original bsoloalgorithm non-hronologial baktraking was only possible for logial onits. In the aseof a bound onit all the searh tree deision assignments were used to explain the onit.1In binate overing, the greedy algorithm is unable to guarantee that a solution is found.6

Therefore, these onits would always depend on the last deision level and baktrakingwould neessarily be hronologial.In this setion we desribe how to ompute sets of assignments that explain boundonits. In [10℄ it is shown that these assignments are not in general assoiated withall deision levels in the searh tree; hene non-hronologial baktraking an take plae.However, in [10℄, it is only desribed how to baktrak non-hronologially when a boundonit ours if the approximation of the maximum independent set of lauses (MIS) isused. In this paper we show that it is possible to have non-hronologial baktraks whenusing linear-programming relaxations or the Log-approximation.A bound onit in an instane of the binate overing problem (BCP) C arises whenthe lower bound is equal to or higher than the upper bound. This ondition an be writtenas C:path+C:lower � C:upper, where C.path is the ost of the assignments already made,C.lower is a lower bound estimate on the ost of satisfying the lauses not yet satis�ed (asgiven for example by an independent set of lauses), and C.upper is the best solution foundso far. From the previous equation, we an readily onlude that C.path and C.lower arethe unique omponents involved in eah bound onit. (Notie that C.upper is just thelowest value of the ost funtion for the solutions of the onstraints omputed earlier in thesearh proess.) Therefore, we will analyze both C.path and C.lower omponents in orderto establish the assignments responsible for a given bound onit.We start by studying C.path. Clearly, the variable assignments that ause the value ofC.path to grow are solely those assignments with a value of 1. Hene, we an de�ne a setof literals !p, suh that eah variable in !p has positive ost and is assigned value 1:!p = fl = �xj : Cost(xj) > 0 ^ xj = 1g (8)whih basially states that to derease the value of the ost funtion (i.e. C.path) at leastone variable that is assigned value 1 has instead to be assigned value 0.We now onsider C.lower. For simpliity suppose we are using the approximation ofthe maximum independent set of lauses as lower bound mehanism. Let MIS be theindependent set of lauses, obtained by the method desribed in setion 4.1, that determinesthe value of C.lower. Observe that eah lause in MIS is part of MIS beause it is neithersatis�ed nor has ommon literals with any other lause in MIS. Clearly, for eah lause!i 2 MIS these onditions only hold due to the literals in !i that are assigned value 0. Ifany of these literals was assigned value 1, !i would ertainly not be in MIS sine it wouldbe a satis�ed lause. Consequently, we an de�ne a set of literals that explain the value ofC.lower: !l = fl : l = 0 ^ l 2 !i ^ !i 2MISg (9)Now, as stated above, a bound onit is solely due to the two omponents C.path andC.lower. Hene, this bound onit will hold as long as the following lause !b is unsatis�ed:!b = !p [!l (10)(Observe that the set union symbol in the previous equation denotes a disjuntion of lit-erals.) As long as this lause is unsatis�ed, the values of C.path and C.lower will remainunhanged, and so the bound onit will exist. We an thus use this unsatis�ed lause !bto analyze the bound onit and deide where to baktrak to, using the onit analysisproedure of GRASP [13℄. We should observe that baktraking an be non-hronologial,beause lause !b does not neessarily depend on all deision assignments. Moreover, due7

to the lause reording mehanism, !b an be used later in the searh proess to prunethe searh tree. If these lauses would depend on all deision assignments, lause reordingwould not be used sine the same set of deision assignments is never repeated in the searhproess.Bound onits arise during the searh proess whenever we have C:path + C:lower �C:upper. Notie that when a new solution is found, C:lower = 0 and C.path is equal to theost of the new upper bound. Therefore, when we update C.upper with the new value, wehave C:path + C:lower = C:upper and a bound onit is issued in order to baktrak inthe searh tree. These bound onits are just a partiular ase and the same proess isapplied in order to build the onit lause.In order to build the bound onit lause, we need to obtain the explanation for C:lower(!l). If di�erent lower bound estimation proedures are used, di�erent proedures arerequired for identifying an explanation for the bound onit. In the remainder of thissetion we present a theoretial framework whih also allows non-hronologial baktrakingwhen linear-programming relaxations or the Log-approximation are used.5.1 Pruning with LP-Relaxation Lower BoundsLinear programming relaxations (LPR) are a powerful method to estimate a lower boundvalue for instanes of the binate overing problem [7℄. However, the resulting baktrak froma bound onit when using LPR has always been hronologial. The naive approah tobuild a lause to bound the searh in bound onits when using LPR would be to inludeall deision variables in the searh tree. However, as stated in setion 3.1, the resultingbaktrak would neessarily be hronologial. In this setion, we present a new frameworkthat allows non-hronologial baktraking in bound onits when linear programmingrelaxations are used to estimate the lower bound value.Remember that a bound onit ours when C:path + C:lower � C:upper, in whihase a set of assignments that explains the onit must be identi�ed. Therefore, we mustidentify the assignments that explain the value on C:path (!p) and C:lower (!l) in orderto build the bound onit lause !b to bound the searh. Notie that the value on C:pathis independent on the lower bound omputation proedure and the bound onit lausean be built as in (8).The approah to build !l must be di�erent from (9), sine C:lower depends on thevalue given by the LP-solver. Therefore, the information provided by the LP-solver mustbe used in order to baktrak non-hronologially in a lower bound onit when using LPRfor bound omputation.Given the value of C:lower obtained with LPR as formulated in setion 4.2, let S bethe set of onstraints with slak 2 variables assigned value 0. Observe that these are theonstraints whih atually limit the value of C:lower, and so will be referred to as the ativeonstraints. When using LP-relaxations to ompute the value of C:lower, the literals thatassume value 0 in the ative onstraints are diretly responsible for the value of C:lower.These literals orrespond to the set !l in the bound onit lause. Applying this reasoningto both assignments of a given variable, allows implementing non-hronologial baktrakingand !l an be build as: !l = fl : l = 0 ^ l 2 !i ^ !i 2 Sg (11)2See [8℄ for a de�nition of slak and arti�ial variables.8

5.2 Reduing Dependenies in LPR Bound ConitsThe previous setion desribes how to obtain an explanation on the value of C:lower whenusing LPR. However, a more areful analysis allows the identi�ation of some situationswhere literals an be exluded from !l, as presented in (11), sine if they were to have adi�erent value the onit would still hold.Suppose that in the solution of the LPR there is a variable xj = 1 and let S(xj) denotethe set of lauses from the ative onstraints set S where xj appears. For every other literallk 2 S(xj) we must have lk = 0 in the LPR solution, sine otherwise these were not ativeonstraints. Remember that from (11) we say that all literals already assigned value 0during the searh proess in lauses S(xj) are in !l. However that might not always bethe ase.Let S+(xj) denote the lauses from S(xj) where, in the searh proess, all unassignedliterals are positive. Therefore we must have lk = 0 in the LPR solution for all other literalsin S+(xj). Notie that if we derease the value of xj , at least one xi must be raised by thesame value we derease xj in order to keep all onstraints satis�ed in the LPR solution. Ifwe assume that all variables have the same ost in the ost funtion, dereasing the valueof xj would not derease C:lower given by the LPR solution whenever kS+(xj)k � 1.Notie that at least one lause in S+(xj) is enough to justify the assignment xj = 1 inthe LPR solution. All other lauses in S+(xj) may be onsidered irrelevant for the LPRsolution in terms of the �nal ost, sine the ostly assignment an be justi�ed by only onelause in S+(xj). If we assume that !i 2 S+(xj) is the one whih justi�es xj = 1, all otherlauses in S+(xj) an be exluded from the omputation of !l. Choosing whih lause !ifrom S+(xj) justi�es xj = 1 an be implemented by a greedy proedure in order to havethe smallest !l as possible.The same reasoning an easily be generalized for a set of assignments, instead of justthe assignment of 1 to a single positive literal. Suppose that during the searh proess,we have an unresolved lause !i where all unassigned literals are positive. Given the LPRsolution, if !i 2 S then we must have a set Vm of m variables in !i suh that Pm1 xj = 1and all other are assigned value 0, in order for this onstraint to have a slak of 0. This isthe neessary ondition for !i 2 S.One should note that !i is suÆient to justify the assignment to Vm. If we derease thevalue of any of the m variables in Vm, another variable in the onstraint must be raised bythe same ost in order for !i to be satis�ed. Either another variable in Vm or a variableassigned value 0 in the LPR solution. If we assume that all variables have the same ostin the ost funtion, dereasing the value of any of the variables in Vm would not result ina derease on C:lower given by the LPR solution. Therefore, if there are other lauses inS di�erent from !i whih are also satis�ed due to the assignments in Vm, then those otherlauses in S are irrelevant for the �nal ost of the LPR solution and onsequently irrelevantfor the bound onit.Consider the following example where !1 = (�x1 + �x2), !2 = (x1 + x3), !3 = (x2 + x4),!4 = (x2 + x5) where x1 = x4 = x5 = 0; x2 = x3 = 1 in the LPR solution. Notie thatlause !3 or !4 (just one of them) an be onsidered irrelevant for the �nal ost of the LPR,as explained previously. If we analyze more arefully this situation we an also onludethat lause !1 (satis�ed by x1 = 0 in the LPR solution) an also be onsidered irrelevantsine if x1 was to have a di�erent value, x3 had to be assigned value 0 and the ost of thesolution of the LPR would be the same. 9

Notie that if there is a lause !i 2 S suh that all unassigned literals are negative, for!i to be in S, there must be an assignment xj = 0 while all other variables are assignedvalue 1 in the LPR solution. One should note that the assignments of 1 to the otheronstraint variables is not beause of !i, but due to other problem onstraints. However,!i might be onstraining the set of the LPR solution ost by making that at least one of itsvariables must be assigned value 0. Nevertheless, that is not always the ase and in ertainirumstanes, !i does not have to be onsidered in the !l alulation.Suppose we have a lause !i 2 S suh that all unassigned literals are negative (like!1 in our example) and there is another lause !k 2 S where all unassigned literals in !kare positive (like !2). If we have in the LPR solution xj = 0 satisfying !i and xj appearsat most in one lause !k (lause with only unassigned positive literals), then !i an beonsidered irrelevant to the bound explanation. If xj would have a di�erent value (raisingthe ost of the LPR solution), it ould only be balaned with lowering the literal whihsatis�es !k. Sine we are supposing that all literals have the same ost, the assignmentxj = 0 does not onstrains the overall ost of the LPR solution. Considering again ourexample, if there was another lause !5 = (x1 + x6) where x6 = 1 in the LPR solution,if x1 ould be assigned value 1, both x3 = x6 = 0 would be possible assignments and theLPR solution would be lower. Therefore, in this ase, !1 was essential in order to justifythe LPR solution and onsequently the bound onit. That is why x1 an only appear atmost in one lause with all unassigned positive literals in the searh proess.5.3 Pruning with Log-Approximation Lower BoundsWhen C:lower is estimated using the Log-approximation method desribed in setion 4.3,its value depends on the variable assignments hosen by the greedy algorithm (see Fig. 1).Notie that eah time a variable assignment is hosen, it depends on the value of funtion�. Therefore, hoosing a variable assignment depends on the lauses whih beome satis�edwith that assignment.Suppose an assignment to variable xj is hosen at iteration k of the greedy algorithm.This assignment is due to the fat that there is a set of lauses given by ov lauses(xj; '(k)0) 3whih beome satis�ed and this set of lauses allows variable xj to be hosen by the algo-rithm. Therefore, the lauses in ov lauses provide an explanation for the assignment tovariable xj . Moreover, the literals assigned value 0 in ov lauses(xj ; '(k)0) are the onesdeemed responsible sine if they were to have a di�erent value, ov lauses(xj ; '(k)0) wouldbe a smaller set whih ould ause the assignment to variable xj not to be required andhene C:lower ould be lower. Notie that if any of the literals onsidered responsible wereto satisfy some of these lauses by having the opposite value, the set of lauses to satisfy(given by ov lauses) would be smaller and a lower value for C:lower ould be obtained,possibly solving the bound onit situation.Let C:lower be estimated using the Log-approximation method and let SOL be thesolution found by the greedy algorithm in n iterations whih yields a bound onit. Inthat ase, a bound onit lause !b must be reated to bound the searh. The explanationon C:path is determined as desribed previously in setion 5, sine it does not depend onthe lower bound estimation method. Moreover, the explanation on C:lower is given by:!l = fl : l = 0 ^ l 2 !i ^ !i 2 �(n)g (12)3Notie that '(k)0 denotes the set of lauses still to satisfy at iteration k of the greedy algorithm.10

lp-solve plex sherzo opbdp bsolo (MIS) bsolo (LPR)Benhmark min. CPU CPU CPU CPU CPU CPUaim-100-1 6-yes1-2 100 { { { 1104.5 0.28 0.24aim-100-2 0-yes1-3 100 { { 235.84 12.14 0.26 0.27aim-100-3 4-yes1-4 100 { { 11.56 0.19 0.68 11.46aim-200-1 6-yes1-3 200 { { { { 0.41 1.56aim-200-3 4-yes1-1 200 { { { 9.60 2.86 172.95aim-50-1 6-yes1-1 50 757.3 113.4 0.76 0.02 0.06 0.09aim-50-2 0-yes1-2 50 1284.5 107.6 1.81 0.09 0.11 1.10ii8a1 54 162.8 63.0 0.33 0.62 0.52 2.77ii8a2 { ub 149 ub 147 { ub 141 ub 140 ub 140ii8b1 191 ub 243 840.4 { ub 191 1042.19 517.2ii81 { ub 364 ub 304 { ub 302 ub 302 ub 302jnh12 94 { 2251.7 0.87 0.01 0.25 0.31jnh17 95 { 842.5 4.90 0.06 0.88 61.40jnh7 89 ub 89 ub 90 1.49 0.10 0.63 120.23ssa7552-158 1327 ub 1327 ub 1328 14.54 ub 1327 3.26 842.25ssa7552-160 1359 ub 1359 ub 1359 { ub 1359 9.26 ub 1359Table 1: Algorithm omparisonwhere �(n) is the set of all lauses overed by the assigned variables hosen until iterationn whih is equivalent to:�(n) = ov lauses(SOL[1℄; '(1)0) [::: [ov lauses(SOL[n℄; '(n)0) (13)where SOL[k℄ is the seleted assignment at iteration k in the greedy algorithm.Notie that at iteration n all lauses from ' (lauses that are not yet satis�ed) are in�(n), sine all are overed at iteration n of the greedy algorithm. Nevertheless, it is possiblethat the resulting bound onit lause !b does not depend on the last deision assignmentlevel and non-hronologial baktraking an take plae.6 Experimental ResultsIn this setion we inlude experimental results of several algorithms in two di�erent setsof benhmarks. The �rst table present results for instanes of the MCNC benhmarkset [15℄, whereas the remaining tables present results for instanes of the minimum-size primeimpliant problem for Boolean funtions. These instanes were obtained from satis�ableinstanes of the DIMACS benhmark set [6℄, using the model desribed in [9, 12℄.For the experimental results given below, the CPU times were obtained on a SUN SparUltra I, running at 170MHz, and with 100 MByte of physial memory. In all ases themaximum CPU time that eah algorithm was allowed to spend on any given instane was1 hour. When the algorithm was unable to solve the instane due to time restritions, thebest upper bound found at the time is shown. Otherwise, if no upper bound was omputed,the reason of failure was either due to the time or memory limits imposed. Besides the timetaken and the number of deisions made to solve the instanes, it is also shown the numberof non-hronologial baktraks and the highest jump made in the searh tree.The experimental proedure onsisted of running a seleted set of problem instaneswith bsolo and several other algorithms. In table 1 we an observe the results of severalalgorithms on instanes of the minimum-size prime impliant problem. Clearly, lp solve [2℄11

bsolo (a) bsolo (b)Benhmark min. CPU De. NCB Jump CPU De. NCB Jumpaim-100-1 6-yes1-2 100 0.28 82 17 11 0.24 82 17 11aim-100-2 0-yes1-3 100 2.46 97 21 8 0.27 74 15 3aim-100-3 4-yes1-4 100 11.16 88 8 4 11.46 88 8 4aim-200-1 6-yes1-3 200 1.58 56 9 8 1.56 56 9 8aim-200-3 4-yes1-1 200 163.73 201 21 5 172.95 201 21 5aim-50-1 6-yes1-1 50 0.07 34 7 7 0.09 34 7 7aim-50-2 0-yes1-2 50 0.78 48 8 6 1.10 54 10 3aim-50-3 4-yes1-3 50 1.92 34 4 3 1.93 34 4 3ii8a1 54 2.67 72 1 2 2.77 72 1 2ii8b1 191 493.41 245 1 2 517.2 245 0 1jnh12 94 0.33 14 2 2 0.31 14 2 2jnh17 95 63.42 65 7 2 61.40 65 7 2jnh7 89 119.23 34 2 2 120.23 34 2 2ssa7552-158 1327 810.45 382 0 1 842.25 382 0 1ssa7552-159 1327 2192.52 605 0 1 2052.18 605 0 1Table 2: Non-hronologial baktraking using LPR (1)bsolo (a) bsolo (b)Benhmark min. CPU De. NCB Jump CPU De. NCB Jump5xp1.b 12 708.21 967 1 2 656.52 942 79 79sym.b 5 133.14 94 1 2 126.05 94 4 3alu4.b { ub51 9007 0 1 ub51 9007 10 4apex4.a { ub788 1981 0 1 ub788 2186 8 3benh1.pi 121 450.03 453 1 2 438.72 453 7 2lip.b 15 48.68 413 1 2 45.97 413 1 2ount.b 24 7.85 16 1 2 8.52 16 0 1e64.b { ub48 105395 0 1 ub48 84403 343 9f51m.b 18 127.92 849 1 2 111.45 849 50 4ja3 15 372.18 102 1 2 374.55 102 6 25rot.b { ub121 30765 0 1 ub121 40738 5 5sao2.b 25 324.67 1824 1 2 238.35 1824 17 2Table 3: Non-hronologial baktraking using LPR (2)and plex (generi Integer Linear Programming solvers) are unable to solve almost all in-stanes given the time limit. Notie that only for a few problem instanes was it able to �ndan upper bound. sherzo [4℄, a state-of-the-art BCP solver that inorporates several pow-erful pruning tehniques in a lassial branh-and-bound algorithm, is also unable to solvemost of the example instanes. The SAT-based linear searh algorithm opbdp [1℄ is able tosolve most instanes, hene suggesting that these instanes are well-suited for SAT-basedsolvers. Notie however that the two versions of bsolo presented here (using the approxima-tion of the maximum independent set (MIS) or the linear-programming relaxation (LPR) aslower bounding mehanism) are able to solve almost every instane or give a better upperbound on the optimum solution. These two versions di�er signi�antly in terms of timeperformane sine in most ases the LP-solver inorporated in bsolo (LPR) was very slow insolving the LPR. Nevertheless, beause it provides a better lower bound estimation, bsolo(LPR) makes fewer deisions than bsolo (MIS).Table 2 shows how bsolo behaves using LPR as a lower bound proedure in a small set ofsolvable instanes. In bsolo(a) all bound-based onits baktrak hronologially, while inbsolo(b) we apply the method presented in setion 5 to explain the bound onit. In theseinstanes, most of the non-hronologial baktraks are from logial onits and not from12

bsolo(LPR) bsolo(MIS) sherzoBenhmark min. CPU De. CPU De. CPU De.5xp1.b 12 656.52 942 181.02 1640 4.5 22349sym.b 5 126.05 94 27.91 135 3.6 320alu4.b { ub51 time ub 51 time { timeapex4.a 776 ub788 time ub 781 time 87.4 48359benh1.pi 121 438.72 453 ub 123 time { timelip.b 15 45.97 413 67.09 1313 0.6 97ount.b 24 8.52 16 12.27 102 478.0 299780e64.b { ub48 time ub 48 time { mem.f51m.b 18 111.45 849 97.00 1671 1.9 1586ja3 15 374.55 102 ub 17 time 4.9 292rot.b { ub121 time ub 120 time { timesao2.b 25 238.35 1824 9.58 281 0.9 279Table 4: Results for bsolo and sherzobound-based ones. It was rarely observed non-hronologial baktraks due to bound-basedonits. For a di�erent benhmark set, as shown in table 3, we an observe that whenusing bsolo (b) non-hronologially jumps due to bound onits our in the searh tree,improving the algorithms performane.In instanes of the MCNC benhmark set, sherzo is onsidered to be one of the bestand fastest solvers. In table 4 we an observe the results of both sherzo and bsolo (usingLPR and MIS). Notie that bsolo (LPR) an be slower than bsolo (MIS) for some instanesbut bsolo (LPR) makes fewer deisions than bsolo (MIS) sine the LPR provides a muhtighter lower bound than the approximation of the maximum independent set (MIS). Byintegrating linear-programming relaxations as a lower bound proedure, bsolo (LPR) is ableto solve a larger set of instanes with less searh e�ort. However, due to the fat that theLP-solver is not yet properly integrated in bsolo, the overall time an be higher in someinstanes.7 ConlusionsThis paper extends known searh pruning tehniques, from the Boolean Satis�ability do-main, to branh-and-bound algorithms for solving the Binate Covering Problem. We presentonditions that allow for non-hronologial baktraking in the presene of bound onitswhen di�erent lower bounding proedures are utilized. Among others, the lower boundingproedures onsidered inlude linear programming relaxations and maximum independentsets.Previous work was already done regarding the integration of linear programming re-laxations in boolean optimization algorithms. However, this is the �rst time an algorithmusing this lower bounding mehanism is augmented with the ability for baktraking non-hronologially in the presene of bound onits. Moreover, we have established onditionsfor reduing the size of bound onit explanations, whih further eliits non-hronologialbaktraking. Preliminary results obtained on several instanes of the Binate CoveringProblem indiate that the proposed tehniques an redue the amount of searh, that anpotentially result in a more ompetitive algorithm.Future researh work will naturally inlude seeking further simpli�ation of the boundlauses reated, applying tehniques already used for other lower bounding proedures,namely the approximation of maximum independent set of lauses. We an also preview13

the generalization of the onditions we present for di�erent variable osts. In addition, andfor obtaining more ompetitive experimental results, a more adequate integration of the LPpakage with the searh algorithm needs developed.Referenes[1℄ P. Barth. A Davis-Putnam Enumeration Algorithm for Linear Pseudo-Boolean Optimization. TehnialReport MPI-I-95-2-003, Max Plank Institute for Computer Siene, 1995.[2℄ M. R. C. M. Berkelaar. UNIX Manual Page of lp-solve. Eindhoven University of Tehnology, DesignAutomation Setion, ftp://ftp.es.ele.tue.nl/pub/lp solve, 1992.[3℄ O. Coudert. Two-Level Logi Minimization, An Overview. Integration, The VLSI Journal, vol.17(2):677{691, Otober 1993.[4℄ O. Coudert. On Solving Covering Problems. In Proeedings of the ACM/IEEE Design AutomationConferene, pages 197{202, June 1996.[5℄ M. Davis and H. Putnam. A Computing Proedure for Quanti�ation Theory. Journal of the Assoia-tion for Computing Mahinery, vol. 7:201{215, 1960.[6℄ D. S. Johnson and M. A. Trik. Seond DIMACS Implementation Challenge. DIMACS Series in DisreteMathematis and Theoretial Computer Siene, 1994.[7℄ S. Liao and S. Devadas. Solving Covering Problems Using LPR-Based Lower Bounds. In Proeedingsof the ACM/IEEE Design Automation Conferene, pages 117{120, 1997.[8℄ J. J. J. M. S. Bazaraa and H. D. Sherali. Linear Programming and Network Flows. 2nd Ed., JohnWiley & Sons, 1989.[9℄ V. M. Manquinho, P. F. Flores, J. P. M. Silva, and A. L. Oliveira. Prime impliant omputation usingsatis�ability algorithms. In Proeedings of the IEEE International Conferene on Tools with Arti�ialIntelligene, pages 232{239, November 1997.[10℄ V. M. Manquinho and J. P. Marques-Silva. Conditions for non-hronologial baktraking in booleanoptimization. In AAAI Workshop on the Integration of AI and OR Tehniques for CombinatorialOptimization,, August 2000.[11℄ G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons,1988.[12℄ C. Pizzuti. Computing Prime Impliants by Integer Programming. In Proeedings of the IEEE Inter-national Conferene on Tools with Arti�ial Intelligene, pages 332{336, November 1996.[13℄ J. P. M. Silva and K. A. Sakallah. GRASP: A new searh algorithm for satis�ability. In Proeedings ofthe ACM/IEEE International Conferene on Computer-Aided Design, pages 220{227, November 1996.[14℄ T. Villa, T. Kam, R. K. Brayton, and A. L. Sangiovanni-Vinentelli. Expliit and Impliit Algorithmsfor Binate Covering Problems. IEEE Transations on Computer Aided Design, vol. 16(7):677{691, July1997.[15℄ S. Yang. Logi Synthesis and Optimization Benhmarks User Guide. Miroeletronis Center of NorthCarolina, January 1991.[16℄ H. Zhang. SATO: An eÆient propositional prover. In Proeedings of the International Conferene onAutomated Dedution, pages 272{275, July 1997.
14

