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tThis paper addresses the problem of integrating di�erent lower bounding te
hniquesinto Satis�ability-based algorithms for the Binate Covering Problem (BCP), a well-known restri
tion of Boolean Optimization. The most signi�
ant aspe
t of integratinglower bounding te
hniques into Satis�ability-based algorithms for BCP is the ability toba
ktra
k non-
hronologi
ally whenever lower bounding is applied. The lower boundingte
hniques 
onsidered in
lude the well-known linear programming relaxations and max-imum independent sets, among others. Besides establishing 
onditions for ba
ktra
kingnon-
hronologi
ally, we also develop 
onditions for simplifying the sets of explanationsthat are utilized for implementing non-
hronologi
al ba
ktra
king.1 Introdu
tionThe generi
 Boolean Optimization problem as well as several of its restri
tions are well-known 
omputationally hard problems, widely used as modeling tools in Computer S
ien
eand Engineering. These problems have been the subje
t of extensive resear
h work in thepast (see for example [1℄). In this paper we address the Binate Covering Problem (BCP),one of the restri
tions of Boolean Optimization. BCP 
an be formulated as the problemof �nding a satisfying assignment for a given Conjun
tive Normal Form (CNF) formulasubje
t to minimizing a given 
ost fun
tion. As with generi
 Boolean Optimization, BCPalso �nds many appli
ations, in
luding the 
omputation of minimum-size prime impli
ants,of interest in Automated Reasoning and Non-Monotoni
 Reasoning [12℄, and as a modelingtool in Ele
troni
 Design Automation (EDA) [3, 14℄.The main obje
tive of this paper is to des
ribe how di�erent lower bounding te
hniques
an be in
orporated into SAT-based bran
h-and-bound algorithms for the binate 
overingproblem. Among other we study the utilization of liner programming relaxations and max-imum independent sets, among others. For all the lower bounding te
hniques des
ribedwe provide 
onditions that enable the sear
h algorithm to ba
ktra
k non-
hronologi
allywhenever lower bounding is applied.The paper is organized as follows. In Se
tion 2 the notation used throughout the paperis introdu
ed. Afterwards, we brie
y review SAT-based bran
h-and-bound algorithms forBCP, and in se
tion 4 des
ribe di�erent lower bounding pro
edures. In subsequent se
tions,we des
ribe te
hniques for ba
ktra
king non-
hronologi
ally whenever lower bounding isapplied. Moreover, we also provide 
onditions for simplifying the explanations that areused for ba
ktra
king non-
hronologi
ally.Experimental results are presented in Se
tion 6, and the paper 
on
ludes in Se
tion 7.1



2 PreliminariesAn instan
e C of a 
overing problem is de�ned as follows,minimize nPj=1 
j � xjsubje
t to A � x � b; x 2 f0; 1gn (1)where 
j is a non-negative integer 
ost asso
iated with variable xj; 1 � j � n and A � x �b; x 2 f0; 1gn denote the set ofm linear 
onstraints. If every entry in the (m�n) matrix A isin the set f0; 1g and bi = 1; 1 � i � m, then C is an instan
e of the unate 
overing problem(UCP). Moreover, if the entries aij of A belong to f�1; 0; 1g and bi = 1 � jfaij : aij =�1; 1 � j � ngj, then C is an instan
e of the binate 
overing problem (BCP). Observe thatif C is an instan
e of the binate 
overing problem, then ea
h 
onstraint 
an be interpretedas a propositional 
lause.Conjun
tive Normal Form (CNF) formulas are introdu
ed next. The use of CNF for-mulas is justi�ed by noting that the set of 
onstraints of an instan
e C of BCP is equivalentto a CNF formula, and be
ause some of the sear
h pruning te
hniques des
ribed in theremainder of the paper are easier to 
onvey in this alternative representation.A propositional formula ' in Conjun
tive Normal Form (CNF) denotes a boolean fun
-tion f : f0; 1gn ! f0; 1g. The formula ' 
onsists of a 
onjun
tion of propositional 
lauses,where ea
h 
lause ! is a disjun
tion of literals, and a literal l is either a variable xj or its
omplement �xj . If a literal assumes value 1, then the 
lause is satis�ed. If all literals of a
lause assume value 0, the 
lause is unsatis�ed. Clauses with only one unassigned literalare referred to as unit. Finally, 
lauses with more than one unassigned literal are said tobe unresolved. In a sear
h pro
edure, a 
on
i
t is said to be identi�ed when at least one
lause is unsatis�ed. In addition, observe that a 
lause ! = (l1 + � � � + lk); k � n, 
an beinterpreted as a linear inequality l1+ � � �+ lk � 1, and the 
omplement of a variable xj, �xj ,
an be represented by 1� xj.When a 
lause is unit (with only one unassigned literal) an assignment 
an be implied.For example, 
onsider a propositional formula ' whi
h 
ontains 
lause ! = (x1 + �x2) andassume that x2 = 1. For ' to be satis�ed, x1 must be assigned value 1 due to !. Therefore,we say that x2 = 1 implies x1 = 1 due to ! or that 
lause ! explains the assignment x1 = 1.These logi
al impli
ations 
orrespond to the appli
ation of the unit 
lause rule [5℄ and thepro
ess of repeatedly applying this rule is 
alled boolean 
onstraint propagation [13, 16℄. Itshould be noted that throughout the remainder of this paper some familiarity with ba
ktra
ksear
h SAT algorithms is assumed. The interested reader is referred to the bibliography(see for example [1, 13℄ for additional referen
es).Covering problems are often solved by bran
h-and-bound algorithms [4, 7, 14℄. In these
ases, ea
h node of the sear
h tree 
orresponds to a sele
ted unassigned variable and thetwo bran
hes out of the node represent the assignment of 1 and 0 to that variable. Thesevariables are named de
ision variables. The �rst node is 
alled the root (or the top node)of the sear
h tree and 
orresponds to the �rst de
ision level. The de
ision level of ea
hde
ision is de�ned as one plus the de
ision level of the previous de
ision.
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3 Sear
h Algorithms for Covering ProblemsThe most widely known approa
h for solving 
overing problems is the 
lassi
al bran
h-and-bound pro
edure [14℄, in whi
h upper bounds on the value of the 
ost fun
tion are identi�edfor ea
h solution to the 
onstraints, and lower bounds on the value of the 
ost fun
tion areestimated 
onsidering the 
urrent set of variable assignments. The sear
h 
an be prunedwhenever the lower bound estimate is higher than or equal to the most re
ently 
omputedupper bound. In these 
ases we 
an guarantee that a better solution 
annot be found withthe 
urrent variable assignments and therefore the sear
h 
an be pruned. The algorithmsdes
ribed in [4, 7, 14℄ follow this approa
h.The most 
ommonly used lower bound estimation pro
edure for BCP is the approxima-tion of a maximum independent set of 
lauses [3℄. However, other pro
edures 
an be used,namely the ones based on linear-programming relaxations [7℄, Lagrangian relaxations [11℄or the Log-approximation approa
h [3℄. The tightness of the lower bounding pro
edure is
ru
ial for the algorithm's eÆ
ien
y, be
ause with higher estimates of the lower bound, thesear
h 
an be pruned earlier. For a better understanding of lower bounding me
hanisms,di�erent methods will be des
ribed with more emphasis on linear programming relaxationsand the Log-approximation approa
h. Covering algorithms also in
orporate several power-ful redu
tion te
hniques, a 
omprehensive overview of whi
h 
an be found in [3, 14℄.With respe
t to the appli
ation of SAT to Boolean Optimization, P. Barth [1℄ �rst pro-posed a SAT-based approa
h for solving pseudo-boolean optimization (i.e. a generalizationof BCP). This approa
h 
onsists of performing a linear sear
h on the possible values of the
ost fun
tion, starting from the highest, at ea
h step requiring the next 
omputed solutionto have a 
ost lower than the most re
ently 
omputed upper bound. Whenever a new solu-tion is found whi
h satis�es all the 
onstraints, the value of the 
ost fun
tion is re
orded asthe 
urrent lowest 
omputed upper bound. If the resulting instan
e of SAT is not satis�able,then the solution to the instan
e of BCP is given by the last re
orded solution.Additional SAT-based BCP algorithms have been proposed. In [9℄ a di�erent algorithmi
organization is des
ribed, 
onsisting in the integration of several features from SAT algo-rithms in a bran
h-and-bound pro
edure, bsolo, to solve the binate 
overing problem. Thebsolo algorithm in
orporates the most signi�
ant features from both approa
hes, namelythe bounding pro
edure and the redu
tion te
hniques from bran
h-and-bound algorithms,and the sear
h pruning te
hniques from SAT algorithms.The algorithm presented in [9℄ already in
orporates the main pruning te
hniques of theGRASP SAT algorithm [13℄. Hen
e, bsolo is a bran
h-and-bound algorithm for solvingBCP that implements a non-
hronologi
al ba
ktra
king sear
h strategy, 
lause re
ordingand identi�
ation of ne
essary assignments. Mainly due to an e�e
tive 
on
i
t analysispro
edure whi
h allows non-
hronologi
al ba
ktra
king steps to be identi�ed, bsolo performsbetter than other bran
h-and-bound algorithms in several 
lasses of instan
es, as shownin [9℄. However, non-
hronologi
al ba
ktra
king is limited to one spe
i�
 type of 
on
i
t.In [10℄ is des
ribed how to apply non-
hronologi
al ba
ktra
king to all types of 
on
i
tswhen using the approximation of a maximum independent set of 
lauses. In se
tion 5 wedes
ribe how to apply the same 
on
epts when using other lower bound estimation methods.The main steps of a simpli�ed version of the bsolo algorithm 
an be des
ribed as follows:1. Initialize the upper bound to the highest possible value as de�ned (i.e. given byub =Pnj=1 
j + 1). 3



2. Start by 
he
king whether the 
urrent state yields a 
on
i
t. This is done by applyingboolean 
onstraint propagation and, in 
ase a 
on
i
t is rea
hed, by invoking the
on
i
t analysis pro
edure, re
ording relevant 
lauses and pro
eeding with the sear
hpro
edure or ba
ktra
k if ne
essary.3. If a solution to the 
onstraints has been identi�ed, update the upper bound a

ordingto ub = Pnj=1 
j � xj. (Observe that the only way to redu
e the value of the 
urrentsolution is to ba
ktra
k with the obje
tive of �nding a solution with a lower 
ost.)4. Estimate a lower bound given the 
urrent variable assignments. If this value is higherthan or equal to the 
urrent upper bound, issue a bound 
on
i
t and bound thesear
h by applying the 
on
i
t analysis pro
edure to determine whi
h de
ision nodeto ba
ktra
k to. Continue from step 2.3.1 Bound Con
i
tsIn bsolo two types of 
on
i
ts 
an be identi�ed: logi
al 
on
i
ts that o

ur when at leastone of the problem instan
e 
onstraints be
omes unsatis�ed, and bound 
on
i
ts that o

urwhen the lower bound is higher than or equal to the upper bound. When logi
al 
on
i
tso

ur, the 
on
i
t analysis pro
edure from GRASP is applied and determines to whi
hde
ision level the sear
h should ba
ktra
k to (possibly in a non-
hronologi
al manner).However, the other type of 
on
i
t is handled di�erently. In bsolo, whenever a bound
on
i
t is identi�ed, a new 
lause must be added to the problem instan
e in order fora logi
al 
on
i
t to be issued and, 
onsequently, to bound the sear
h. This requirementis inherited from the GRASP SAT algorithm where, for guaranteeing 
ompleteness, both
on
i
ts and implied variable assignmentsmust be explained in terms of the existing variableassignments [13℄. With respe
t to 
on
i
ts, ea
h re
orded 
on
i
t 
lause is built using theassignments that are deemed responsible for the 
on
i
t to o

ur. If the assignment xj = 1(or xj = 0) is 
onsidered responsible, the literal �xj (respe
tively, literal xj) is added to the
on
i
t 
lause. This literal basi
ally states that in order to avoid the 
on
i
t one possibilityis 
ertainly to have instead the assignment xj = 0 (respe
tively, xj = 1). Clearly, by
onstru
tion, after the 
lause is built its state is unsatis�ed. Consequently, the 
on
i
tanalysis pro
edure has to be 
alled to determine to whi
h de
ision level the algorithm mustba
ktra
k to. Hen
e the sear
h is bound.Whenever a bound 
on
i
t is identi�ed, one possible approa
h to building a 
lause tobound the sear
h would be to in
lude all de
ision variables in the sear
h tree. In this 
ase,the 
on
i
t would always depend on the last de
ision variable. Therefore, ba
ktra
kingdue to bound 
on
i
ts would ne
essarily be 
hronologi
al (i.e. to the previous de
isionlevel), hen
e guaranteeing that the algorithm would be 
omplete. Suppose that the setfx1 = 1; x2 = 0; x3 = 0; x4 = 1g 
orresponds to all the sear
h tree de
ision assignmentsand !b
 is the 
lause to be added due to a bound 
on
i
t. Then we would have !b
 =(�x1 + x2 + x3 + �x4). Again, the drawba
k of this approa
h (whi
h was used in [9℄) is thatba
ktra
king due to bound 
on
i
ts is always 
hronologi
al, sin
e it depends on all de
isionassignments made. In se
tion 5 we propose a new pro
edure to build these 
lauses, whi
henables non-
hronologi
al ba
ktra
king due to bound 
on
i
ts.
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4 Computation of Lower BoundsThe estimation of lower bounds on the value of the 
ost fun
tion is a very e�e
tive methodto prune the sear
h tree and the a

ura
y of lower bounding pro
edures is 
riti
al foridentifying areas of the sear
h spa
e where solutions to the 
onstraints with lower values ofthe 
ost fun
tion 
annot be found. In this se
tion we review methods 
ommonly used toestimate a lower bound on the value of the 
ost fun
tion in instan
es of BCP.4.1 Maximum Independent Set of ClausesThe maximum independent set of 
lauses (MIS) is a greedy method to estimate a lowerbound on the value of the 
ost fun
tion based on an independent set of 
lauses. (A moredetailed de�nition 
an be found for example in [3℄).The greedy pro
edure 
onsists of �nding a set MIS of disjoint unate 
lauses, i.e. 
lauseswith only positive literals and with no literals in 
ommon among them. Sin
e maximizingthe 
ost of MIS is an NP-hard problem, a greedy 
omputation is used. The e�e
tivenessof this method largely depends on the 
lauses in
luded in MIS. Usually, one 
hooses the
lause whi
h maximizes the ratio between its weight and its number of elements.The minimum 
ost for satisfying MIS is a lower bound on the solution of the probleminstan
e and is given by, Cost(MIS) = X!2MISWeight(!) where (2)Weight(!) = minxj2! 
j (3)4.2 Linear Programming RelaxationsLinear programming relaxations have long been used as lower bound estimation pro
eduresin bran
h-and-bound algorithms for solving integer programming problems [11℄. For thebinate 
overing problem, the utilization of linear programming relaxations as a lower boundestimation method is proposed in [7℄. Moreover, it is also 
laimed that in most 
ases thelinear programming relaxation (LPR) bound is higher than the one obtained with the MISapproa
h.The general formulation of the LPR for a 
overing problem is obtained from (1) asfollows: minimize zlpr = nPj=1 
j � xjsubje
t to A � x � bx � 0 (4)For simpli
ity the 
onstraints x � 1 are not in
luded. The solution of (1) is referred to asz�
p, whereas the solution of (4) is referred to as z�lpr.It is well-known that the solution z�lpr of (4) is a lower bound on the solution z�
p of (1) [11℄.Basi
ally, any solution of (1) is also a feasible solution of (4), but the 
onverse is not true.Moreover, for a given solution of (4) where x 2 f0; 1gn, we ne
essarily have z�
p = z�lpr.Hen
e, the result follows. Furthermore, di�erent linear programming algorithms 
an beused for solving (4), some of whi
h with guaranteed worst-
ase polynomial run time [11℄.5



greedy solution(') fSOL = ;;while (' 6= ;) fvar = minvar2V ar(') Cost(var)�(
ov 
lauses(var; '));' = '� 
ov 
lauses(var; ');SOL = SOL [ var;greturn SOL;gFigure 1: Algorithm for 
omputation of a greedy solution4.3 Log-ApproximationIt is well known that the MIS approa
h 
an be very far from the minimum 
ost solution inspe
i�
 
ases of problem instan
e matrixes [4℄. Given that the approximation provided bythe greedy algorithm is of poor quality, tighter lower bounds 
an be established. In [4℄ anew lower bound 
omputation algorithm for unate 
overing is introdu
ed whi
h guaranteesa logarithmi
 ratio bound on the minimum 
ost solution.The algorithm in Fig. 1 des
ribes a pro
edure for 
onstru
ting a greedy solution for a
overing problem with a set ' of 
onstraints to satisfy. At ea
h step a de
ision variable varis 
hosen, the 
lauses that be
ome satis�ed by var are removed from ' and a solution set isupdated. Observe that the algorithm was 
on
eived to ta
kle unate 
overing problems [4℄,but it 
an be easily modi�ed in order to attempt to �nd greedy solutions for binate 
overinginstan
es1. The variable to add to the solution set is the one whi
h minimizes the relationbetween its 
ost and the value given by �. Let 
 be a positive weighting fun
tion de�nedon a set of 
lauses (e.g. the number of free literals). We 
an de�ne � as:�('0) = X!2'0 
(!) (5)It 
an be shown [4℄ that based on the greedy solution given by the algorithm in Fig. 1,it is possible to obtain a lower bound on the 
overing problem whi
h is log-approximableto the optimum value z�
p. This result is also valid for binate 
overing whenever the greedyalgorithm is able to �nd a feasible solution. The lower bound is given by:Cost(SOL)r (6)where r = max'0�('0)Xk=1 1=k (7)5 SAT-Based Pruning Te
hniques for BCPOne of the main features of bsolo is the ability to ba
ktra
k non-
hronologi
ally when
on
i
ts o

ur. This feature is enabled by the 
on
i
t analysis pro
edure inherited fromthe GRASP SAT algorithm. However, as illustrated in se
tion 3.1, in the original bsoloalgorithm non-
hronologi
al ba
ktra
king was only possible for logi
al 
on
i
ts. In the 
aseof a bound 
on
i
t all the sear
h tree de
ision assignments were used to explain the 
on
i
t.1In binate 
overing, the greedy algorithm is unable to guarantee that a solution is found.6



Therefore, these 
on
i
ts would always depend on the last de
ision level and ba
ktra
kingwould ne
essarily be 
hronologi
al.In this se
tion we des
ribe how to 
ompute sets of assignments that explain bound
on
i
ts. In [10℄ it is shown that these assignments are not in general asso
iated withall de
ision levels in the sear
h tree; hen
e non-
hronologi
al ba
ktra
king 
an take pla
e.However, in [10℄, it is only des
ribed how to ba
ktra
k non-
hronologi
ally when a bound
on
i
t o

urs if the approximation of the maximum independent set of 
lauses (MIS) isused. In this paper we show that it is possible to have non-
hronologi
al ba
ktra
ks whenusing linear-programming relaxations or the Log-approximation.A bound 
on
i
t in an instan
e of the binate 
overing problem (BCP) C arises whenthe lower bound is equal to or higher than the upper bound. This 
ondition 
an be writtenas C:path+C:lower � C:upper, where C.path is the 
ost of the assignments already made,C.lower is a lower bound estimate on the 
ost of satisfying the 
lauses not yet satis�ed (asgiven for example by an independent set of 
lauses), and C.upper is the best solution foundso far. From the previous equation, we 
an readily 
on
lude that C.path and C.lower arethe unique 
omponents involved in ea
h bound 
on
i
t. (Noti
e that C.upper is just thelowest value of the 
ost fun
tion for the solutions of the 
onstraints 
omputed earlier in thesear
h pro
ess.) Therefore, we will analyze both C.path and C.lower 
omponents in orderto establish the assignments responsible for a given bound 
on
i
t.We start by studying C.path. Clearly, the variable assignments that 
ause the value ofC.path to grow are solely those assignments with a value of 1. Hen
e, we 
an de�ne a setof literals !
p, su
h that ea
h variable in !
p has positive 
ost and is assigned value 1:!
p = fl = �xj : Cost(xj) > 0 ^ xj = 1g (8)whi
h basi
ally states that to de
rease the value of the 
ost fun
tion (i.e. C.path) at leastone variable that is assigned value 1 has instead to be assigned value 0.We now 
onsider C.lower. For simpli
ity suppose we are using the approximation ofthe maximum independent set of 
lauses as lower bound me
hanism. Let MIS be theindependent set of 
lauses, obtained by the method des
ribed in se
tion 4.1, that determinesthe value of C.lower. Observe that ea
h 
lause in MIS is part of MIS be
ause it is neithersatis�ed nor has 
ommon literals with any other 
lause in MIS. Clearly, for ea
h 
lause!i 2 MIS these 
onditions only hold due to the literals in !i that are assigned value 0. Ifany of these literals was assigned value 1, !i would 
ertainly not be in MIS sin
e it wouldbe a satis�ed 
lause. Consequently, we 
an de�ne a set of literals that explain the value ofC.lower: !
l = fl : l = 0 ^ l 2 !i ^ !i 2MISg (9)Now, as stated above, a bound 
on
i
t is solely due to the two 
omponents C.path andC.lower. Hen
e, this bound 
on
i
t will hold as long as the following 
lause !b
 is unsatis�ed:!b
 = !
p [ !
l (10)(Observe that the set union symbol in the previous equation denotes a disjun
tion of lit-erals.) As long as this 
lause is unsatis�ed, the values of C.path and C.lower will remainun
hanged, and so the bound 
on
i
t will exist. We 
an thus use this unsatis�ed 
lause !b
to analyze the bound 
on
i
t and de
ide where to ba
ktra
k to, using the 
on
i
t analysispro
edure of GRASP [13℄. We should observe that ba
ktra
king 
an be non-
hronologi
al,be
ause 
lause !b
 does not ne
essarily depend on all de
ision assignments. Moreover, due7



to the 
lause re
ording me
hanism, !b
 
an be used later in the sear
h pro
ess to prunethe sear
h tree. If these 
lauses would depend on all de
ision assignments, 
lause re
ordingwould not be used sin
e the same set of de
ision assignments is never repeated in the sear
hpro
ess.Bound 
on
i
ts arise during the sear
h pro
ess whenever we have C:path + C:lower �C:upper. Noti
e that when a new solution is found, C:lower = 0 and C.path is equal to the
ost of the new upper bound. Therefore, when we update C.upper with the new value, wehave C:path + C:lower = C:upper and a bound 
on
i
t is issued in order to ba
ktra
k inthe sear
h tree. These bound 
on
i
ts are just a parti
ular 
ase and the same pro
ess isapplied in order to build the 
on
i
t 
lause.In order to build the bound 
on
i
t 
lause, we need to obtain the explanation for C:lower(!
l). If di�erent lower bound estimation pro
edures are used, di�erent pro
edures arerequired for identifying an explanation for the bound 
on
i
t. In the remainder of thisse
tion we present a theoreti
al framework whi
h also allows non-
hronologi
al ba
ktra
kingwhen linear-programming relaxations or the Log-approximation are used.5.1 Pruning with LP-Relaxation Lower BoundsLinear programming relaxations (LPR) are a powerful method to estimate a lower boundvalue for instan
es of the binate 
overing problem [7℄. However, the resulting ba
ktra
k froma bound 
on
i
t when using LPR has always been 
hronologi
al. The naive approa
h tobuild a 
lause to bound the sear
h in bound 
on
i
ts when using LPR would be to in
ludeall de
ision variables in the sear
h tree. However, as stated in se
tion 3.1, the resultingba
ktra
k would ne
essarily be 
hronologi
al. In this se
tion, we present a new frameworkthat allows non-
hronologi
al ba
ktra
king in bound 
on
i
ts when linear programmingrelaxations are used to estimate the lower bound value.Remember that a bound 
on
i
t o

urs when C:path + C:lower � C:upper, in whi
h
ase a set of assignments that explains the 
on
i
t must be identi�ed. Therefore, we mustidentify the assignments that explain the value on C:path (!
p) and C:lower (!
l) in orderto build the bound 
on
i
t 
lause !b
 to bound the sear
h. Noti
e that the value on C:pathis independent on the lower bound 
omputation pro
edure and the bound 
on
i
t 
lause
an be built as in (8).The approa
h to build !
l must be di�erent from (9), sin
e C:lower depends on thevalue given by the LP-solver. Therefore, the information provided by the LP-solver mustbe used in order to ba
ktra
k non-
hronologi
ally in a lower bound 
on
i
t when using LPRfor bound 
omputation.Given the value of C:lower obtained with LPR as formulated in se
tion 4.2, let S bethe set of 
onstraints with sla
k 2 variables assigned value 0. Observe that these are the
onstraints whi
h a
tually limit the value of C:lower, and so will be referred to as the a
tive
onstraints. When using LP-relaxations to 
ompute the value of C:lower, the literals thatassume value 0 in the a
tive 
onstraints are dire
tly responsible for the value of C:lower.These literals 
orrespond to the set !
l in the bound 
on
i
t 
lause. Applying this reasoningto both assignments of a given variable, allows implementing non-
hronologi
al ba
ktra
kingand !
l 
an be build as: !
l = fl : l = 0 ^ l 2 !i ^ !i 2 Sg (11)2See [8℄ for a de�nition of sla
k and arti�
ial variables.8



5.2 Redu
ing Dependen
ies in LPR Bound Con
i
tsThe previous se
tion des
ribes how to obtain an explanation on the value of C:lower whenusing LPR. However, a more 
areful analysis allows the identi�
ation of some situationswhere literals 
an be ex
luded from !
l, as presented in (11), sin
e if they were to have adi�erent value the 
on
i
t would still hold.Suppose that in the solution of the LPR there is a variable xj = 1 and let S(xj) denotethe set of 
lauses from the a
tive 
onstraints set S where xj appears. For every other literallk 2 S(xj) we must have lk = 0 in the LPR solution, sin
e otherwise these were not a
tive
onstraints. Remember that from (11) we say that all literals already assigned value 0during the sear
h pro
ess in 
lauses S(xj) are in !
l. However that might not always bethe 
ase.Let S+(xj) denote the 
lauses from S(xj) where, in the sear
h pro
ess, all unassignedliterals are positive. Therefore we must have lk = 0 in the LPR solution for all other literalsin S+(xj). Noti
e that if we de
rease the value of xj , at least one xi must be raised by thesame value we de
rease xj in order to keep all 
onstraints satis�ed in the LPR solution. Ifwe assume that all variables have the same 
ost in the 
ost fun
tion, de
reasing the valueof xj would not de
rease C:lower given by the LPR solution whenever kS+(xj)k � 1.Noti
e that at least one 
lause in S+(xj) is enough to justify the assignment xj = 1 inthe LPR solution. All other 
lauses in S+(xj) may be 
onsidered irrelevant for the LPRsolution in terms of the �nal 
ost, sin
e the 
ostly assignment 
an be justi�ed by only one
lause in S+(xj). If we assume that !i 2 S+(xj) is the one whi
h justi�es xj = 1, all other
lauses in S+(xj) 
an be ex
luded from the 
omputation of !
l. Choosing whi
h 
lause !ifrom S+(xj) justi�es xj = 1 
an be implemented by a greedy pro
edure in order to havethe smallest !
l as possible.The same reasoning 
an easily be generalized for a set of assignments, instead of justthe assignment of 1 to a single positive literal. Suppose that during the sear
h pro
ess,we have an unresolved 
lause !i where all unassigned literals are positive. Given the LPRsolution, if !i 2 S then we must have a set Vm of m variables in !i su
h that Pm1 xj = 1and all other are assigned value 0, in order for this 
onstraint to have a sla
k of 0. This isthe ne
essary 
ondition for !i 2 S.One should note that !i is suÆ
ient to justify the assignment to Vm. If we de
rease thevalue of any of the m variables in Vm, another variable in the 
onstraint must be raised bythe same 
ost in order for !i to be satis�ed. Either another variable in Vm or a variableassigned value 0 in the LPR solution. If we assume that all variables have the same 
ostin the 
ost fun
tion, de
reasing the value of any of the variables in Vm would not result ina de
rease on C:lower given by the LPR solution. Therefore, if there are other 
lauses inS di�erent from !i whi
h are also satis�ed due to the assignments in Vm, then those other
lauses in S are irrelevant for the �nal 
ost of the LPR solution and 
onsequently irrelevantfor the bound 
on
i
t.Consider the following example where !1 = ( �x1 + �x2), !2 = (x1 + x3), !3 = (x2 + x4),!4 = (x2 + x5) where x1 = x4 = x5 = 0; x2 = x3 = 1 in the LPR solution. Noti
e that
lause !3 or !4 (just one of them) 
an be 
onsidered irrelevant for the �nal 
ost of the LPR,as explained previously. If we analyze more 
arefully this situation we 
an also 
on
ludethat 
lause !1 (satis�ed by x1 = 0 in the LPR solution) 
an also be 
onsidered irrelevantsin
e if x1 was to have a di�erent value, x3 had to be assigned value 0 and the 
ost of thesolution of the LPR would be the same. 9



Noti
e that if there is a 
lause !i 2 S su
h that all unassigned literals are negative, for!i to be in S, there must be an assignment xj = 0 while all other variables are assignedvalue 1 in the LPR solution. One should note that the assignments of 1 to the other
onstraint variables is not be
ause of !i, but due to other problem 
onstraints. However,!i might be 
onstraining the set of the LPR solution 
ost by making that at least one of itsvariables must be assigned value 0. Nevertheless, that is not always the 
ase and in 
ertain
ir
umstan
es, !i does not have to be 
onsidered in the !
l 
al
ulation.Suppose we have a 
lause !i 2 S su
h that all unassigned literals are negative (like!1 in our example) and there is another 
lause !k 2 S where all unassigned literals in !kare positive (like !2). If we have in the LPR solution xj = 0 satisfying !i and xj appearsat most in one 
lause !k (
lause with only unassigned positive literals), then !i 
an be
onsidered irrelevant to the bound explanation. If xj would have a di�erent value (raisingthe 
ost of the LPR solution), it 
ould only be balan
ed with lowering the literal whi
hsatis�es !k. Sin
e we are supposing that all literals have the same 
ost, the assignmentxj = 0 does not 
onstrains the overall 
ost of the LPR solution. Considering again ourexample, if there was another 
lause !5 = (x1 + x6) where x6 = 1 in the LPR solution,if x1 
ould be assigned value 1, both x3 = x6 = 0 would be possible assignments and theLPR solution would be lower. Therefore, in this 
ase, !1 was essential in order to justifythe LPR solution and 
onsequently the bound 
on
i
t. That is why x1 
an only appear atmost in one 
lause with all unassigned positive literals in the sear
h pro
ess.5.3 Pruning with Log-Approximation Lower BoundsWhen C:lower is estimated using the Log-approximation method des
ribed in se
tion 4.3,its value depends on the variable assignments 
hosen by the greedy algorithm (see Fig. 1).Noti
e that ea
h time a variable assignment is 
hosen, it depends on the value of fun
tion�. Therefore, 
hoosing a variable assignment depends on the 
lauses whi
h be
ome satis�edwith that assignment.Suppose an assignment to variable xj is 
hosen at iteration k of the greedy algorithm.This assignment is due to the fa
t that there is a set of 
lauses given by 
ov 
lauses(xj; '(k)0) 3whi
h be
ome satis�ed and this set of 
lauses allows variable xj to be 
hosen by the algo-rithm. Therefore, the 
lauses in 
ov 
lauses provide an explanation for the assignment tovariable xj . Moreover, the literals assigned value 0 in 
ov 
lauses(xj ; '(k)0) are the onesdeemed responsible sin
e if they were to have a di�erent value, 
ov 
lauses(xj ; '(k)0) wouldbe a smaller set whi
h 
ould 
ause the assignment to variable xj not to be required andhen
e C:lower 
ould be lower. Noti
e that if any of the literals 
onsidered responsible wereto satisfy some of these 
lauses by having the opposite value, the set of 
lauses to satisfy(given by 
ov 
lauses) would be smaller and a lower value for C:lower 
ould be obtained,possibly solving the bound 
on
i
t situation.Let C:lower be estimated using the Log-approximation method and let SOL be thesolution found by the greedy algorithm in n iterations whi
h yields a bound 
on
i
t. Inthat 
ase, a bound 
on
i
t 
lause !b
 must be 
reated to bound the sear
h. The explanationon C:path is determined as des
ribed previously in se
tion 5, sin
e it does not depend onthe lower bound estimation method. Moreover, the explanation on C:lower is given by:!
l = fl : l = 0 ^ l 2 !i ^ !i 2 �(n)g (12)3Noti
e that '(k)0 denotes the set of 
lauses still to satisfy at iteration k of the greedy algorithm.10



lp-solve 
plex s
herzo opbdp bsolo (MIS) bsolo (LPR)Ben
hmark min. CPU CPU CPU CPU CPU CPUaim-100-1 6-yes1-2 100 { { { 1104.5 0.28 0.24aim-100-2 0-yes1-3 100 { { 235.84 12.14 0.26 0.27aim-100-3 4-yes1-4 100 { { 11.56 0.19 0.68 11.46aim-200-1 6-yes1-3 200 { { { { 0.41 1.56aim-200-3 4-yes1-1 200 { { { 9.60 2.86 172.95aim-50-1 6-yes1-1 50 757.3 113.4 0.76 0.02 0.06 0.09aim-50-2 0-yes1-2 50 1284.5 107.6 1.81 0.09 0.11 1.10ii8a1 54 162.8 63.0 0.33 0.62 0.52 2.77ii8a2 { ub 149 ub 147 { ub 141 ub 140 ub 140ii8b1 191 ub 243 840.4 { ub 191 1042.19 517.2ii8
1 { ub 364 ub 304 { ub 302 ub 302 ub 302jnh12 94 { 2251.7 0.87 0.01 0.25 0.31jnh17 95 { 842.5 4.90 0.06 0.88 61.40jnh7 89 ub 89 ub 90 1.49 0.10 0.63 120.23ssa7552-158 1327 ub 1327 ub 1328 14.54 ub 1327 3.26 842.25ssa7552-160 1359 ub 1359 ub 1359 { ub 1359 9.26 ub 1359Table 1: Algorithm 
omparisonwhere �(n) is the set of all 
lauses 
overed by the assigned variables 
hosen until iterationn whi
h is equivalent to:�(n) = 
ov 
lauses(SOL[1℄; '(1)0) [ ::: [ 
ov 
lauses(SOL[n℄; '(n)0) (13)where SOL[k℄ is the sele
ted assignment at iteration k in the greedy algorithm.Noti
e that at iteration n all 
lauses from ' (
lauses that are not yet satis�ed) are in�(n), sin
e all are 
overed at iteration n of the greedy algorithm. Nevertheless, it is possiblethat the resulting bound 
on
i
t 
lause !b
 does not depend on the last de
ision assignmentlevel and non-
hronologi
al ba
ktra
king 
an take pla
e.6 Experimental ResultsIn this se
tion we in
lude experimental results of several algorithms in two di�erent setsof ben
hmarks. The �rst table present results for instan
es of the MCNC ben
hmarkset [15℄, whereas the remaining tables present results for instan
es of the minimum-size primeimpli
ant problem for Boolean fun
tions. These instan
es were obtained from satis�ableinstan
es of the DIMACS ben
hmark set [6℄, using the model des
ribed in [9, 12℄.For the experimental results given below, the CPU times were obtained on a SUN Spar
Ultra I, running at 170MHz, and with 100 MByte of physi
al memory. In all 
ases themaximum CPU time that ea
h algorithm was allowed to spend on any given instan
e was1 hour. When the algorithm was unable to solve the instan
e due to time restri
tions, thebest upper bound found at the time is shown. Otherwise, if no upper bound was 
omputed,the reason of failure was either due to the time or memory limits imposed. Besides the timetaken and the number of de
isions made to solve the instan
es, it is also shown the numberof non-
hronologi
al ba
ktra
ks and the highest jump made in the sear
h tree.The experimental pro
edure 
onsisted of running a sele
ted set of problem instan
eswith bsolo and several other algorithms. In table 1 we 
an observe the results of severalalgorithms on instan
es of the minimum-size prime impli
ant problem. Clearly, lp solve [2℄11



bsolo (a) bsolo (b)Ben
hmark min. CPU De
. NCB Jump CPU De
. NCB Jumpaim-100-1 6-yes1-2 100 0.28 82 17 11 0.24 82 17 11aim-100-2 0-yes1-3 100 2.46 97 21 8 0.27 74 15 3aim-100-3 4-yes1-4 100 11.16 88 8 4 11.46 88 8 4aim-200-1 6-yes1-3 200 1.58 56 9 8 1.56 56 9 8aim-200-3 4-yes1-1 200 163.73 201 21 5 172.95 201 21 5aim-50-1 6-yes1-1 50 0.07 34 7 7 0.09 34 7 7aim-50-2 0-yes1-2 50 0.78 48 8 6 1.10 54 10 3aim-50-3 4-yes1-3 50 1.92 34 4 3 1.93 34 4 3ii8a1 54 2.67 72 1 2 2.77 72 1 2ii8b1 191 493.41 245 1 2 517.2 245 0 1jnh12 94 0.33 14 2 2 0.31 14 2 2jnh17 95 63.42 65 7 2 61.40 65 7 2jnh7 89 119.23 34 2 2 120.23 34 2 2ssa7552-158 1327 810.45 382 0 1 842.25 382 0 1ssa7552-159 1327 2192.52 605 0 1 2052.18 605 0 1Table 2: Non-
hronologi
al ba
ktra
king using LPR (1)bsolo (a) bsolo (b)Ben
hmark min. CPU De
. NCB Jump CPU De
. NCB Jump5xp1.b 12 708.21 967 1 2 656.52 942 79 79sym.b 5 133.14 94 1 2 126.05 94 4 3alu4.b { ub51 9007 0 1 ub51 9007 10 4apex4.a { ub788 1981 0 1 ub788 2186 8 3ben
h1.pi 121 450.03 453 1 2 438.72 453 7 2
lip.b 15 48.68 413 1 2 45.97 413 1 2
ount.b 24 7.85 16 1 2 8.52 16 0 1e64.b { ub48 105395 0 1 ub48 84403 343 9f51m.b 18 127.92 849 1 2 111.45 849 50 4ja
3 15 372.18 102 1 2 374.55 102 6 25rot.b { ub121 30765 0 1 ub121 40738 5 5sao2.b 25 324.67 1824 1 2 238.35 1824 17 2Table 3: Non-
hronologi
al ba
ktra
king using LPR (2)and 
plex (generi
 Integer Linear Programming solvers) are unable to solve almost all in-stan
es given the time limit. Noti
e that only for a few problem instan
es was it able to �ndan upper bound. s
herzo [4℄, a state-of-the-art BCP solver that in
orporates several pow-erful pruning te
hniques in a 
lassi
al bran
h-and-bound algorithm, is also unable to solvemost of the example instan
es. The SAT-based linear sear
h algorithm opbdp [1℄ is able tosolve most instan
es, hen
e suggesting that these instan
es are well-suited for SAT-basedsolvers. Noti
e however that the two versions of bsolo presented here (using the approxima-tion of the maximum independent set (MIS) or the linear-programming relaxation (LPR) aslower bounding me
hanism) are able to solve almost every instan
e or give a better upperbound on the optimum solution. These two versions di�er signi�
antly in terms of timeperforman
e sin
e in most 
ases the LP-solver in
orporated in bsolo (LPR) was very slow insolving the LPR. Nevertheless, be
ause it provides a better lower bound estimation, bsolo(LPR) makes fewer de
isions than bsolo (MIS).Table 2 shows how bsolo behaves using LPR as a lower bound pro
edure in a small set ofsolvable instan
es. In bsolo(a) all bound-based 
on
i
ts ba
ktra
k 
hronologi
ally, while inbsolo(b) we apply the method presented in se
tion 5 to explain the bound 
on
i
t. In theseinstan
es, most of the non-
hronologi
al ba
ktra
ks are from logi
al 
on
i
ts and not from12



bsolo(LPR) bsolo(MIS) s
herzoBen
hmark min. CPU De
. CPU De
. CPU De
.5xp1.b 12 656.52 942 181.02 1640 4.5 22349sym.b 5 126.05 94 27.91 135 3.6 320alu4.b { ub51 time ub 51 time { timeapex4.a 776 ub788 time ub 781 time 87.4 48359ben
h1.pi 121 438.72 453 ub 123 time { time
lip.b 15 45.97 413 67.09 1313 0.6 97
ount.b 24 8.52 16 12.27 102 478.0 299780e64.b { ub48 time ub 48 time { mem.f51m.b 18 111.45 849 97.00 1671 1.9 1586ja
3 15 374.55 102 ub 17 time 4.9 292rot.b { ub121 time ub 120 time { timesao2.b 25 238.35 1824 9.58 281 0.9 279Table 4: Results for bsolo and s
herzobound-based ones. It was rarely observed non-
hronologi
al ba
ktra
ks due to bound-based
on
i
ts. For a di�erent ben
hmark set, as shown in table 3, we 
an observe that whenusing bsolo (b) non-
hronologi
ally jumps due to bound 
on
i
ts o

ur in the sear
h tree,improving the algorithms performan
e.In instan
es of the MCNC ben
hmark set, s
herzo is 
onsidered to be one of the bestand fastest solvers. In table 4 we 
an observe the results of both s
herzo and bsolo (usingLPR and MIS). Noti
e that bsolo (LPR) 
an be slower than bsolo (MIS) for some instan
esbut bsolo (LPR) makes fewer de
isions than bsolo (MIS) sin
e the LPR provides a mu
htighter lower bound than the approximation of the maximum independent set (MIS). Byintegrating linear-programming relaxations as a lower bound pro
edure, bsolo (LPR) is ableto solve a larger set of instan
es with less sear
h e�ort. However, due to the fa
t that theLP-solver is not yet properly integrated in bsolo, the overall time 
an be higher in someinstan
es.7 Con
lusionsThis paper extends known sear
h pruning te
hniques, from the Boolean Satis�ability do-main, to bran
h-and-bound algorithms for solving the Binate Covering Problem. We present
onditions that allow for non-
hronologi
al ba
ktra
king in the presen
e of bound 
on
i
tswhen di�erent lower bounding pro
edures are utilized. Among others, the lower boundingpro
edures 
onsidered in
lude linear programming relaxations and maximum independentsets.Previous work was already done regarding the integration of linear programming re-laxations in boolean optimization algorithms. However, this is the �rst time an algorithmusing this lower bounding me
hanism is augmented with the ability for ba
ktra
king non-
hronologi
ally in the presen
e of bound 
on
i
ts. Moreover, we have established 
onditionsfor redu
ing the size of bound 
on
i
t explanations, whi
h further eli
its non-
hronologi
alba
ktra
king. Preliminary results obtained on several instan
es of the Binate CoveringProblem indi
ate that the proposed te
hniques 
an redu
e the amount of sear
h, that 
anpotentially result in a more 
ompetitive algorithm.Future resear
h work will naturally in
lude seeking further simpli�
ation of the bound
lauses 
reated, applying te
hniques already used for other lower bounding pro
edures,namely the approximation of maximum independent set of 
lauses. We 
an also preview13



the generalization of the 
onditions we present for di�erent variable 
osts. In addition, andfor obtaining more 
ompetitive experimental results, a more adequate integration of the LPpa
kage with the sear
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