Conditions for Non-Chronological Backtracking in
Boolean Optimization

Vasco M. Manquinho
vmm@algos.inesc.pt

Jodo Marques-Silva
jpms@inesc.pt

Polytechnical Institute of Portalegre Technical Universty of Lisbon, INESC/CEL

Portalegre, Portugal

Abstract.

This paper proposes new algorithms for the Binate Coverimipf
lem (BCP), a well-known restriction of Boolean OptimizatiBinate
Covering finds application in many areas of Computer Sciemzk
Engineering. In Artificial Intelligence, BCP can be used domput-
ing minimum-size prime implicants of Boolean functionsnterest
in Automated Reasoning and Non-Monotonic Reasoning. Mergo
Binate Covering is an essential modeling tool in ElectroDiesign
Automation. The objectives of the paper are to briefly re\aeamch-
and-bound algorithms for BCP, to describe how to apply backt
search pruning techniques from the Boolean Satisfiabi$#T) do-
main to BCP, and to illustrate how to strengthen those prgrech-
niques by exploiting the actual formulation of BCP. Expenital
results, obtained on representative instances indicase the pro-
posed techniques provide significant performance gaindiftarent
classes of instances.

1 Introduction

The generic Boolean Optimization problem as well as se\adrab
restrictions are well-known computationally hard prolkdemwidely
used as modeling tools in Computer Science and Enginedrirggse
problems have been the subject of extensive research wiitk ast
(see for example [1]). In this paper we address the BinateeCov
ing Problem (BCP), one of the restrictions of Boolean Opatibn.
BCP can be formulated as the problem of finding a satisfyisgas
ment for a given Conjunctive Normal Form (CNF) formula suabje
to minimizing a given cost function. As with generic Boole@p-
timization, BCP also finds many applications, including toenpu-
tation of minimum-size prime implicants, of interest in Aotated
Reasoning and Non-Monotonic Reasoning [11], and as a nmadeli
tool in Electronic Design Automation (EDA) [4, 14].

In recent years, several powerful search pruning techsityase
been proposed for solving BCP, allowing dramatic improveiién
the ability to solving large and complex instances of BCRtflls of
the work on BCP can be found in [4, 8, 14].) Despite these ivgro
ments, and as with search algorithms for other NP-hard pnag)|
incorporating additional search pruning ability can allevy signif-
icant gains, both in the amount of search and in the run tithes,
potentially enabling solving hew classes of problem incéan

The main objective of this paper is to propose additionahtec
niques for pruning the amount of search in branch-and-balnd
gorithms for solving covering problems. These techniquesee
spond to generalizations and extensions of similar teclasigpro-
posed in the Boolean Satisfiability (SAT) domain, where thaye
been shown to be highly effective [2, 13, 15]. In particuéard to our
best knowledge, we provide for the first time conditions vahén-

Lisbon, Portugal

able branch-and-bound algorithms to backtraok-chronologically
whenever bounding due to the cost function is required te jdce.
An essential step in implementing non-chronological baai-
ing search strategies is the ability to create explanatimnsonflicts,
most often represented as new constraints (or nogoodsidma-
per, we also propose conditions for reducing the size ofemgilons
associated with backtracking whenever bounding takegplac
This paper is organized as follows. In Section 2 the notatized
throughout the paper is introduced. Afterwards, branafHaound
covering algorithms are briefly reviewed, giving emphasisalu-
tions based on SAT algorithms. In Section 4 we propose nel tec
niques for reducing the amount of search. In particular vesvaow
effective search pruning technigues from the SAT domairbesgen-
eralized and extended to the BCP domain. Experimentaltescats
presented in Section 6, and the paper concludes in Section 7.

2 Preliminaries

An instanceC' of a covering problem is defined as follows,

@)

n
minimize)" ¢; - z;
j=1

subjectto A-xz>b, =z € {0,1}"

where ¢; is a non-negative integer cost associated with variable
zj,1 < j<mnandA-z > bz € {0,1}" denote the set ofn
linear constraints. If every entry in ti{en x n) matrix A is in the set
{0,1} andb; = 1,1 < i < m, thenC is an instance of thanate
covering problen{UCP). Moreover, if the entries;; of A belong to
{—1,0,1} andb; = 1 — \{aij DAy = -1,1<53< n}|, thenC

is an instance of theinate covering problenBCP). Observe that if
C'is an instance of the binate covering problem, then eachreints
can be interpreted as a propositional clause.

Conjunctive Normal Form (CNF) formulas are introduced next
The use of CNF formulas is justified by noting that the set af-co
straints of an instanc€ of BCP is equivalent to a CNF formula,
and because some of the search pruning techniques desirited
remainder of the paper are easier to convey in this altematipre-
sentation.

A propositional formulgp in Conjunctive Normal FornfiCNF) de-
notes a boolean functiofi: {0,1}" — {0,1}. The formulay con-
sists of a conjunction of propositional clauses, where etahsew
is a disjunction of literals, and a literdlis either a variable:; or
its complementz;. If a literal assumes value 1, then the clause is
satisfied If all literals of a clause assume value 0, the clausenis
satisfied Clauses with only one unassigned literal are referred to as
unit. Finally, clauses with more than one unassigned literabaré

to beunresolvedIn a search proceduregcanflictis said to be identi- int bsolo(y) {

fied when at least one clause is unsatisfied. In addition,rebshat ub=> ¢+ 1;
aclausev = (I1 + -+ + lx), k < n, can be interpreted as a linear while (TRUE) {
inequalityly + --- + 1, > 1, and the complement of a variahie, deci de();

if (!consistent state())
return ub;
while (EstimatelLB() > ub) {

| ssue_LB_based_conflict();

Z;, can be represented hy- z;.
When a clause is unit (with only one unassigned literal) aigas
ment can be implied. For example, consider a propositicorahdila

¢ which contains clause = (z; + Z2) and assume that, = 1. For if (!consistent state())
¢ to be satisfiedz; must be assigned value 1 duewdoTherefore, return ub;

we say thatr, = 1 impliesz; = 1 due tow or that clausey explains }

the assignment; = 1. These logical implications correspond to the }

application of the unit clause rule [6] and the process oéatpdly }

int consistent state() {
whi | e (Deduce() == CONFLI CT)
i f (Diagnose() == CONFLI CT)

applying this rule is calletboolean constraint propagatiofi3, 15].
It should be noted that throughout the remainder of this papme

familiarity with backtrack search SAT algorithms is assdmiEhe in- return FALSE:
terested reader is referred to the bibliography (see faneia[1, 13] i f (Solutionfound())
for additional references). Updat e_ub();
Covering problems are often solved by branch and bound algo- return TRUE
rithms [5, 8, 14]. In these cases, each node of the searcledres }
sponds to a selected unassigned variable and the two bsaoahef Figure 1. SAT-based branch and bound algorithm

the node represent the assignment of 1 and 0 to that variEidse
variables are namedecision variablesThe first node is called the a different algorithmic organization is described, cofisigin the

root (or the top node) of the search tree and corresponds trse ;nvoqration of several features from SAT algorithms in anbraand
decision IengThe decision level Qf each o!eqsmn is defined as one g procedureysolq to solve the binate covering problem. The
plus the decision level of the previous decision. bsoloalgorithm incorporates the most significant features fratib
approaches, namely the bounding procedure and the reduetib-
3 Search Algorithms for Covering Problems nigues from branch and bound algorithms, and the searchingrun
techniques from SAT algorithms.
The most widely known approach for solving covering prolsem The algorithm presented in [9] already incorporates thepain-
is the classical branch and bound procedure [14], in whisher ~ ing techniques of the GRASP SAT algorithm [13]. Henbeplo
boundson the value of the cost function are identified for each so-is a branch and bound algorithm for solving BCP that impleisien
lution to the constraints, arldwer boundson the value of the cost @ non-chronological backtracking search strategy, claeserding
function are estimated considering the current set of bgiassign- ~ and identification of necessary assignments. Mainly duentefa
ments. The search can be pruned whenever the lower bound estgctive conflict analysis procedure which allows non-clotogical
mation is higher than or equal to the most recently compupgmbu backtracking steps to be identifigakoloperforms better than other
bound. In these cases we can guarantee that a better satatien branch and bound algorithms in several classes of instamses
not be found with the current variable assignments and fiver¢he shown in [9]. However, non-chronological backtracking iisited
search can be pruned. The algorithms described in [5, 8,alijsf o one specific type of conflict. In section 4 we describe hoaptply
this approach. non-chronological backtracking @l types of conflicts. The main
Several lower bound estimation procedures can be used,lynamesteps of a simplified version of thesoloalgorithm (see fig. 1) can be
the ones based on linear-programming relaxations [8] oategjan ~ described as follows:
relaxations [10]. Nevertheless, and for BCP, the approtionaof a
maximum independent set of clauses [4] is the most commaagu 1. Initialize the upper bound to the highest possible vakidefined

The tightness of the lower bounding procedure is cruciaiferalgo- (iLe.givenbyub = >°"_ c; + 1).

rithm’s efficiency, because with higher estimates of thedolound, 2. The functionconsistenistatestarts by checking whether the cur-

the search can be pruned earlier. For a better understaofiioger rent state yields a conflict. This is done by applying booleam-

bounding mechanisms, a method for approximating the maximu Straint propagation and, in case a conflict is reached, bykinv

independent set of clauses is described in section 3.1. ing the conflict analysis procedure, recording relevanissa and
Covering algorithms also incorporate several powerfuliotion proceeding with the search procedure or backtrack if nacgss

techniques, a comprehensive overview of which can be fonrid,i 3. Ifasolution to the constraints has been identified, ugpthet upper

14]. bound according tab = Z;Zl ¢;-z;. (Observe that the only way
With respect to the application of SAT to Boolean Optimiagti to reduce the value of the current solution is to backtrack ttie

P. Barth [1] first proposed a SAT-based approach for solvseygo- objective of finding a solution with a lower cost.)

boolean optimization (i.e. a generalization of BCP). Thipraach 4. Estimate a lower bound given the current variable asségrsn If

consists of performing a linear search on the possible gabfi¢he this value is higher than or equal to the current upper boissde

cost function, starting from the highest, at each step rewuihe a bound conflict and bound the search by applying the conflict

next computed solution to have a lower cost than the moshtigce analysis procedure to determine which decision node tothmak

computed upper bound. Whenever a new solution is found which to (using functiorconsistentstatg. Continue from step 2.

satisfies all the constraints, the value of the cost fundsoecorded

as the current lowest computed upper bound. If the resutistgnce ;

of SAT is not satisfiable, then the solution to the instancBOP is 3.1 Maximum Independent Set of Clauses

given by the last recorded solution. The estimation of lower bounds on the value of the cost foncis
Additional SAT-based BCP algorithms have been proposef@]In a very effective method to prune the search tree and the aocur

of lower bounding procedures is critical for identifyingeas of the
search space where solutions to the constraints with loalees of
the cost function cannot be found. This section reviews anconty

used greedy method to estimate a lower bound on the valuesof th

cost function based on an independent set of clauses, whialsa
detailed for example in [4].

The greedy procedure consists of finding akef disjoint unate
clauses, i.e. clauses with only positive literals and witHiterals in
common between them. Since maximizing the costisfa NP-hard
problem, a greedy computation is used, as shown in fig. 2. ffee-e
tiveness of this method largely depends on the clausesdedlin’.
Usually, one chooses the clause which maximizes the ratiodas
its weight and its number of elements.

The minimum cost for satisfyingjis alower boundon the solution
of the problem instance and is given by,

Cost(I) = Z Weight(w) where

wel

)

Weight(w) = min c¢;

TjEw

©)

3.2 Bound Conflicts

In bsolotwo types of conflicts can be identifieldgical conflictsthat
occur when at least one of the problem instance constragsrbes
unsatisfied, anthound conflictghat occur when the lower bound is
higher than or equal to the upper bound. When logical coefbict
cur, the conflict analysis procedure from GRASP is appliedi der
termines to which decision level the search should badkti@¢pos-
sibly in a non-chronological manner).

However, the other type of conflict is handled differenttybkolq
whenever a bound conflict is identified, a new clamestbe added
to the problem instance in order for a logical conflict to beued
and, consequently, to bound the search. This requiremenhés-
ited from the GRASP SAT algorithm where, for guaranteeinm<o
pleteness, both conflicts and implied variable assignmenitstbe
explained in terms of the existing variable assignment$. [{\8th
respect to conflicts, each recorded conflict clause is bsiliguthe
assignments that are deemed responsible for the conflicctar.df
the assignment; = 1 (or z; = 0) is considered responsible, the lit-
eralz; (respectively, literak;) is added to the conflict clause. This
literal basically states that in order to avoid the conflicé @ossibil-
ity is certainly to have instead the assignment= 0 (respectively,
z; = 1). Clearly, by construction, after the clause is built itatst
is unsatisfied. Consequently, the conflict analysis proeetas to
be called to determine to which decision level the algoritimonst
backtrack to. Hence the search is bound.

Whenever a bound conflict is identified, one possible approac
building a clause to bound the search would be to includesaikibn
variables in the search tree. In this case, the conflict wailicys
depend on the last decision variable. Therefore, backirgakue to
bound conflicts would necessarily be chronological (i.eh&previ-
ous decision level), hence guaranteeing that the algontboid be
complete. Suppose that the §et, = 1,2z, = 0,23 = 0,24 = 1}
corresponds to all the search tree decision assignments anid

the clause to be added due to a bound conflict. Then we woukl hav,

wpe = (T1 + T2 + x3 + T4). Again, the problem with this approach
(which was used in [9]) is that backtracking due to bound éoisfls
always chronological, since it depends on all decisionsenbdthe
following section we present a new procedure to build thémeases,
which enable non-chronological backtracking due to bowmdlicts.

mexi mal .i ndependent _set () {
MS = enpty set;

do{

w

M

choose_cl ause() ;
MS U {w}
p = del ete.intersectingclauses(yp, w);
} while (¢ not enpty);
return MS;

}

nwmi

Figure 2. Algorithm for computing a MIS

4 SAT-Based Pruning Techniques for BCP

One of the main features dfsolois the ability to backtrack non-
chronologically when conflicts occur. This feature is eeddby the
conflict analysis procedure inherited from the GRASP SAToalg
rithm. However, as illustrated in section 3.2, in the oraibsolo
algorithm non-chronological backtracking was only potesfbr log-
ical conflicts. In the case of a bound conflict all the seareh tteci-
sion assignments were used to explain the conflict. Thexetbese
conflicts would always depend on the last decision level aaakb
tracking would necessarily be chronological.

In this section we describe how to compute sets of assigrement
that explain bound conflicts. Moreover, we show that thes@as
ments are not in general associated with all decision lavethe
search tree; hence non-chronological backtracking canpkdce.

A bound conflict in an instance of the binate covering problem
(BCP)C arises when the lower bound is equal to or higher than the
upper bound . This condition can be written@gath + C.lower >
C.upper, whereC.pathis the cost of the assignments already made,
C.lower is a lower bound estimate on the cost of satisfying the
clauses not yet satisfied (as given for example by an indepeé rseit
of clauses), an.upperis the best solution found so far. From the
previous equation, we can readily conclude @BgiathandC.lower
are the unique components involved in each bound confliaiti¢d
that C.upperis just the lowest value of the cost function for the so-
lutions of the constraints computed earlier in the seardtgss.)
Therefore, we will analyze botf.pathand C.lowercomponents in
order to establish the assignments responsible for a givendcon-
flict.

We start by studying.path Clearly, the variable assignments that
cause the value df.pathto grow are solely those assignments with
a value of 1 to variables with positive cost. Hence, we camdedi
set of literalsv.p, such that each variable i, is assigned value 1
and raises the value of the cost function:

wep ={l =% : Cost(z;) >0Ax; =1} (4)
which basically states that to decrease the value of thefanstion
(i.e.C.path at least one variable that is assigned value 1 has instead
to be assigned value 0.

We now considelC.lower. Let M IS be the independent set of
clauses, obtained by the method described in section atldéter-
mines the value of.lower. Observe that each clauseMiI S is part
of MIS because it is neither satisfied nor covered by some other
clause inM1S. Clearly, for each clause; € MIS these condi-
tions only hold due to the literals ; that are assigned value 0. If
any of these literals was assigned valuevlywould certainly not be
in M 1S since it would be a satisfied clause. Consequently, we can
define a set of literals that explain the value®bfower.

wclz{l:l=0/\l€wi/\wi€MIS} (5)
Now, as stated above, a bound conflict is solely due to the omo
ponentsC.pathandC.lower. Hence, this bound conflict will hold as

long as the following clausey. is unsatisfied:

(6)

(Observe that the set union symbol in the previous equatnots
a disjunction of literals.) As long as this clause is undigiis the val-
ues ofC.pathandC.lowerwill remain unchanged, and so the bound
conflict will exist. We can thus use this unsatisfied clauseto an-
alyze the bound conflict and decide where to backtrack togusie
conflict analysis procedure of GRASP [13]. We should obséraé
backtracking can be non-chronological, because clayseoes not
necessarily depend on all decision assignments. Moredwerto the
clause recording mechanismy,. can be used later in the search pro-
cess to prune the search tree. If these clauses would depealli o
decision assignments, clause recording would not be used e
same set of decisions is never repeated in the search process
Bound conflicts arise during the search process wheneveawe h
C.path + C.lower > C.upper. Notice that when a new solution
is found, C.lower
clauses are satisfied) a@dpathis equal to the cost of the new upper
bound. Therefore, when we updaeupperwith the new value, we
haveC .path + C.lower = C.upper and a bound conflict is issued
in order to backtrack in the search tree. These bound canfiict
just a particular case and the same process described isetttion
is applied in order to build the conflict clause.

Whe = Wep Uwer

5 Reducing Dependencies in Bound Conflicts

As shown in the previous section, in BCP algorithms it is fldego
establish conditions for implementing non-chronologicatktrack-
ing due to bound conflicts. However, the ability to backtracin-
chronologically is strongly related with the ability forddtifying a
small set of assignments that explain each bound conflits. Sas-
signments that include many assignments irrelevant faratigtex-
plaining the bound conflict can drastically reduce the sbit back-
track non-chronologically. Hence, after computing expléons for
bound conflicts, using the techniques described in the puevsec-
tion, the next step is to identify assignments that can beadied
from each explanation by proving them irrelevant for therigboon-
flict to take place.

In this section we propose different techniques for redyde-
pendencies in the explanations of bound conflicts, henceched
the number of literals itwy..

5.1 Relating C.path and C.lower

Let!; be a literal such thdt; € wep, andl; € we;. Thenl; is inwp.
only due to the”.path component explaining the bound conflict. Let
MIS be the independent set, computed with the procedure dedcrib
in fig. 2, which is used to obtain the value 6flower. In this sit-
uation, literall; can be removed fromv., provided the following
conditions apply:

e There exists a satisfied clause such thatl; is the only literal
which currently satisfies;.

All literals of w; besided; must be positive, unassigned and must
not intersectMIS (so thatv; can be added td/IS if I; assumes

value 0).

of literal ;.

¢ No clause inMIS can contairi; .

This reduction step can be made becausk i 0, w; would be

As an example, let us suppose that variablesc» andzs belong
to the cost function with the same cost and= 1. If a bound conflict
occurs, from (4)¢; would be inw;,.. However, suppose that clause
w; = (z1 + x2 + x3) is satisfied only due t@:, i.e.,z> andzs are
unassigned. I, andzs do not belong to any clause M 1.5, z, can
be removed fronw,. becauser; = 1 is not relevant for the conflict.

If variable z; was unassigned or assigned valuespwould be in
M 1S and the bound conflict would still occur.

It is interesting to observe that we can generalize the skcon-
dition, allowingw; to have positive literals whose variables are as-
signed value 0. Let us consider the example clayse (z1 +z2 +
3 + x4). Letz; = 1 andz» 0. Moreover, let the cost aof,
be no greater than the cost ®f, let x3, x4 be such thats; would
be in MIS if z1 = 0, and let no other clause in MIS contain literal
z2. In this situation, the dependency @on can be removed, and the
dependency om, need not be considered. Indeed, with= 0, w;
would be inMIS and so the cost would not decrease. In addition,

0 because the independent set is empty (allsince the cost ot is larger than or equal to the costof, by as-

signing value 1 tacs, the cost would also not decrease. Hence the
result follows. One should note that the same reasoningespfur
anarbitrary number of variables assigned value 0 in a given clause
with a single literal assigned value 1.

Next we show howw.; can be simplified by evaluating the con-
sequences of modifying the value of some literals on theevalu
C.path

Suppose we have a literal= z;, with | € w.; and letz; = 0. If
x; only belongs to one clause of the independent set and its cost
is greater than or equal to the minimum cost.f thenl can be re-
moved fromwy.. To better understand how this is possible, suppose
instead that; = 1. In this situationw; would not be in the indepen-
dent set (it would be a satisfied clause) and@hwer component
would be lowet. However, since the cost of the variable is higher
than or equal to the minimum cost af;, the C.path component
would be higher, and hence the conflict would still hold. $e, &s-
signmentz; = 0 is irrelevant for the conflict to arise and liteéatan
be removed fromw,.. Observe that even if a clausg, containing
a literalz; = 0, also contains other literals assigned value 0 (e.g.
zr, = 0), the same reasoning still applies, and dependenay; @an
be removed. This holds even whep = 0 is contained in more than
one clause of/ IS.

Another reduction technique consists of using a satisfiaadsd to
reduce a dependency fram;. Let us consider the following set of
clauses,

wi = (z14+x2+2x3)
wry = (z1+z4+25) 7
ws = (Tr+2x3+24)

with z; = 0, z2, 3, x4, x5 Unassigned and; andw- be part of
MIS. Let the cost ofes, 3, x4, x5 be less than or equal to the cost
of z:. Finally, let no other clause iM 1S containz;. If x; would
take value 1C.lower would decrease by 2 sincg andw- would be
satisfied, butvs would now be inMI1S. However,C.path would be
raised due to the cost afi and the conflict would still hold. Hence,
the dependency am; can be removed.

5.2 Using Excess Cost Value

All literals in w; must have a cost higher than or equal to the cost

Let us consider a bound conflict and l€iff
C.lower) — C.upper. Clearly, diff > 0.

(C.path +

L Infact, if the C.lower would be recomputed all over again, it is not guaran-

in the independent set and the lower bound value would Nnot de- teeq that it would decrease. Nevertheless, we know thabuitblause.;

crease. Therefore, literd] can be deemed irrelevant for explaining
the bound conflict and can be removed frog.

satisfied byz; = 1, MI1S\{w;} itis still an independent set of clauses.
Therefore, M IS\{w;} can be used aslaw estimate ofC.lower.

It is plain that if C.path was lower bydiff, the bound conflict
would still hold since we would then hav@.upper = C.path +

C.lower. Therefore, we may conclude that not all assignments in
C.path are necessary for explaining the conflict, since if some as- w2 =

signments were not made, we would still have a bound conffict.
this case, it is possible to remove some literals frogp as long as
their cost is lower than or equal tiiff .

conflict, and consider the following set of clauses,

(14 22 + z3)
(T1T + x4 + T5)

w1 =

(12)

wherex; is assigned either value 0 or 1, its cost is 0, and such that
the dependency om, is only due tow: or ws. Furthermore, let us

Moreover, the value ofliff can also be used for reducing depen- assume that; would be part ofM/IS with 1 = 0, and thatw,
dencies fromC.lower. Notice that if we remove a subset of clauses would be part ofMIS with z; = 1. In this situation the dependency

D_M1IS from M1S (used to obtairC.lower) such that,

Cost(D_M1IS) < diff

Cost(D_-MIS) = Z Weight(w)
wED_MIS

where

(8)
9)

then the lower bound conflict will still hold sinc€.upper <
C.path + C.lower, whereC.lower is now obtained from the inde-
pendent set of clauséd IS \ D_M1IS. Therefore, the lower bound
conflict clausews. can still be built using (6), but the.; can now be
reformulated as

wer={l:l=0AlEwiANw; € MIS\ D_MIS} (10)
Moreover, the simplifications described above dQf can now be
applied to the resulting.;.

onz; can be removed. Notice that if the costzafis non-zero, then
the removal of the dependency en is guaranteed by the previous
results (section 5.1) on simplifying.;.

Clearly, the application of the resolution operation cangke-
eralized and used for eliminating more than one variable oty
drawback being the computational effort involved.

6 Experimental Results

In this section we compare different algorithms for solvB@P on
example instances taken from digital circuit testing peof [7].
Due to space limitations, only the most representativeainss are
presented.

For the experimental results given below, the CPU times were
obtained on a SUN Sparc Ultra |, running at 170MHz, and with
100 MByte of physical memory. In all cases the maximum CPLltim

One should note that the reduction on the number of dependenpat each algorithm was allowed to spend on any given instamas

cies relies on which clauses we choose to includ®id/I1S. If a
clause fromM IS is selected with assigned literals belongingut
because of other clausesiiIS or due tow.,, then the dependen-
cies are exactly the same. Therefore, it is desirablethaf 1 S be a
subset of\/ IS such that the number of dependenciesjnbe mini-
mum. A greedy procedure is used for selecting the clausesrove
from M1IS.

5.3 Resolution-Induced Dependency Reduction

In this section we illustrate how the resolution operatib®][can be
used for establishing conditions that permit the elimoratf depen-
dencies. We should note that the proposed conditions, éwrmgh
based on the resolution operation, do not require the ekpliation
of new clauses.

The conditions proposed subsequently can be applied foowem
ing dependencies from., andw,;. In all cases, we use examples

to illustrate the application of resolution, but provide thecessary
conditions for generic application.

We start by studying simplifications to., established with the
resolution operation. Let us consider the following setlafises,

(1 4+ z2 + x3)
(T1 + 22 + z4)

w1 =
w2 =

(11)

1 hour. When the algorithm was unable to solve the instaneetau
time restrictions, the best upper bound found at the timé&dsva.
Otherwise, if no upper bound was computed, the reason oiréais
shown, which was either due to the tinté fre) or memory (rem)
limits imposed.

The experimental procedure consisted of running a selesged
of problem instances with thesoloalgorithm, as described in Sec-
tions 3, 4 and 5 whose results are shown in Tables 1 and 2. Here
we can see the differences between several levels of cotignah
effort in identifying dependencies in bound conflicts. Leeorre-
sponds to Section 3 whebsolocan only backtrack chronologically
in bound conflicts, while level 1 corresponds to the iderdtfan of
dependencies described in Section 4. The techniques focirepthe
number of dependencies presented in Sections 5.1 and 5dhlgre
incorporated into level 2. Level 3 differs from the previdergel since
it also includes the resolution-based dependency redufrion Sec-
tion 5.3.

In Table 1 we can clearly observe several gains due to the fact
that non-chronological backtracking in bound conflictsasgible in
level 1. For example, instan@8540_F20@. could not be solved
with bsolds level 0, but was solved in less than one third of the given
time limit with the identification of dependencies in bourahfticts.

Table 2 presents the results for levels 2 and 3. For each & {ke-
els, more gains are observed, mostly due to more non-ctugical
backtracks. With the application of techniques for redgdhre num-

with z; = 1, and such thats, z4 are not covered by the currently ber of dependencies, smaller set of assignments are decaree-
computedM IS. z; can either be assigned or unassigned, and casponsible for the bound conflicts and more non-chronolddiaak-

either be or not be covered by the currently computedsS. By ap-
plying resolution betweew; andws, with respect tar;, we obtain
the resulting clauses = c(wi, w2, z1) = (2 + T3+ x4). Now, w3

tracks are possible.
Finally, in Table 3 we can observe the results of severalrathe
gorithms on the same set of instances. Clefplgolve[3] (a generic

is certainly satisfied solely by>. Hence, we can conclude that the Integer Linear Programming solver) is unable to solve atrathsn-
dependency om, can be removed by applying the previous results stances due to time restrictions. Notice that only in sonsesavas it

on simplifyingw.,. Notice thatz, can beanyvariable. However, if
x1 is unassigned and not covered By S, then we can immediately
apply the previous results on simplifying,,.

Next, we illustrate one additional form of using the resiolatop-
eration for removing dependencies. As an example, assuroeralb

able to find an upper bound to problem instanseberzdb5], a state
of the art BCP solver, which incorporates several powerfuhmg
techniques in a classical branch-and-bound algorithmsésunable
to solve most of the example instances. The SAT-based lgezach
algorithmopbdp[1] is able to solve most instances indicating that

these instances are well-suited for SAT-based solversc&lbow- Algorithms

ever thatbsolois faster tharopbdpin most examples, and in some lggggzgggg min. | Tp_solve | scherzo Opbbgg bSbOllg
; ; c — time time u u

cases the improvement exceeds 1 order magnitude. I908F953@0 7 time T 3222 81 Ub 26 24060
c3540F20@1 6 time mem. ub 13 | 907.40
Level 0 Level 1 c432F1gat@1 8 ub 15 time | 1148.27 | 541.48
Benchmark] min. CPU Dec. CPU Dec. c432F37gat@1 9 time time | 3574.44| ubl4
c1908F469@0 — ub23 72211 ub13 117079 c499Fic2@1 — time time ub 41 ub41

c1908F953@0 4 438.56 2228 237.54 1394 c5315F43@0 3 2.6 0.92 30.38 0.67
c3540F20@1 6 ub 6 10539 | 1045.14 3359 c5315F54@1 5 time mem. time 42.06
c432Flgat@1 8 | 1414.04 15844 | 575.16 14756 c6288F35gat@1 4 time mem. | 1330.95| 44.42

c432F37gat@1 9 ubls 143452 ub15s 218136 c6288F69gat@1 6 time mem. ub 9 | 608.99
c499Fic2c@l1 — ub41 | 1000029 ub41 | 1003200 9symmlF1@1 9 ub 9 28.64 2.01 7.51

c6288F35gat@1 4 286.07 1255 107.69 756 9symmLF6@0 9 ub 9 29.44 1.59 6.12
c6288F69gat@1 6 ub6 12379 | 1413.17 4048 aluAFj@0 6 time | 879.05| 413.71] 145.73

9symmIF1@1 9 8.30 351 7.41 335 alu4AFl@1 6 time | 1638.98| 557.14 | 132.75

9symmIF6@0 9 6.91 301 6.05 272 apex2Fvl4@1 10 ub 10 mem. 624.07 20.41
aluAFj@0 6 | 249.89 1566 | 185.59 1292 apex2Fv17@1 12 time mem. | 532.94| 23.60
aluAFl@1 6 | 159.31 1036 | 146.01 999 dukeZFV5@1 5 time mem. 82.01| 26.60

apex2Fvl4@1| 10 20.48 974 20.15 908 duke2 Fv7@0 5 time mem. 1820 | 12.93

apex2Fv17@1 12 27.85 1163 23.38 1082 misex3Fa@0 9 time mem. 182.41| 55.18
duke2FV5@1 5 36.88 592 26.05 515 misex3aFb@1 8 time mem. | 983.55| 80.47
duke2Fv7@0 5 16.61 356 13.31 335 splaFvI0@0 7 time mem. | 202.98 | 33.89
misex3Fa@0 9 117.19 1526 56.78 898 splaFv14@0 8 time mem. | 21579 28.23
misex3Fb@1 8 98.25 1128 83.91 1038))

SplaFvI0@0 | 7 | 4231 800 | _34.78 766 Table 3. Algorithm comparison
splaFvi4@0 8 55.00 1064 38.93 914 Future research work will naturally include seeking furteien-
Table 1. Results for bsolo levels 0 and 1 pl?fi_cation of the clauses created for each type_ of_ co_nflia:t gener-
alizing thebsoloalgorithm to other boolean optimization problems.
Level 2 Level 3
Benchmark | min. CPU Dec. CPU Dec REFERENCES

CI908F469@0 — ubls | 111277 ubl3 | 111386 [1] P. Barth. A Davis-Putnam Enumeration Algorithm for LarePseudo-

c1908F953@0 4 241.04 1416 | 240.60 1416 Bool Obtimizati Technical R t MPI-1-95-2-003 lank
c3540F20@1 | 6 | 1009.86] 3221 | 907.40| 2939 poclean Opfmization. Technical Report MPI-1-95-2-003aPlan

C432FIgal@1 8 | 540.20| 14117 | 541.48| 14117 nstitute for Lomputer Science, 1995. .

[2] R.Bayardo Jr.and R. Schrag. Using CSP look-back teciasido solve
c432F37gat@1 9 ub14 286225 ub14 286490 | 1d SAT inst R di f the Nati | Conf
c499Ficc@1 — ub41 | 1003200 ub41 | 1003200 reaA—V\t/_cf{r_ it Illns ancelséw roceedings ot the National Lonierence
C6288F350at@1| 4 | 108.83 756 | 44.42 555 on Artificial intefigence :
[3] M. R. C. M. Berkelaar. UNIX Manual Page of Ip-solve.
€c6288F69gat@1 6 970.29 3002 | 608.99 2198 : . . : h
Eindhoven University of Technology, Design Automation tBeg
9symmlF1@1 9 8.02 335 7.51 335 .
ftp://ftp.es.ele.tue.nl/pub/lsolve, 1992.
9symmlLF6@0 9 6.52 272 6.12 272 L e . .
[4] O. Coudert. Two-Level Logic Minimization, An Overviedntegration,
aluAFj@0 6 157.07 1116 | 145.73 1034 .
The VLSI Journalvol. 17(2):677-691, October 1993.
alud Fl@1 6 145.02 1002 | 132.75 933 - . .
[5] O. Coudert. On Solving Covering Problems. Mmoceedings of the
apex2Fv14@1 10 20.21 904 20.41 936 - :

a ACM/IEEE Design Automation Conferendeine 1996.
pex2Fv17@1 12 24.94 1089 | 23.60 1058 - A ‘ .
dukeZFVo @1 5 5489 295 5660 205 [6] M. Davis and H. Putnam. A Computing Procedu_re or Qu_amtfon
dukeZFV7@0 £ 1301 333 1593 33 ';hz%c;ryéléoulrggg of the Association for Computing Machinerpl.
misex3Fa@0 9 55.51 879 55.18 879 rhaniiniang : .

- [7] P. F. Flores, H. C. Neto, and J. P. M. Silva. An exact solutio the
misex3Fb@1 8 81.40 1006 80.47 1006 L .)
minimum-size test pattern problem. Rroceedings of the IEEE In-
splaFvI0@0 7 35.29 765 33.89 764 t ti | Conf C ter Desi 510-515. Octob
SPRFVIZ@0 3 5837 eI T 2873 785 leg;gg ional Conference on Computer Desigages 510-515, October

Table 2. Results for bsolo levels 2 and 3

7 Conclusions

This paper extends well-known search pruning techniques) the
Boolean Satisfiability domain, to branch-and-bound atbams for
solving the Binate Covering Problem. The paper also dessrion-
ditions that allow for non-chronological backtracking imetpres-
ence of bound conflicts. To our best knowledge, this is thetfire
that branch-and-bound algorithms are augmented with titigydbr

backtracking non-chronologically in the presence of cotslihat re-
sult from bound conditions. In addition, we have establishen-
ditions for reducing the size of bound conflict explanatiomkich

further elicits non-chronological backtracking.

Preliminary results obtained on several instances of thetBi
Covering Problem indicate that the proposed techniqueidezd
effective and can be significant for specific classes of htsts, in
particular for instances of covering problems with setsafatraints
that are hard to satisfy.

[8] S.Liaoand S. Devadas. Solving Covering Problems UsiRgiBased
Lower Bounds. InProceedings of the ACM/IEEE Design Automation
Conference1997.

[9] V.M. Manquinho, P. F. Flores, J. P. M. Silva, and A. L. Glika. Prime

implicant computation using satisfiability algorithms.Rroceedings of

the IEEE International Conference on Tools with Artificiatelligence

pages 232-239, November 1997.

G. L. Nemhauser and L. A. Wosleynteger and Combinatorial Opti-

mization John Wiley & Sons, 1988.

C. Pizzuti. Computing Prime Implicants by Integer Fagming. In

Proceedings of the IEEE International Conference on Todtls Artifi-

cial Intelligence November 1996.

S. J. Russell and P. Norvidhrtificial Intelligence: A Modern Approach

Prentice-Hall, 1994.

J. P. M. Silva and K. A. Sakallah. GRASP: A new search atgm for

satisfiability. InProceedings of the ACM/IEEE International Confer-

ence on Computer-Aided Desigrages 220-227, November 1996.

T. Villa, T. Kam, R. K. Brayton, and A. L. Sangiovannit\ientelli.

Explicit and Implicit Algorithms for Binate Covering Praahs. IEEE

Transactions on Computer Aided Desigrol. 16(7):677-691, July

1997.

H. Zhang. SATO: An efficient propositional prover. Rroceedings of

the International Conference on Automated Dedugctages 272—-275,

July 1997.

[20]

[11]

[12]

[13]

[14]

[15]

