Improving Unsatisfiability-based Algorithms for Boolean Optimization

Vasco Manquinho Ruben Martins Inês Lynce

IST/INESC-ID, Technical University of Lisbon, Portugal

SAT 2010, Edinburgh

Motivation

- Increasing interest in generalizations of SAT
- SAT techniques extended for MaxSAT, PBO and WBO
- Unsatisfiability-based algorithms have been proposed for Boolean Optimization problems
 - · very effective for several classes of instances
 - can perform poorly on instances that are easy for classical approaches
- Integration of procedures in a unique Boolean optimization framework

Outline

- Background
 - MaxSAT, PBO and WBO
- Algorithmic Solutions
 - Classical Approaches
 - Unsatisfiability-based approaches
- Improving Unsatisfiability-based algorithms
 - PBO as preprocessing
 - Constraint Branching
- Experimental Results
- Conclusions

Maximum Satisfiability (MaxSAT)

MaxSAT Problem

Given a CNF formula φ , find an assignment to problem variables that maximizes the number of satisfied clauses in φ (or minimizes the number of unsatisfied clauses).

Partial MaxSAT Problem

Given a conjunction of two CNF formulas φ_h and φ_s , find an assignment to problem variables that satisfies all hard clauses (φ_h) and maximizes the number of satisfied soft clauses (φ_s) .

Maximum Satisfiability (MaxSAT)

Weighted CNF Formula

- set of weighted clauses
- weighted clause: pair (ω,c) where ω is a clause and $c\in\mathbb{N}$ is a positive cost of unsatisfying ω

Weighted MaxSAT Problem

Given a weighted CNF formula $\varphi_{s,c}$, find an assignment to problem variables that minimizes the total cost of unsatisfied clauses.

Weighted Partial MaxSAT Problem

Given a weighted CNF formula $\varphi_{s,c}$ and a classical CNF formula φ_h , find an assignment to problem variables that satisfies all hard clauses (φ_h) and minimizes the total cost of unsatisfied soft clauses in $\varphi_{s,c}$.

Pseudo-Boolean Optimization (PBO)

Pseudo-Boolean Optimization

$$\begin{array}{ll} \text{minimize} & \sum\limits_{j=1}^{n} c_{j} \cdot x_{j} \\ \text{subject to} & \sum\limits_{j=1}^{n} a_{ij} \cdot l_{j} \geq b_{i}, \\ & l_{j} \in \{x_{j}, \overline{x}_{j}\}, x_{j} \in \{0, 1\}, \\ & a_{ij}, b_{i}, c_{j} \in \mathbb{N}_{0}^{+} \end{array}$$

Weighted Boolean Optimization (WBO)

WBO Formula

Weighted Boolean Optimization formula is composed of two pseudo-Boolean constraint sets (φ_h, φ_s) :

- φ_h : set of hard pseudo-Boolean constraints
- φ_s : set of soft weighted pseudo-Boolean constraints
- Soft pseudo-Boolean constraint (ω, c) :
 - ω: pseudo-Boolean constraint
 - ullet there is an integer weight c representing the cost of not satisfying ω

WBO Problem

Given a WBO formula, find an assignment to problem variables that satisfies all hard constraints (φ_h) and minimizes the total cost of unsatisfied soft constraints (φ_s) .

WBO (Example)

Weighted Boolean Optimization instance

$$\varphi_{h} = \{x_{1} + x_{2} + x_{3} \ge 2, \quad 2\overline{x}_{1} + \overline{x}_{2} + x_{3} \ge 2\}
\varphi_{s} = \{(x_{1} + \overline{x}_{2} \ge 1, 2), \quad (\overline{x}_{1} + \overline{x}_{3} \ge 1, 3)\}$$

- Assignments that satisfy all hard constraints:
 - (1) $x_1 = x_3 = 1$; $x_2 = 0$; $\sum c_i = 3$
 - (2) $x_1 = 0$; $x_2 = x_3 = 1$; $\sum c_i = 2$ (solution)

Encode MaxSAT as WBO

- For each hard clause $(l_1 \lor l_2 \lor \cdots \lor l_k)$
 - define a hard PB constraint as $l_1 + l_2 + \cdots + l_k \ge 1$
- For each weighted soft clause (ω, c) where $\omega = (I_1 \vee I_2 \vee \cdots \vee I_k)$
 - define a soft PB constraint as $l_1 + l_2 + \cdots + l_k \ge 1$ with weight c

Encode MaxSAT as WBO (Example)

Weighted Partial MaxSAT instance

$$\varphi_h = \{x_1 \lor x_2 \lor \overline{x}_3, \quad \overline{x}_2 \lor x_3, \quad \overline{x}_1 \lor x_3\}$$

$$\varphi_s = \{(\overline{x}_3, 5), \quad (x_1 \lor x_2, 3), \quad (x_1 \lor x_3, 2)\}$$

Corresponding WBO instance

$$\begin{array}{lll} \varphi_h &= \{x_1 + x_2 + \overline{x}_3 \geq 1, & \overline{x}_2 + x_3 \geq 1, & \overline{x}_1 + x_3 \geq 1\} \\ \varphi_s &= \{(\overline{x}_3 \geq 1, 5), & (x_1 + x_2 \geq 1, 3), & (x_1 + x_3 \geq 1, 2)\} \end{array}$$

Encode PBO as WBO

- ullet For each pseudo-Boolean constraint $\sum\limits_{j=1}^n a_{ij} l_j \geq b_i$
 - add this PB constraint to the set of hard PB constraints
- For each term $c_i \cdot x_i$ in the objective function
 - ullet add a weighted soft PB constraint of the form $((\overline{x}_j \geq 1), c_j)$

Encode PBO as WBO (Example)

Pseudo-Boolean Optimization instance

minimize
$$4x_1 + 2x_2 + x_3$$

subject to $2x_1 + 3x_2 + 5x_3 \ge 5$
 $\overline{x}_1 + \overline{x}_2 \ge 1$
 $x_1 + x_2 + x_3 \ge 2$

Corresponding WBO instance

$$\begin{array}{lll} \varphi_h &= \{2x_1 + 3x_2 + 5x_3 \geq 5, & \overline{x}_1 + \overline{x}_2 \geq 1, & x_1 + x_2 + x_3 \geq 2\} \\ \varphi_s &= \{(\overline{x}_1 \geq 1, 4), & (\overline{x}_2 \geq 1, 2), & (\overline{x}_3 \geq 1, 1)\} \end{array}$$

Algorithmic Solutions (Classical Approaches)

- Branch and bound:
 - e.g. MaxSatz, MiniMaxSAT
- Iteration of the upper bound:
 - e.g. Pueblo, minisat+
- Conversions from one Boolean formalism to another:
 - e.g. minisat+, SAT4J MS

Unsatisfiability-based MaxSAT

Original algorithm proposed by Fu&Malik [SAT 2006]:

- (1) Identify unsatisfiable sub-formula of an UNSAT formula
 - SAT solver able to generate an UNSAT core
- (2) For each unsatisfiable sub-formula φ_C :
 - Relax all soft clauses in $\varphi_{\mathcal{C}}$ by adding a new relaxation variable to each clause
 - Add a new constraint such that at most 1 relaxation variable is assigned value 1
- (3) When the resulting CNF formula is SAT, the solver terminates
- (4) Otherwise, go back to 1

Unsatisfiability-based MaxSAT

```
\varphi_W \leftarrow \varphi
       while (\varphi_W is UNSAT)
 3
                do Let \varphi_C be an unsatisfiable sub-formula of \varphi_W
                      V_P \leftarrow \emptyset
 5
                      for each soft clause \omega \in \varphi_C
 6
                              do \omega_R \leftarrow \omega \cup \{r\}
                                   \varphi_W \leftarrow \varphi_W - \{\omega\} \cup \{\omega_R\}
 8
                                    V_R \leftarrow V_R \cup \{r\}
                      \varphi_R \leftarrow \mathsf{CNF}(\sum_{r \in V_P} r = 1) > Equals1 constraint
 9
                      \varphi_W \leftarrow \varphi_W \cup \varphi_R \quad \triangleright \text{ Clauses in } \varphi_R \text{ are declared hard}
10
       return |\varphi| – number of relaxation variables assigned to 1
11
```

Unsatisfiability-based Weighted MaxSAT

```
\varphi_W \leftarrow \varphi
 2 cost_{lb} \leftarrow 0
       while (\varphi_W is UNSAT)
                 do Let \varphi_C be an unsatisfiable sub-formula of \varphi_W
 4
                       min_c \leftarrow min_{\omega \in \varphi_c \wedge \neg hard(\omega)} cost(\omega)
 5
 6
                       cost_{1b} \leftarrow cost_{1b} + min_c
 7
                        V_R \leftarrow \emptyset
 8
                       for each soft clause \omega \in \varphi_C
 9
                                do \omega_R \leftarrow \omega \cup \{r\}
10
                                      cost(\omega_R) \leftarrow min_c
                                      if cost(\omega) > min_c
11
12
                                          then \varphi_W \leftarrow \varphi_W \cup \{\omega_R\}
                                                    cost(\omega) \leftarrow cost(\omega) - min_c
13
14
                                          else \varphi_W \leftarrow \varphi_W - \{\omega\} \cup \{\omega_R\}
15
                                      V_R \leftarrow V_R \cup \{r\}
                       \varphi_W \leftarrow \varphi_W \cup \mathsf{CNF}(\sum_{r \in V_n} r = 1)
16
17
        return cost is
```

Unsatisfiability-based Weighted MaxSAT

Weighted MaxSAT instance

$$\varphi_h = \{x_1 \lor x_2 \lor \overline{x}_3, \quad \overline{x}_2 \lor x_3, \quad \overline{x}_1 \lor x_3\}$$

$$\varphi_s = \{(\overline{x}_3, 5), \quad (x_1 \lor x_2, 3), \quad (x_1 \lor x_3, 2)\}$$

Unsatisfiable sub-formula:

$$\varphi_{\mathcal{C}} = \{ \overline{x}_2 \lor x_3, \overline{x}_1 \lor x_3, (\overline{x}_3, 5), (x_1 \lor x_2, 3) \}$$

- $min_C = 3$
- Relax $(x_1 \lor x_2, 3)$ to $(r_1 \lor x_1 \lor x_2, 3)$
- Split $(\overline{x}_3,5)$ into $(\overline{x}_3,2)$ and $(r_2 \vee \overline{x}_3,3)$
- Add CNF $(r_1 + r_2 = 1)$ to φ_h

Unsatisfiability-based Weighted MaxSAT

Weighted MaxSAT instance

$$\begin{array}{lll} \varphi_h &= \{x_1 \vee x_2 \vee \overline{x}_3, & \overline{x}_2 \vee x_3, & \overline{x}_1 \vee x_3\} \\ \varphi_s &= \{(\overline{x}_3, 5), & (x_1 \vee x_2, 3), & (x_1 \vee x_3, 2)\} \end{array}$$

Results in a new formula:

$$\begin{array}{lll} \varphi_h &= \{x_1 \vee x_2 \vee \overline{x}_3, & \overline{x}_2 \vee x_3, & \overline{x}_1 \vee x_3, & \mathsf{CNF}(r_1 + r_2 = 1)\} \\ \varphi_{\mathfrak{s}} &= \{(\overline{x}_3, 2), & (r_2 \vee \overline{x}_3, 3), & (r_1 \vee x_1 \vee x_2, 3), & (x_1 \vee x_3, 2)\} \end{array}$$

Algorithm for Weighted Boolean Optimization

- Follows the same approach as Unsatisfiability-Based Weighted MaxSAT algorithm
- Instead of SAT solver, uses Pseudo-Boolean solver enhanced with unsatisfiable sub-formula extraction
- Relaxation of pseudo-Boolean constraints $\sum a_j l_j \geq b$
 - $b \cdot r + \sum a_j I_j \ge b$
- No need to encode constraint $\sum_{r \in V_R} r = 1$ into CNF

Improving Unsatisfiability-based Algorithms

- Unsatisfiability-based algorithms search on the lower bound. Sometimes is better to search on the upper bound:
 - (1) PBO as Preprocessing
- The number of relaxation variables grows significantly at each step:
 - (2) Constraint Branching

Encode WBO as PBO

- For each hard PB constraint $\sum_{i=1}^{n} a_{ij} l_j \geq b_i$
 - add this PB constraint to the set of constraints
- For each weighted soft PB constraint $\sum_{j=1}^{n} a_{ij} l_j \geq b_i$ with cost c_j
 - define a PB constraint with a new relaxation variable r $b_i r + \sum\limits_{j=1}^n a_{ij} l_j \geq b_i$
 - add $c_j \cdot r$ to the objective function

Encode WBO as PBO (Example)

Weighted Boolean Optimization instance

$$\begin{array}{ll} \varphi_h &= \{x_1 + x_2 + x_3 \geq 2, \quad 2\overline{x}_1 + \overline{x}_2 + x_3 \geq 2, \quad x_1 + x_4 \geq 1\} \\ \varphi_s &= \{(x_1 + \overline{x}_2 \geq 1, 2), \quad (\overline{x}_1 + \overline{x}_3 \geq 1, 3), \quad (\overline{x}_4 \geq 1, 4)\} \end{array}$$

Corresponding PBO instance

minimize
$$2r_1 + 3r_2 + 4r_3$$

subject to $x_1 + x_2 + x_3 \ge 2$
 $2\overline{x}_1 + \overline{x}_2 + x_3 \ge 2$
 $x_1 + x_4 \ge 1$
 $r_1 + x_1 + \overline{x}_2 \ge 1$
 $r_2 + \overline{x}_1 + \overline{x}_3 \ge 1$
 $r_3 + \overline{x}_4 \ge 1$

PBO as Preprocessing

- (1) Simplification techniques are used in the PBO formula:
 - a generalization of Hypre for PB formulas is used
- (2) The PBO formula is solved using tight limits:
 - PB solver is used for 10% of the time limit
 - If optimality is not proved, the formula is translated back to WBO
 - Small learnt clauses are kept in the WBO formula as hard clauses

Using Constraint Branching

- Consider the following Equals1 constraint: $\sum_{i=1}^{k} r_i = 1$:
 - If r_i is assigned to 1, all other variables $r_i \neq r_i$ must be 0
 - However, if r_i is assigned to 0, no propagation occurs
- Assigning value 1 to any of these variables produces very different search trees

Using Constraint Branching

- Constraint Branching:
 - Instead of assigning one variables, half of the variables are assigned:

$$\omega_{c1}:\sum_{i=1}^{k/2}r_i=0$$

- If $\varphi \cup \{\omega_{c1}\}$ is unsatisfiable then:
 - $\exists_i r_i = 1$, with $1 \le i \le \frac{k}{2}$
 - we can infer ω_{c2} : $\sum_{i=k/2+1}^{k} r_i = 0$

Computing Cores with Constraint Branching

```
COMPUTE_CORE(\varphi)
       if (no large Equals1 constraint exist in \varphi)
            then (st, \varphi_C) \leftarrow PB(\varphi)
  3
                     return (st, \varphi_C)
            else Select a large Equals1 constraint \omega from \varphi
  5
                     k = size(\omega)
                     \omega_{c1}: \sum_{i=1}^{k/2} r_i = 0
  6
                     (st, \varphi_{C1}) \leftarrow COMPUTE\_CORE(\varphi \cup \{\omega_{c1}\})
  8
                     if (st = SAT \vee \omega_{c1} \notin \varphi_{C1})
                         then return (st, \varphi_{C1})
 9
                        else \omega_{c2} : \sum_{i=k/2+1}^{k} r_i = 0
10
                                 (st, \varphi_{C2}) \leftarrow COMPUTE\_CORE(\varphi \cup \{\omega_{c2}\})
11
                                 if (st = SAT \vee \omega_{c2} \notin \varphi_{C2})
12
13
                                     then return (st, \varphi_{C2})
                                     else return (st, \varphi_{C1} \cup \varphi_{C2})
14
```

Experimental Results

- Industrial benchmark sets of the partial MaxSAT problem
- The most effective MaxSAT solvers from the MaxSAT evaluation of 2009 were considered: MSUncore, SAT4J (MS), pm2
- Timeout: 1800 seconds
- Intel Xeon 5160 server with 3GB RAM

Experimental Results

• Solved Instances for Industrial Partial MaxSAT:

Benchmark set	#I	MSUncore	SAT4J (MS)	pm2	wbo1.0	wbo1.2
bcp-fir	59	49	10	58	40	47
bcp-hipp-yRa1	176	139	140	166	144	137
bcp-msp	148	121	95	93	26	95
bcp-mtg	215	173	196	215	181	207
bcp-syn	74	32	21	39	34	33
CircuitTraceCompaction	4	0	4	4	0	4
HaplotypeAssembly	6	5	0	5	5	5
pbo-mqc	256	119	250	217	131	210
pbo-routing	15	15	13	15	15	15
PROTEIN_INS	12	0	2	3	1	2
Total	965	553	731	815	577	755

Conclusions

- PBO solvers can be used as a preprocessing step such that:
 - 1) inference preprocessing techniques are used;
 - 2a) some problems are easily solved with a search on the upper bound;
 - 2b) restrict the search space by learning hard constraints.
- Constraint branching can improve the effectiveness of the solver
- Experimental results show that these techniques significantly improve the performance of wbo
- These results provide a strong stimulus for further integration of other Boolean optimization techniques