
Effective CNF Encodings
for the Towers of Hanoi

Ruben Martins and Inês Lynce

IST/INESC-ID, Technical University of Lisbon, Portugal
{ruben,ines}@sat.inesc-id.pt

Abstract. One of the most well-known CNF benchmark encodes the
problem of the Towers of Hanoi. This benchmark is available from SATlib
and has been part of the set of problem instances used in more than
one edition of the SAT competition. The existing CNF instances build
upon an encoding using the STRIPS language. Although the available
instances (ranging from 4 to 6 disks) are hard to solve for most of
the solvers, we introduce improvements over the existing encodings and
present a new CNF encoding that makes these problem instances trivial
to solve using only unit propagation. This new encoding is also based on
the STRIPS language and makes it possible to solve the problem of 18
disks in a reasonable amount of time.

1 Introduction

Propositional satisfiability (SAT) solvers are currently known for being very
efficient for solving different problems. Also, its use is quite simple as the CNF
format is traditionally and commonly accepted by SAT solvers. This contrasts
with other technologies where different formats are accepted as each format
carries its own advantages. Maybe for being restricted to the CNF format, not
much importance has been given to modelling techniques in SAT.

The Towers of Hanoi (ToH) [4] have been been encoded in the past based
on the STRIPS language [1] since it is easily translated into SAT (e.g. [3]). This
paper introduces improvements over the existing encodings and presents a new
effective CNF encoding for the ToH that is also based on the STRIPS language.
Although SAT technology has never advocated being the best approach for solv-
ing the ToH, it is also true that existing CNF problem instances of the ToH are
very hard to solve. This comes somehow as a surprise: a problem with 4 disks
may be easily solved by hand but looks intractable to SAT solvers.

The new CNF encoding builds on existing encodings [3, 6] and further incor-
porates a key number of properties of the ToH [7] which seem to be essential
when solving the problem automatically. Although the use of these properties
makes the ToH much easier to solve, we argue that such kind of properties should
be used when modelling a problem to be solved using SAT or any other technol-
ogy. It makes non sense to produce hard CNF encodings from problem instances
that are known to be trivial to solve.



2 R. Martins and I. Lynce

The produced instances can now be solved using only unit propagation, but
at the cost of requiring a significant number of variables and clauses for larger
instances. Even though this represents a drawback, we are now able to generate
and solve the problem of 18 disks in a reasonable amount of time.

This paper is organized as follows. The next section introduces the problem
of the ToH. Section 3 describes the existing encodings and section 4 describes
the improvements over the existing encodings and presents the new encoding.
Finally we present experimental results and the paper concludes.

2 Towers of Hanoi (ToH)

The Towers of Hanoi are a mathematical puzzle formalized by the French math-
ematician Édouard Lucas in 1883 [4]. Each problem consists of three towers
(T1, T2, T3), and n disks of different sizes which can slide onto any tower. At the
initial state the disks are stacked in order of size on one tower (T1), the smallest
being at the top.

The problem is solved by moving the entire initial stack to another tower
(T3), obeying to the following rules:

1. Only one disk may be moved at a time;
2. No disk may be placed on the top of a smaller disk;
3. Each move consists in taking the upper disk from one of the towers and

sliding it onto the top of another tower.

A solution is therefore a sequence of disk movements from the initial state
where all disks are stacked in order of size on T1 to the final state where all disks
are stacked in the same order on T3.

The simplest solution to the ToH is based on a divide-and-conquer strategy:
a solution to the problem of n disks is expressed in terms of a solution to the ToH
with n− 1 disks. The ToH has several key properties [7] that are essential for an
effective solving. Next we present those key properties which will be encoded in
the next section in order to improve the existing encodings.

Property 1. Given a ToH of size n, one may easily find a solution taking into
account the solution for a ToH of size n−1. The solution is built by first moving
the smallest n−1 disks to T2, then moving the nth disk to T3 and finally moving
the smallest n− 1 disks from T2 to T3. The sequence of disks to be moved when
considering only the smallest n− 1 disks may be obtained from the solution for
a ToH of size n − 1. More generally, the sequence of moves for a ToH of size n
(S(n)) is recursively defined as follows:

S(1) = {1}; S(n) = {S(n− 1), n, S(n− 1)}

Table 1 gives the sequences returned by S(n) for a small number of n disks,
with n ranging from 1 to 4. The disks are numbered in an increasing order, from
the smallest to the largest. The order of the disks to be moved after moving the



Effective CNF Encodings for the Towers of Hanoi 3

Table 1. Sequence of disks to be moved.

n S(n)

1 {1}
2 {1, 2, 1}
3 {1, 2, 1, 3, 1, 2, 1}
4 {1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1}

largest disk is exactly the same as before moving it. Moreover, there is a relation
between the towers involved in the same movement before and after the largest
disk is moved. Consider that the three towers are named Ti with 1 ≤ i ≤ 3
and that originally all disks are on tower T1 and at the end all disks have been
moved to tower T3. Hence, after 2n−1 steps all disks but the largest have been
moved to tower T2. After moving the largest disk to tower T3, the remaining
steps correspond to the moves where the disks are moved in the same order as
in the initial same 2n−1 steps and the initial and final towers are obtained from
the initial steps computing Tmod(i,3)+1. For example, an initial move from T1 to
T3 should later correspond to a move from T2 to T1.

Property 2. Assuming that n−1 disks are moved using the minimum number of
moves, then the recursive algorithm makes no more than the minimum number
of moves. From property 1, we may infer by mathematical induction that for n
disks the number of required moves (M(n)) is the following:

M(1) = 1; M(n) = 2 ·M(n− 1) + 1 = 2n − 1

If we also consider the relationship between the movement of the disks af-
ter/before moving the largest disk we only need to determine the first 2n−1 − 1
steps (M(n−1)) since the remaining moves may be trivially obtained from those.

Property 3. When moving disks, if we consider the disks numbered by their size,
no two disks of the same parity can be in direct contact. In other words, no two
odd/even disks can be moved next to each other.

Property 4. All disks cycle in a given order between the towers [2]. If n is even
the odd disks will cycle clockwise(T1 → T2 → T3 → T1) while the even disks
will cycle counterclockwise(T1 → T3 → T2 → T1). Otherwise, if n is odd the odd
disks will cycle counterclockwise while the even disks will cycle clockwise.

3 Existing CNF Encodings for ToH

The most well-known CNF encodings for ToH [3, 6] are based on the STRIPS
language [1]. A STRIPS problem instance is composed of:

1. An initial state;
2. A set of goal states;



4 R. Martins and I. Lynce

3. A set of actions, each of which characterized by a set of preconditions and a
set of postconditions.

A solution consists in a sequence of actions starting from an initial state
and leading to a goal state. For an action to take place at a given state the
preconditions must be satisfied and the postconditions represent the effects of
performing the action.

In the STRIPS language, states (including the initial state, the goal states,
preconditions and postconditions) are represented by conjunctions of function-
free ground literals. A solution to a planning problem consists in a sequence
of actions starting from an initial state and leading to a goal state. For an
action to take place at a given state the preconditions must be satisfied. The
postconditions represent the effects of performing the action. The number of
actions required define the length of the plan.

A STRIPS encoding for the ToH has only one action move(d, dt, dt′) with
preconditions (clear(d) ∧ clear(dt′) ∧ on(d, dt)) and postconditions (on(d, dt′) ∧
clear(dt)∧¬on(d, dt)∧¬clear(dt′)), where d represents a disk and dt/dt′ repre-
sent either a disk or a tower. The action move represents that a disk d will be
moved from a disk/tower dt to a disk/tower dt′. The preconditions clear repre-
sents that a disk/tower dt′ does not have any disks on it. On the other hand, the
postconditions on represents that a disk d in above a disk/tower dt′. The initial
state for a problem of size n is (on(1, 2)∧ . . .∧on(n−1, n)∧on(n, T1)∧clear(1)∧
clear(T2)∧clear(T3)) and the goal state is (on(1, 2)∧. . .∧on(n−1, n)∧on(n, T3)).

3.1 A CNF STRIPS-based encoding

The first CNF STRIPS-based encoding proposed by Kautz and Selman [3] uses
the set of variables {on(d, dt, t), clear(dt, t), move(d, dt, dt′, t)}, where the addi-
tional argument t represents a time step with 0 ≤ t ≤ 2n− 1. In order to reduce
the number of required variables, the variable move(d, dt, dt′, t) is replaced by
the conjunction (obj(d, t) ∧ from(dt, t) ∧ to(dt′, t)). Where obj refers to the disk
d that is moved at each time step t; from refers to the disk/tower dt that was
below the disk moved at the time step t; similarly to refers to the disk/tower dt
that is going to be below the disk moved at the time step t.

The clauses encode the following constraints:

1. Exactly one disk is moved at each time step;
2. There is exactly one movement at each time step (which implies that there

is exactly one pair from/to);
3. There are no movements moving a disk from/to exactly the same position

(which would not imply a movement in practice);
4. For a movement to be performed the preconditions must be satisfied;
5. After performing a movement the postconditions are implied;
6. No disks can be moved to the top of smaller disks;
7. Disks that did not move at time step t well remain in the same position at

time step t + 1;
8. The initial state holds at time step 0 and the goal state holds at time step

2n − 1.



Effective CNF Encodings for the Towers of Hanoi 5

3.2 An improved CNF STRIPS-based encoding

A recent encoding proposed by Prestwich [6] produces a more compact formula
as a result of using the structure of the ToH. ToH have originally been modeled
similarly to the Blocks World problem and it has been observed that for that
reason the encoding is significantly larger.

The action move(d, tw, tw′, t) where tw/tw′ correspond to towers, now only
consider movements of disks between towers and not between disks or towers
like the previous encoding. With this change the variables move and on are kept
but the variable clear can be eliminated. The preconditions are (on(d, tw, t) ∧
¬on(1, tw, t) ∧ . . . ∧ ¬on(d − 1, tw, t) ∧ ¬on(1, tw′, t) ∧ . . . ∧ ¬on(d − 1, tw′, t))
and the postconditions are (on(d, tw′, t+ 1)∧¬on(d, tw, t+ 1)). The initial state
is represented by clause (on(1, T1, 0) ∧ . . . ∧ on(n, T1, 0)) and the goal state is
represented by clause (on(1, T3, 2n − 1) ∧ . . . ∧ on(n, T3, 2n − 1)).

This encoding uses the set of variables {obj(d, t), from(tw, t), to(tw, t),
on(d, tw, t)}. Variables from and to on the first argument and variables on on
the second argument only refer to towers where in the previous encoding they
would also refer to disks. Therefore the number of variables is reduced and those
have a major impact on the size of the formula since we will require significant
less clauses to encode the constraints presented in the previous encoding. For
example, for 5 towers the previous encoding requires 1,931 variables and 14,468
clauses, whereas this new encoding requires 821 variables and 6,457 clauses.

3.3 Other encodings

The two editions of the CSP competition (2005 and 2006) have included a set of
problem instances of the ToH. These instances range from 3 to 7 disks. Detailed
results show that a translation from CSP to SAT using the support encoding
(rather than the direct encoding) performed by solver sat4jcsp (available from
http://www.sat4j.org) produces CNF formulas that can be solved using only unit
propagation. The CSP description for ToH includes properties 1 and 2 described
earlier. However, the produced CNF instances are much larger than the ones
produced by our encoding.

In addition, independent work [5] also reports a CNF encoding that pro-
duces formulas that contain only Horn clauses. This encoding uses predicate
p(td1, . . . , tdn) to encode each state. Each variable tdi has domain values {0, 1, 2}
and denotes the tower on which disk i is placed. Nonetheless, this encoding re-
quires a significant number of variables and clauses in such a way that more time
is required to generate the formula rather than to solve it.

4 Effective CNF Encodings for ToH

The solution for ToH is known and by using properties 1 and 4 we could easily
just add unit clauses that matches the solution. Notice that with property 1
we know which disk is going to be moved at each time step and together with



6 R. Martins and I. Lynce

property 4 we know the destination of that disk. However, we cannot consider
this an encoding but only a verification that both properties are enough to
generate the solution.

In this section we present three encodings that uses the properties described
in section 2. The first encoding is based on the encoding of Prestwich [6] and it is
improved by properties 2 and 3. The second encoding is a further improvement
of the first encoding by adding additional clauses that also encode property 4.
Finally we present an encoding based on properties 1, 2 and 3 that is more
compact since we only need to use the variables on. With this encoding we know
which disk is moved at each time step and by using only unit propagation we
are able to determine the solution for ToH.

4.1 Disk Parity and 2n−1 − 1 steps

We took the encoding of Prestwich [6] and improved it by encoding properties 2
and 3.

Property 2 is incorporated in the encoding by reducing the search space
to the first 2n−1 − 1 steps and by modifying the goal state so that we have
the larger disk on T1 and the remaining disks on T2. The goal state is now
(on(n, T1, 2n−1 − 1) ∧ on(1, T2, 2n−1 − 1) ∧ . . . ∧ on(n − 1, T2, 2n−1 − 1)). The
remaining moves may be trivially obtained as explained earlier.

Property 3 can be expressed by adding the following constraints to the en-
coding:

Odd/even disks will never be in touch with other odd/even disks:∧2n−1−1
t=0

∧n−2
d=1

∧b(n−d)/2c
i=1

∧3
tw=1 ¬on(d, tw, t) ∨ ¬on(d + 2 ∗ i, tw, t)∨i−1

j=0 on(d + 2 ∗ j + 1, tw, t) (1)

4.2 Disk Cycle

We can further improve the previous encoding by additionally incorporating
property 4 into our encoding.

With n even and d odd or with n odd and d even we add the following clauses
to our encoding:∧2n−1−1

t=0

∧3
tw=1

∧n
d=1 ¬on(d, tw, t) ∨ ¬on(d, mod(tw + 1, 3) + 1, t + 1) (2)∧2n−1−1

t=0

∧3
tw=1

∧n
d=1 ¬on(d, tw, t) ∨ on(d, tw, t + 1)

∨on(d, mod(tw, 3) + 1, t + 1) (3)

With n even and d even or with n odd and d odd we add the following clauses
to our encoding:∧2n−1−1

t=0

∧3
tw=1

∧n
d=1 ¬on(d, tw, t) ∨ ¬on(d, mod(tw, 3) + 1, t + 1) (4)∧2n−1−1

t=0

∧3
tw=1

∧n
d=1 ¬on(d, tw, t) ∨ on(d, tw, t + 1)
∨on(d, mod(tw + 1, 3) + 1, t + 1) (5)



Effective CNF Encodings for the Towers of Hanoi 7

4.3 Disk Sequence

Property 1 recursively determines the disks to be moved at each step. We first
generate the sequence of disks to be moved and then add unit clauses (obj(D, t))
where D corresponds to the disk to be moved at time step t.

The introduction of additional clauses for encoding properties 1 together with
2 suffice to generate a formula that requires only unit propagation to be solved.
However, we will take it further and aim to reduce the size of the encoding.
Taking into consideration property 1 we can keep only the variables on and
drop all the other variables. The resulting variables are therefore on(d, tw, t)
with 1 ≤ d ≤ n, 1 ≤ tw ≤ 3 and 0 ≤ t ≤ 2n−1. On the other hand, after the
elimination of all variables but variable on, the formula is no longer solved using
only unit propagation. Extra clauses encoding property 3 had to be added to
guarantee the resulting formula to be solved with unit propagation.

The complete set of clauses are described next.
At each time step each disk is placed exactly on one tower:∧2n−1−1

t=0

∧n
d=1 on(d, T1, t) ∨ on(d, T2, t) ∨ on(d, T3, t) (1)∧2n−1−1

t=0

∧n
d=1

∧3
tw=1

∧3
tw′=tw+1 ¬on(d, tw, t) ∨ ¬on(d, tw′, t) (2)

At time step t disk D is moved to another tower where no disks smaller than
D may exist: ∧2n−1

t=0

∧3
tw=1 ¬on(D, tw, t) ∨ ¬on(D, tw, t + 1) (3)∧2n−1−1

t=0

∧3
tw=1

∧D−1
d=1 ¬on(D, tw, t) ∨ ¬on(d, tw, t) (4)

Disks not moved at time step t will remain on the same tower at step t + 1:∧2n−1−1
t=0

∧3
tw=1

∧n
d=1 ¬on(d, tw, t) ∨ on(d, tw, t + 1), with d 6= D (5)

Odd/even disks will never be in touch with other odd/even disks:∧2n−1−1
t=0

∧n−2
d=1

∧b(n−d)/2c
i=1

∧3
tw=1 ¬on(d, tw, t) ∨ ¬on(d + 2 ∗ i, tw, t)∨i−1

j=0 on(d + 2 ∗ j + 1, tw, t) (6)

The initial and goal states are the same as before:

on(1, T1, 0) ∧ . . . ∧ on(n, T1, 0) (7)
on(n, T1, 2n−1 − 1) ∧ on(1, T2, 2n−1 − 1) ∧ . . . ∧ on(n− 1, T2, 2n−1 − 1) (8)

5 Experimental Results

We have generated problem instances ranging from 4 to 12 disks using Prestwich
encoding [6] and the improved encodings presented in section 4.

Table 2 shows the number of variables and clauses present in each encoding.



8 R. Martins and I. Lynce

Table 2. Number of variables and clauses for each encoding.

Size
Prestwich Disk Parity Disk Cycle Disk Sequence

#Vars #Cls #Vars #Cls #Vars #Cls #Vars #Cls

4 342 2,342 166 1,158 166 1,326 84 232

5 821 6,457 405 3,337 405 3,787 225 711

6 1,908 16,869 948 8,901 948 10,017 558 1,902

7 4,339 42,474 2,163 22,826 2,163 25,472 1,323 4,911

8 9,714 104,104 4,850 56,488 4,850 62,584 3,048 11,984

9 21,489 249,951 10,737 137,055 10,737 150,825 6,885 28,971

10 47,088 590,351 23,536 325,647 23,536 356,307 15,330 67,846

11 102,383 1,375,672 51,183 764,344 51,183 831,862 33,759 158,427

12 221,166 3,169,626 110,574 1,768,794 110,574 1,916,178 73,692 362,160

This table clearly shows the impact of property 2 since with it we are able
to reduce to around half the number of variables and clauses of the original
encoding. Allied to this property the encoding Disk Parity also includes property
3 which was encoded using a small number of clauses that are enough to turn this
encoding more robust. The encoding Disk Cycle additionally encodes property 4
and further improves the original encoding. Finally, the last column clearly shows
that our new encoding is more compact. It has around three times less variables
and nine times less clauses than the original encoding. Overall, when comparing
the improved encodings with the new encoding the number of variables is reduced
to about half and the number of clauses is reduced to about one fifth.

The results of the different encodings are given in table 3 and were obtained
on a Intel Xeon 5160 server (3.0GHz, 1333Mhz, 4GB) running Red Hat Enter-
prise Linux WS 4. For each instance is given the CPU time (s) for solving the
instance using picosat-535 (available from http://fmv.jku.at/picosat/) with a
time limit of 10,000 seconds 1.

Table 3. Results for the encodings with a time limit of 10,000 seconds.

Size Prestwich Disk Parity Disk Cycle Disk Sequence

4 0.01 0 0 0

5 0.08 0.01 0.02 0

6 0.47 0.03 0.05 0

7 3.65 0.70 0.20 0.01

8 109.7 5.19 5.18 0.03

9 7126.57 79.11 7.65 0.09

10 - 1997.19 973.95 0.23

11 - - 1206.37 0.56

12 - - - 1.32

1 A ‘-’ denotes that the given instance was not solved because it reached the time
limit.



Effective CNF Encodings for the Towers of Hanoi 9

Table 4. Results for the new encoding for the ToH.

Size #Vars #Cls Mem GenTime SolveTime

4 84 232 0 0 0

5 225 711 0 0 0

6 558 1,902 0 0 0

7 1,323 4,911 0.1 0 0.01

8 3,048 11,984 0.2 0.01 0.03

9 6,885 28,971 0.5 0.02 0.09

10 15,330 67,846 1.3 0.05 0.23

11 33,759 158,427 3.4 0.13 0.56

12 73,692 362,160 8.2 0.30 1.32

13 159,705 827,007 20.9 0.74 3.14

14 344,022 1,859,150 50.9 1.73 7.33

15 737,235 4,177,431 121.6 4.07 17.16

16 1,572,816 9,272,800 294.1 9.44 38.94

17 3,342,285 20,577,699 708.6 12.31 90.15

18 7,077,834 45,219,174 1,637.4 50.48 203.05

Table 3 shows that even the Disk Parity encoding is substantially more effec-
tive than the original encoding since we can now solve up to 10 disks in the
given time limit. With the Disk Cycle encoding we are able to solve the problem
instance with 11 disks and we are also able to solve the remaining instances in
a more efficient way than the previous encoding. However, if we take a look at
the results of our new encoding we can see that we are able to easily solve all
instances. This is due to no search being required for solving any of the instances.

In table 4 we present more detailed results for problem instances ranging
from 4 to 18 disks using our new encoding. Larger instances could possible have
been generated but would have required a prohibitively amount of memory. For
each instance is given the number of variables and clauses of the CNF formula,
the memory (MB) required for representing each instance and the CPU time (s)
for generating and solving the instance using picosat-535.

The results reported represent a significant speedup with respect to previous
encodings. Even our improvements over Prestwich encoding are not enough to
compete with this new encoding. The improvements presented by this new en-
coding can be first explained by the use of properties 1 and 2: the encoding of
both properties allows to solve a problem instance using only unit propagation
but none of the properties by itself would allow to. Moreover, restricting variables
to on allows to significantly reduce the size of the CNF formula. Other existing
encodings have clear limitations: the CNF formula produced by sat4jcsp has
271,192 variables and 176,639 clauses for 7 disks and the encoding described
in [5] requires 40 minutes for generating the problem of 14 disks and more than
two hours for 15 disks.



10 R. Martins and I. Lynce

6 Conclusions

This paper introduces improvements on the known Prestwich encoding [6] and
also presents a new CNF encoding for the ToH. Similarly to well-known existing
encodings, this new encoding is based on the STRIPS language. Making use of
properties of the ToH we were able to improve the original encoding since we
can significantly reduce the size of the CNF formula. Taking advantage of those
properties we were able to produce a new encoding that is more compact and
can solve ToH by only using unit propagation.

This is an example that an hard problem at first can be easily solved if we
encode additional properties. Even though SAT algorithms are becoming more
efficient the modelling of the problem still has an important role for an effective
solution.

Acknowledgements

This work is partially funded by FCT project SATPot POSC/EIA/61852/2004.

References

1. R. Fikes and N. J. Nilsson. STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. Artificial Intelligence, 2(3/4):189–208, 1971.

2. M. M. Fokkinga. On the Iterative Solution of the Towers of Hanoi Problem. Un-
registered Technical Note. University of Twente, Enschede, Netherlands, 2000.

3. H. A. Kautz and B. Selman. Planning as Satisfiability. In Tenth European Confer-
ence on Artificial Intelligence (ECAI’92), pages 359–363, 1992.

4. E. Lucas. La Tour d’Hanöı (Véritable casse-tête annamite). Original printed by
Paul Bousrez, Tours, 1883. Published under the acronym N. Claus. Available from
http://www.cs.wm.edu/∼pkstoc/page 1f.html.

5. J. A. Navarro-Pérez. Encoding and Solving Problems in Effectively Propositional
Logic. PhD thesis, University of Manchester, November 2000.

6. S. D. Prestwich. Variable Dependency in Local Search: Prevention Is Better Than
Cure. In Tenth International Conference on Theory and Applications of Satisfiability
Testing (SAT’07), pages 107–120, 2007.

7. D. Wood. The Towers of Brahma and Hanoi Revisited. Journal of Recreational
Mathematics, 14(1):17–24, 1981-1982.


