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Abstract. Linear search algorithms have been shown to be particularly
effective for solving partial Maximum Satisfiability (MaxSAT) problem
instances. These algorithms start by adding a new relaxation variable
to each soft clause and solving the resulting formula with a SAT solver.
Whenever a model is found, a new constraint on the relaxation variables
is added such that models with a greater or equal value are excluded.
However, if the problem instance has a large number of relaxation vari-
ables, then adding a new constraint over these variables can lead to the
exploration of a much larger search space.

This paper proposes new algorithms that use the models found by the
SAT solver to partition the relaxation variables. These algorithms add
a new constraint on a subset of relaxation variables, thus intensifying
the search on that subspace. Preliminary results show that model-based
algorithms can outperform a traditional linear search algorithm in several
problem instances.

1 Introduction

Linear search algorithms for MaxSAT have shown to be effective for solving sev-
eral classes of MaxSAT problems. These algorithms work by iteratively finding
models of a relaxed MaxSAT formula, such that the number of unsatisfied soft
clauses of the original MaxSAT formula is minimized. At each SAT call, a cardi-
nality constraint over all relaxation variables is added to the working formula so
that it excludes models with a greater or equal value. However, if the number of
soft clauses is large, then the number of relaxation variables will be also large.
Adding a cardinality constraint over a large number of relaxation variables can
lead to the exploration of a much larger search space.

This paper describes new algorithms that use the models found by the SAT
solver to iteratively increase the set of relaxation variables that are used in the
cardinality constraint. By using only a small subset of relaxation variables, we
are able to intensify the search on a smaller search space. These model-based
algorithms are expected to improve the performance of linear search algorithms
for MaxSAT problem instances having a large number of soft clauses.
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The paper is organized as follows. In the next section the MaxSAT problem
is defined and linear search algorithms are described. Section 3 describes the
proposed model-based algorithms for MaxSAT. Afterwards, section 4 presents an
experimental evaluation of the proposed algorithms. Finally, the paper concludes
and suggests future work.

2 Preliminaries

A Boolean formula in conjunctive normal form (CNF) is defined as a conjunction
(∧) of clauses, where a clause is a disjunction (∨) of literals and a literal is a
Boolean variable x or its negation x̄. A Boolean variable may be assigned truth
values 1 (true) or 0 (false). A positive (negative) literal x (x̄) is said to be satisfied
if the respective variable is assigned value true (false). A positive (negative)
literal x (x̄) is said to be unsatisfied if the respective variable is assigned value
false (true). A clause is said to be satisfied if at least one of its literals is satisfied.
A clause is said to be unsatisfied if all of its literals are unsatisfied. A formula
is satisfied if all of its clauses are satisfied. The Boolean Satisfiability (SAT)
problem is to decide whether there exists an assignment that makes the formula
satisfied. Such assignment is called a solution or model.

The Maximum Satisfiability (MaxSAT) problem is an optimization version
of the SAT problem which consists in finding an assignment that minimizes
(maximizes) the number of unsatisfied (satisfied) clauses. In the remainder of
the paper, it is assumed that MaxSAT is defined as a minimization problem.

MaxSAT has several variants such as partial MaxSAT, weighted MaxSAT
and weighted partial MaxSAT. In the partial MaxSAT problem, some clauses
are declared as hard, while the rest are declared as soft. The objective in partial
MaxSAT is to find an assignment to the problem variables such that all hard
clauses are satisfied, while minimizing the number of unsatisfied soft clauses. Fi-
nally, in the weighted versions of MaxSAT, soft clauses can have weights greater
than 1 and the objective is to satisfy all hard clauses while minimizing the total
weight of unsatisfied soft clauses. For simplicity, in the remainder of the paper
we will consider a formula as being a multiset of clauses.

Example 1. Consider the partial MaxSAT formula ϕ such that ϕ = ϕh ∪ ϕs,
where ϕh denotes the set of hard clauses and ϕs the set of soft clauses. Further-
more, consider the following example:

ϕh = {(x̄2 ∨ x̄1), (x2 ∨ x̄3), (x̄1 ∨ x̄4)}
ϕs = {(x1), (x2 ∨ x̄1), (x3), (x̄3 ∨ x1), (x4)} (1)

An optimal solution would be x1 = x2 = x3 = 0, x4 = 1. This assignment
satisfies all hard clauses and only two soft clauses are unsatisfied.

A generalization of clauses are cardinality constraints. These constraints de-
fine that a sum of n literals must be smaller than or equal to a given value k, i.e.∑k

n=1 xi ≤ k. In other words, a cardinality constraint over n literals ensures that

2



Algorithm 1: Linear search algorithm for partial MaxSAT

Input: ϕ = ϕh ∪ ϕs

Output: satisfiable assignment to ϕ or UNSAT
1 (VR,model, µ, ϕW )← (∅, ∅,+∞, ϕh)
2 foreach ω ∈ ϕs do
3 VR ← VR ∪ {r} // r is a new variable

4 ωR ← ω ∪ {r} // relax soft clause

5 ϕW ← ϕW ∪ ωR

6 while true do
7 (st, ν, ϕC)← SAT(ϕW )
8 if st = SAT then
9 model← ν

10 µ← |{r ∈ VR | ν(r) = 1}| // number of r variables assigned to 1

11 ϕW ← ϕW ∪ {CNF(
∑

r∈VR
r ≤ µ− 1)}

12 else
13 if model = ∅ then
14 return UNSAT // the MaxSAT formula is unsatisfiable

15 else
16 return model // return satisfiable assignment to ϕ

at most k literals can be assigned truth value 1. Although cardinality constraints
do not occur in MaxSAT formulations, several algorithms for MaxSAT rely on
these constraints [3, 11, 19]. Usually, cardinality constraints are encoded to CNF
so that a SAT solver can handle the resulting formula [9, 20, 7].

In the last decade, several algorithms for solving MaxSAT have been pro-
posed. They can be mostly categorized into branch and bound algorithms [5, 16,
10, 15], linear search algorithms [14, 13] and unsatisfiability-based algorithms [17,
3, 4, 11]. Since this paper focus on new methods for linear search algorithms, the
next section provides a detailed description of linear search algorithms for partial
MaxSAT.

2.1 Linear search algorithms for partial MaxSAT

Algorithm 1 shows the traditional linear search algorithm for partial MaxSAT [14,
13]. The algorithm starts by relaxing the partial MaxSAT formula. For each soft
clause ω, a new variable is created and added to ω (lines 2-3). Next, the relaxed
soft clause ωR is added to the working formula ϕW . The goal is to find an assign-
ment to the problem variables such that it minimizes the number of relaxation
variables that are assigned truth value 1. In any optimal solution, if a relaxation
variable is assigned truth value 1, it corresponds to the unsatisfiability of a soft
clause in the original partial MaxSAT formula.

Linear search algorithms work by iteratively calling a SAT solver over a
working formula ϕW . A SAT solver returns a triple (st, ν, ϕC), where st denotes
the outcome of the solver: satisfiable (SAT) or unsatisfiable (UNSAT). If the
solver returns SAT, then the model that satisfies all clauses is stored in ν. On
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the other hand, if the solver returns UNSAT, then ϕC contains an unsatisfiable
subformula.

The working formula ϕW is then given to the SAT solver. While the working
formula remains satisfiable, the model ν provided by the SAT solver is stored and
we compute the upper bound value µ corresponding to the model ν. This upper
bound value corresponds to the number of soft clauses that are unsatisfied in the
original partial MaxSAT formula and consequently to the number of relaxation
variables that are assigned truth value 1 (line 10). Next, the working formula
ϕW is updated by adding a cardinality constraint that excludes models with a
cost greater than or equal to µ. This procedure is repeated until the SAT solver
returns unsatisfiable. When this occurs, we have found an optimal solution to ϕ
(line 16). If there was no satisfiable call to the SAT solver, the original formula
is unsatisfiable and the algorithm returns UNSAT (line 14).

In practice, cardinality constraints are usually encoded into CNF [9, 20, 7]
so that a SAT solver can be called. Moreover, for several cardinality encodings
we do not need to re-encode the cardinality constraint at each SAT call. Since
the upper bound value is always decreasing, it is possible to update the CNF
representation of the cardinality constraint by setting some specific literals to
false. This procedure is denoted by incremental strengthening [7].

Example 2. Consider the partial MaxSAT formula ϕ as defined in Equation (1).
Algorithm 1 starts by relaxing the partial MaxSAT formula by introducing a
new relaxation variable in each soft clause. As a result, the working formula ϕW

will be updated as follows:

ϕW = {(x̄2 ∨ x̄1), (x2 ∨ x̄3), (x̄1 ∨ x̄4),
(x1 ∨ r1), (x2 ∨ x̄1 ∨ r2), (x3 ∨ r3), (x̄3 ∨ x1 ∨ r4), (x4 ∨ r5)} (2)

The set of relaxation variables is VR = {r1, r2, r3, r4, r5}. Next, ϕW is given
to a SAT solver. Suppose that the SAT solver returns the following satisfiable
assignment ν: x2 = x3 = x4 = r1 = r4 = 0, x1 = r2 = r3 = r5 = 1. We
store ν in model and compute the upper bound value µ. Since r2, r3 and r5
were assigned truth value 1, we have found a solution that unsatisfies three soft
clauses. Therefore, we can update the upper bound value µ to 3.

The working formula is now updated with a cardinality constraint over all
relaxation variables, such that assignments corresponding to the unsatisfiability
of 3 or more soft clauses are excluded. As a result, the working formula is now
as follows:

ϕW = {(x̄2 ∨ x̄1), (x2 ∨ x̄3), (x̄1 ∨ x̄4),
(x1 ∨ r1), (x2 ∨ x̄1 ∨ r2), (x3 ∨ r3), (x̄3 ∨ x1 ∨ r4), (x4 ∨ r5),
CNF(r1 + r2 + r3 + r4 + r5 ≤ 2)}

(3)

After updating the working formula, the algorithm makes another call to the
SAT solver. Consider that the SAT solver returns another satisfiable assignment

4



ν: x1 = x2 = x3 = r2 = r4 = r5 = 0, x4 = r1 = r3 = 1. Since two relaxation
variables were assigned truth value 1, then µ = 2. Next, we update the cardinality
constraint of the working formula to CNF(

∑
r∈VR

r ≤ 1).
Finally, we make another call to the SAT solver which returns unsatisfiable.

This means that there is no satisfiable assignment such that only one of the
relaxation variables is assigned truth value 1. Therefore, the optimal solution is
given by the previous model that corresponds to unsatisfying two soft clauses.

3 Model-based Algorithms for MaxSAT

In the previous section, we have seen that linear search algorithms add cardinal-
ity constraints over all relaxation variables. If the number of relaxation variables
is large, then this can lead to the exploration of a large search space.

In contrast with linear search algorithms, one may use the models given by
the SAT solver to iteratively increase the set of relaxation variables that are used
in the cardinality constraint. By using only a subset of relaxation variables, we
are able to intensify the search on a smaller search space.

Recently, a model-based algorithm [12] was proposed for solving the Mini-
mum Satisfiability (MinSAT) problem. The goal of the MinSAT problem is to
find an assignment to the problem variables such that it minimizes the number
of satisfied clauses. Even though this algorithm was not proposed for MaxSAT,
the authors mention that it can be adapted to solve MaxSAT problems [12].

In this section we present model-based algorithms for solving partial MaxSAT
problems. The first algorithm adapts the model-based algorithm from MinSAT to
MaxSAT. The second algorithm extends the first algorithm by inducing a clear
partitioning between the relaxation variables that are used in the cardinality
constraint and the ones that are not used.

3.1 Model-based Algorithm

Algorithm 2 shows our adaptation for solving partial MaxSAT problems of the
model-based algorithm first proposed to solve MinSAT [12]. Similarly to the
linear search algorithm, the model-based algorithm starts by relaxing the soft
clauses of the MaxSAT formula (lines 2-5).

The working formula ϕW is then given to the SAT solver. At each call of the
solver, if the working formula remains satisfiable, then the set of active relaxation
variables VA is updated (line 9). This set corresponds to relaxation variables that
will be used in the cardinality constraint.

If the value µ′ of the new satisfiable assignment is less than the best known
upper bound value µ, then µ is updated and the current model is stored. Note
that, since we do not add a cardinality constraint over all relaxation variables, it
is possible to obtain models that have upper bound values greater than the ones
that were known before. Next, we add a cardinality constraint over the active
relaxation variables that excludes models using more than µ active relaxation
variables (line 14).
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Algorithm 2: Model-based algorithm for partial MaxSAT

Input: ϕ = ϕh ∪ ϕs

Output: satisfiable assignment to ϕ or UNSAT
1 (VR, VA,model, µ, µ′, ϕW )← (∅, ∅, ∅,+∞,+∞, ϕh)
2 foreach ω ∈ ϕs do
3 VR ← VR ∪ {r} // r is a new variable

4 ωR ← ω ∪ {r} // relax soft clause

5 ϕW ← ϕW ∪ ωR

6 while true do
7 (st, ν, ϕC)← SAT(ϕW )
8 if st = SAT then
9 VA ← VA ∪ {r ∈ VR | ν(r) = 1} // update active r variables

10 µ′ ← |{r ∈ VR | ν(r) = 1}|
11 if µ′ < µ then
12 model← ν
13 µ← µ′ // update the upper bound value

14 ϕW ← ϕW ∪ {CNF(
∑

r∈VA
r ≤ µ− 1)}

15 else
16 if model = ∅ then
17 return UNSAT
18 else
19 return model // return satisfiable assignment to ϕ

This procedure is repeated until the formula becomes unsatisfiable. When
this occurs, we have found an optimal solution to ϕ (line 19). Similarly to the
linear search algorithm, if there was no satisfiable call to the SAT solver, the
original formula is unsatisfiable and the algorithm returns UNSAT (line 17).

The main difference between Algorithm 1 and Algorithm 2 is the set of
relaxation variables that is being used in the cardinality constraint. The model-
based algorithm uses the models to iteratively increase the number of active
relaxation variables used in the cardinality constraint. This allows the search
to focus on a subset of the relaxation variables. As a side effect, Algorithm 2
may require additional SAT calls, since some of those calls may not improve the
current upper bound but only increase the set of active relaxation variables.

Every time a new upper bound is found, we update the working formula with
the corresponding cardinality constraint. However, these cardinality constraints
may use different relaxation variables. Therefore, we cannot use incremental
strengthening as in linear search algorithms.

Example 3. Consider again the same partial MaxSAT formula ϕ as defined in
Equation (1). Similarly to the linear search algorithm, Algorithm 2 starts by
relaxing the partial MaxSAT formula. As a result, the working formula ϕW will
be updated as follows:
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ϕW = {(x̄2 ∨ x̄1), (x2 ∨ x̄3), (x̄1 ∨ x̄4),
(x1 ∨ r1), (x2 ∨ x̄1 ∨ r2), (x3 ∨ r3), (x̄3 ∨ x1 ∨ r4), (x4 ∨ r5)} (4)

Next, ϕW is given to a SAT solver. Suppose it returns the following satisfiable
assignment ν: x2 = x3 = x4 = r1 = r4 = 0, x1 = r2 = r3 = r5 = 1.

We update the set of active relaxation variables VA by extending it with the
relaxation variables that were assigned truth value 1. Therefore, the set of active
variables is now updated to VA = {r2, r3, r5}. At each SAT call, if the value
of the new satisfying assignment µ′ is less than the best known upper bound
value µ, then we update µ to µ′. Moreover, if µ is updated we also store the
corresponding model ν in model. Since the new satisfiable assignment improves
our best known upper bound, we update the upper bound µ to 3.

The working formula is now updated with a cardinality constraint over the
active relaxation variables. As a result, the working formula is now as follows:

ϕW = {(x̄2 ∨ x̄1), (x2 ∨ x̄3), (x̄1 ∨ x̄4),
(x1 ∨ r1), (x2 ∨ x̄1 ∨ r2), (x3 ∨ r3), (x̄3 ∨ x1 ∨ r4), (x4 ∨ r5),
CNF(r2 + r3 + r5 ≤ 2)}

(5)

The SAT solver is called again on the working formula. Suppose it returns the
satisfiable assignment ν: x1 = x2 = x3 = x4 = r2 = r4 = 0, r1 = r3 = r5 = 1.

Since r1 is assigned truth value 1 and does not occur in VA, we must add r1 to
VA. The value µ′ for the new satisfiable assignment is 3, since three relaxation
variables are assigned truth value 1. However, µ′ does not improve the best
known upper bound value µ. Therefore, µ does not change, but the cardinality
constraint over VA must be updated. As a result, the cardinality constraint of
the working formula is updated to CNF(r1 + r2 + r3 + r5 ≤ 2).

Consider that in the next call to the SAT solver a new satisfiable assignment
ν is found: x1 = r2 = r3 = r5 = 0, x2 = x3 = x4 = r1 = r4 = 1. Since r4 is
assigned truth value 1 and does not occur in VA, r4 is added to VA. The value µ′

of the new satisfiable assignment is 2. Hence, µ is updated to 2 and the current
model is saved.

The cardinality constraint of the working formula is now CNF(r1 + r2 +
r3 + r4 + r5 ≤ 1) and another call to the SAT solver is made. Finally, the SAT
solver returns unsatisfiable. The optimal solution was found and is given by the
previous model that corresponds to unsatisfying 2 soft clauses.

3.2 Model-based Partitioning Algorithm

The model-based algorithm presented in Algorithm 2 does not impose restric-
tions on the relaxation variables that are not active. This may lead to calls to the
SAT solver returning new satisfiable assignments that do not improve the upper
bound value. Moreover, if we impose restrictions over the relaxation variables,
then we can further reduce the search space.
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Algorithm 3: Model-based partitioning algorithm for MaxSAT

Input: ϕ = ϕh ∪ ϕs

Output: satisfiable assignment to ϕ or UNSAT
1 (VR,model, µ, ϕW )← (∅, ∅,+∞, ϕh)
2 foreach ω ∈ ϕs do
3 VR ← VR ∪ {r} // r is a new variable

4 ωR ← ω ∪ {r} // relax soft clause

5 ϕW ← ϕW ∪ ωR

6 ϕinit ← ϕW // store the original relaxed formula

7 (st, ν, ϕC)← SAT(ϕW ) // get the first model

8 if st = SAT then
9 VA ← {r ∈ VR | ν(r) = 1} // set of active r variables

10 VI ← VR \ VA // set of inactive r variables

11 model← ν
12 µ← |VA|
13 ϕW ← ϕW ∪ {(¬r) | r ∈ VI} ∪ {CNF(

∑
r∈VA

r ≤ µ− 1)}
14 else
15 return UNSAT // the MaxSAT formula is unsatisfiable

16 while true do
17 (st, ν, ϕC)← SAT(ϕW )
18 if st = SAT then
19 model← ν
20 µ← |{r ∈ VA | ν(r) = 1}|
21 ϕW ← ϕW ∪ {CNF(

∑
r∈VA

r ≤ µ− 1)}
22 else
23 if ϕC ∩ {(¬r) | r ∈ VI} = ∅ // core does not depend on inactive r

variables

24 then
25 return model // return satisfiable assignment to ϕ
26 else
27 VA ← VA ∪ {r | (¬r) ∈ ϕC ∩ r ∈ VI} // update active r

variables

28 VI ← VI \ VA // update inactive r variables

29 ϕW ← ϕinit ∪ {(¬r) | r ∈ VI} ∪ {CNF(
∑

r∈VA
r ≤ µ− 1)}

Algorithm 3 shows the model-based partitioning algorithm. This algorithm
extends the model-based algorithm by disabling the relaxation variables that
are not active. The goal is to make an optimistic assumption that non active
relaxation variables can be assigned value 0. If this is not the case, the working
formula becomes unsatisfiable. However, in case the formula is unsatisfiable,
current SAT solvers are able to provide certificates of unsatisfiability. In our
algorithm, these certificates of unsatisfiability are then used to extend the set of
active relaxation variables until the working formula becomes satisfiable.

As with previous algorithms, Algorithm 3 also starts by relaxing the MaxSAT
formula (lines 2-5). However, notice that the initial working formula ϕinit is
stored for latter use (line 6). Next, the working formula ϕW is given to the
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SAT solver. The first model is used to partition the relaxation variables into two
disjoint sets: active relaxation variables and inactive relaxation variables (lines
9-10). Active relaxation variables (VA) are used in the cardinality constraint,
whereas inactive relaxation variables (VI) are added as unit clauses to disable
their occurrence in the next model (line 13). Note that, if the first call to the
SAT solver returns unsatisfiable, then the MaxSAT formula is unsatisfiable and
the algorithm returns UNSAT (line 15).

The current working formula is again given to the SAT solver. If the formula
is satisfiable then a new better solution has been found and we update the
cardinality constraint as in the linear search algorithm (line 21). However, if
the SAT solver returns unsatisfiable then we need to analyze the unsatisfiable
subformula ϕC . If ϕC does not contain unit clauses with inactive relaxation
variables, then an optimal solution has been found and we return the last stored
model (line 25).

Otherwise, ϕC contains unit clauses with inactive relaxation variables. There-
fore, the inactive relaxation variables in those unit clauses are added to VA (line
27) and removed from VI (line 28). Afterwards, the working formula is rebuilt
from ϕinit together with the cardinality constraint over the updated set of active
relaxation variables and the unit clauses of the updated set of inactive relaxation
variables.

Notice that when the working formula becomes unsatisfiable, it must be
rebuilt. All learned clauses from the previous SAT call are removed since they
may not be valid in the next SAT call. It is clear that a more selective cleaning
process can be devised, but it is not included in our current implementation.
Another drawback of this approach is that one can have a large number of
consecutive unsatisfiable calls to the SAT solver. In our implementation, if the
SAT solver returns more than 3 consecutive unsatisfiable calls, then we set VA
to VR and VI to ∅ and the algorithm proceeds as in the classical linear search
approach.

Example 4. Consider again the same partial MaxSAT formula ϕ as defined in
Equation (1). Similarly to the previous algorithms, the initial working formula
ϕW is the relaxed partial MaxSAT formula.

ϕW = {(x̄2 ∨ x̄1), (x2 ∨ x̄3), (x̄1 ∨ x̄4),
(x1 ∨ r1), (x2 ∨ x̄1 ∨ r2), (x3 ∨ r3), (x̄3 ∨ x1 ∨ r4), (x4 ∨ r5)} (6)

Suppose that the first call to the SAT solver (line 7) returns the following satis-
fiable assignment ν: x2 = x3 = x4 = r1 = r4 = 0, x1 = r2 = r3 = r5 = 1.

We update the set of active relaxation variables to VA = {r2, r3, r5} and the
set of inactive relaxation variables to VI = {r1, r4}. Moreover, the current model
is saved and µ is set to 3.

The working formula is now updated with a cardinality constraint over the
active relaxation variables. Moreover, we also add to the working formula the unit
clauses that disable the inactive relaxation variables. As a result, the working
formula is now as follows:
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ϕW = { (x̄2 ∨ x̄1), (x2 ∨ x̄3), (x̄1 ∨ x̄4),
(x1 ∨ r1), (x2 ∨ x̄1 ∨ r2), (x3 ∨ r3), (x̄3 ∨ x1 ∨ r4), (x4 ∨ r5),
(r̄1), (r̄4),CNF(r2 + r3 + r5 ≤ 2)}

(7)

After updating the working formula, the algorithm makes another call to the
SAT solver. Consider that the SAT solver returns unsatisfiable and ϕC contains
(r̄1). We update the set of active relaxation variables to VA = {r1, r2, r3, r5}
and the set of inactive relaxation variables to VI = {r4}. Next, we rebuild the
working formula from the initial relaxed MaxSAT formula (ϕinit), together with
the cardinality constraint over the active relaxation variables and the unit clauses
from the inactive relaxation variables. As a result, the working formula is now
as follows:

ϕW = { (x̄2 ∨ x̄1), (x2 ∨ x̄3), (x̄1 ∨ x̄4),
(x1 ∨ r1), (x2 ∨ x̄1 ∨ r2), (x3 ∨ r3), (x̄3 ∨ x1 ∨ r4), (x4 ∨ r5),
(r̄4),CNF(r1 + r2 + r3 + r5 ≤ 2)}

(8)

Next, the SAT solver is called. Suppose it returns a satisfiable assignment ν:
x1 = x2 = x3 = r2 = r4 = r5 = 0, x4 = r1 = r3 = 1. A new better solution has
been found and µ is set to 2. The cardinality constraint of the working formula
is updated to CNF(r1 + r2 + r3 + r5 ≤ 1).

In the next call, the formula is unsatisfiable and ϕC contains (r̄4). The sets
of active and inactive relaxation variables are updated to VA = {r1, r2, r3, r4, r5}
and VI = ∅. The working formula is rebuilt as previously described.

Finally, the next call to the SAT solver returns unsatisfiable and ϕC does
not contain any unit clauses from the inactive relaxation variables. Therefore,
an optimal solution was already found and is given by the previous model that
corresponds to unsatisfying 2 soft clauses.

4 Experimental Results

In this section we evaluate the performance of linear search algorithms in a se-
lection of benchmark instance sets. We compare the solvers, LinearMS, ModelMS,
and PartMS against QMaxSAT [13] (winner of the industrial category of partial
MaxSAT in the MaxSAT evaluation of 2012).

LinearMS denotes our solver that implements the linear search algorithm
described in section 2.1. ModelMS and PartMS denotes the solvers that imple-
ment the model-based algorithm described in section 3.1 and the model-based
partitioning algorithm described in section 3.2, respectively. These solvers were
implemented on top of Glucose 2.1 [8] and use the cardinality networks encod-
ing [7] to encode cardinality constraints into CNF. The unsatisfiable subformulas
for the PartMS solver were extracted using an assumption-based approach [6].

All experiments were run on two AMD Opteron 6276 processors (2.3 GHz)
running Linux Fedora Core 18 with a timeout of 1,800 seconds and a memory
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Benchmark #I Avg. #Soft LinearMS ModelMS PartMS QMaxSAT

ms industrial 55 2,382,542 7 3 11 8
pms industrial 504 1,997 408 399 366 408
close solution 486 166,105 187 210 201 183

Table 1. Number of instances solved by each solver.

limit of 16 GB. The evaluation was performed on the 55 industrial MaxSAT
instances and on the 504 partial MaxSAT instances of the MaxSAT evaluation
of 20121.

Additionally, we have also considered 486 instances coming from close solu-
tion problems2 [1, 2]. The close solution problem is as follows. Consider a SAT
formula ϕ and a model ν. If some new clauses are added to ϕ, then the goal is to
find a new model ν′ that is as similar as possible to ν. Similarity is measured as
the number of assignments to the variables that are common to ν and ν′. This
problem can be encoded into partial MaxSAT and may contain a large number
of soft clauses.

Table 1 shows the total number of instances, the average number of soft
clauses and the number of instances solved by each solver for the different bench-
mark sets.

Notice that the MaxSAT industrial benchmarks have a very large number of
soft clauses. On average, each instance has over 2 million soft clauses. Moreover,
note that these instances do not have hard clauses. Therefore, they are only
composed of soft clauses and in some cases solvers can run out of memory when
handling such huge MaxSAT formulas. If each soft clause is relaxed by adding
a new relaxation variable, encoding a cardinality constraint into CNF using a
huge set of relaxation variables can easily lead to memory problems. Note that
we are using a memory limit of 16GB, which is a significantly larger limit than
the one used in the MaxSAT evaluation of 2012 (450MB).

In contrast, partial industrial MaxSAT benchmarks have a small number of
soft clauses, being on average 2,000 soft clauses per instance. Finally, the number
of soft clauses in the close solution problems is not as large as in the industrial
MaxSAT benchmarks but it is much larger than in the partial industrial bench-
marks. On average, each close solution problem instance has over 160,000 soft
clauses.

The number of instances solved by each solver show that the number of
instances solved by LinearMS is similar to QMaxSAT. This shows that our baseline
solver has a similar performance to the best linear search solver in the MaxSAT
evaluation of 2012.

For the partial industrial MaxSAT benchmarks, model-based algorithms did
not perform as well as our baseline solver. Moreover, model-based algorithms
did not solve any instance that could not be solved by LinearMS. Since the
average number of soft clauses is small, model-based algorithms tend to use
the majority of the relaxation variables in the cardinality constraint to find

1 Available at http://maxsat.ia.udl.cat/
2 We would like to thank Ignasi Ab́ıo for his assistance with these benchmarks.
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Fig. 1. Running times of solvers for the close solution problems.

the optimal solution. Therefore, starting with a large subset of the relaxation
variables and iteratively increasing this set with a few more variables represents
an overhead that deteriorates the performance of the solver.

For the industrial MaxSAT benchmarks, PartMS clearly outperformed the
remaining solvers. PartMS can solve instances in this benchmark set by using a
small fraction of the relaxation variables. Moreover, since the relaxation variables
that do not belong to the cardinality constraint are not active, we are able to
effectively prune the search space and solve more instances than LinearMS. On
the other hand, ModelMS performed poorly in this benchmark set. Since ModelMS
does not deactivate the relaxation variables that are not used in the cardinality
constraint, it does not prune the search space efficiently for this huge number
of soft clauses. LinearMS was able to solve 4 instances that were not solved by
PartMS, whereas ModelMS was able to solve 1 instance that was not solved by
the other solvers. This shows that, for this set of benchmarks, each algorithm is
able to solve some instances that others are unable to.

For the close solution problems, ModelMS exhibited the best performance.
This solver is able to solve most of the the instances using only a small subset
of the relaxation variables. On average, ModelMS uses only around 20% of the
relaxation variables in the cardinality constraint. On the other hand, PartMS
needs to use more relaxation variables to solve instances from this benchmark
set. Using the unsatisfiable subformulas to increase the set of used relaxation
variables may lead to the unnecessary inclusion of some relaxation variables in
the cardinality constraint. Moreover, the opposite problem may also happen. If
the unsatisfiable subformulas are small, then we may require several unsatisfiable
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calls until we reach a satisfiable state. To prevent this effect, we imposed a limit
on the consecutive number of unsatisfiable calls. Even though it is better to
impose a limit on the number of consecutive unsatisfiable calls, this is a limitation
of the current approach since we will then use all relaxation variables.

For the close solution problems, PartMS was able to solve 23 instances that
were not solved by ModelMS, whereas LinearMS was able to solve 4 instances
that were not solved by the other solvers. This shows that for this set of bench-
marks ModelMS and PartMS are complementary, since they can solve a significant
number of different instances.

Since both model-based algorithms improve the performance of linear search
algorithms for the close solution problems, we will analyze in more detail its
performance for this benchmark set. Figure 1 shows a cactus plot with the run-
ning times of the different solvers for the close solution problems. In addition to
the solvers previously mentioned, we have also included the Virtual Best Solver
(VBS) between ModelMS and PartMS. The VBS shows the number of instances
that were either solved by ModelMS or by PartMS.

LinearMS solves more instances than QMaxSAT but it is slower than QMaxSAT

for most benchmarks. Note that QMaxSAT uses a different encoding for cardinal-
ity constraints. Different encodings for cardinality constraints may change the
performance of linear search algorithms [18]. Even though the encoding used in
LinearMS is more compact, it may perform worse than the one implemented on
top of QMaxSAT.

ModelMS and PartMS clearly improve our baseline solver. Moreover, the pro-
posed algorithms not only solve more instances than LinearMS but also decrease
the runtime needed. ModelMS is the best performing solver for this benchmark
set since it was able to solve more 9 instances than PartMS. However, each solver
is able to solve instances that are not solved by the other solvers. Therefore, for
a given instance it is not clear which solver will perform the best. This provides
a strong stimulus for further research in a hybrid algorithm between LinearMS,
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ModelMS and PartMS, that during the search would be able to adjust its search
algorithm according to the instance that is being solved.

Figure 2 shows a scatter plot with the runtime of ModelMS and PartMS.
Each point in the plot corresponds to a problem instance, where the x-axis
corresponds to the runtime required by ModelMS and the y-axis the runtime
required by PartMS. Instances that are trivially solved by both approaches (in
less than 1 second) are not shown in the plot. The scatter plot provides a better
understanding of the comparison between two different solvers. Even though,
ModelMS solves more instances than PartMS, it is slower than PartMS for most
instances. Moreover, as mentioned before, there are several instances that are
only solved by one of the solvers. ModelMS solves 32 instances that are not solved
by PartMS, whereas PartMS solves 23 instances that were not solved by ModelMS.

5 Conclusions

Linear search algorithms for MaxSAT have shown to be particularly effective
when the number of soft clauses is small. However, if the number of soft clauses
increases, then the performance of linear search algorithms tends to deterio-
rate. This is due to the fact that the cardinality constraint is expressed over all
relaxation variables.

In this paper, we have described two model-based algorithms that start by
imposing a cardinality constraint over a subset of the relaxation variables. This
can prune the search space significantly, which allows solving instances that could
not be solved by linear search algorithms. Model-based algorithms have shown
to be effective for problem instances where the number of soft clauses is large.
However, for problems with a small number of soft clauses, the overhead induced
by iteratively increasing the subset of used relaxation variables deteriorates the
performance of the linear search algorithm.

As future work, we propose to build a hybrid solver that can dynamically
adapt its search for a given instance. This is motivated by the fact that the
virtual best solver clearly outperformed any singular solver. Moreover, the same
approach can be extended for weighted MaxSAT problems by using appropriate
CNF encodings.
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gorithms for unsatisfiability proof and core generation in SAT solvers. AI Com-
munications, 23(2-3):145–157, 2010.
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