
Clause Sharing in Deterministic

Parallel Maximum Satisfiability

Ruben Martins, Vasco Manquinho, and Inês Lynce

IST/INESC-ID, Technical University of Lisbon, Portugal
{ruben,vmm,ines}@sat.inesc-id.pt

Abstract. Multicore processors are becoming the dominant platform
in modern days. As a result, parallel Maximum Satisfiability (MaxSAT)
solvers have been developed to exploit this new architecture. Sharing
learned clauses in parallel MaxSAT is expected to help to further prune
the search space and boost the performance of a parallel solver. Yet, so
far it has not been made clear which learned clauses should be shared
among the different threads. This paper studies the impact of clause shar-
ing heuristics. Evaluating these heuristics can be a hard task in parallel
MaxSAT because existing solvers suffer from non-determinism behavior,
i.e. several runs of the same solver can lead to different solutions. This is
a clear downside for applications that require solving the same problem
instance more than once, such as the evaluation of heuristics. For a fair
evaluation, this paper presents the first deterministic parallel MaxSAT
solver that ensures reproducibility of results. By using a deterministic
solver one can independently evaluate the gains coming from the use of
different heuristics rather than the non-determinism of the solver. Ex-
perimental results show that sharing learned clauses improves the overall
performance of parallel MaxSAT solvers. Moreover, the performance of
the new deterministic solver is comparable to the corresponding non-
deterministic version.

1 Introduction

Maximum Satisfiability (MaxSAT) is an optimization version of Boolean Satis-
fiability (SAT) for which new algorithms have been proposed [8, 17, 1, 2, 13, 14].
These new algorithms for MaxSAT are based on iterative calls to a SAT solver
and contrast with previous solvers based on the classical branch and bound ap-
proach [3, 16, 12, 15]. One of the new approaches is based on the ability of SAT
solvers to produce certificates of unsatisfiability. In these algorithms, unsatis-
fiable subformulas are identified and are iteratively relaxed at each step of the
MaxSAT algorithm [8, 17, 1]. This approach corresponds to a lower bound search
on the optimal value of the MaxSAT solution. A complementary approach is to
make an upper bound linear search on the MaxSAT solution [14]. In this case,

Proceedings of the 19th RCRA workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion (RCRA 2012).
In conjunction with AI*IA 2012, Rome, Italy, June 14–16, 2012.



after a solution is found, new constraints are added such that solutions with a
higher or equal value are excluded. This approach had already been successfully
used for other Boolean optimization problems [6, 7, 22].

Considering the existence of these complementary algorithms for MaxSAT
and the fact that multicore processors are now commonly used, new parallel
MaxSAT algorithms have been proposed to exploit this new architecture [19,
18]. These parallel solvers are based on a portfolio approach where some threads
apply unsatisfiability-based MaxSAT algorithms, while other threads make a
linear search on the value of the optimal solution. Therefore, these algorithms
simultaneously search on the lower and upper bound values of the optimal solu-
tion. Searching in both directions and sharing learned clauses between these two
orthogonal approaches makes the search more efficient. However, it is not clear
which clauses should be shared among the different threads. The problem of de-
termining if a shared clause will be useful in the future remains challenging, and
in practice heuristics are used to select which learned clauses should be shared.

This paper includes and extends the paper already published at the Learning
and Intelligent OptimizatioN Conference (LION’12) [20] where the main contri-
butions are: (1) a new heuristic for clause sharing that freezes shared clauses until
they are expected to be useful and (2) an empirical evaluation of static, dynamic
and freezing heuristics for clause sharing. In this paper we further detail these
procedures, as well as a new description of the deterministic parallel MaxSAT
solver used to evaluate the different clause sharing heuristics. It should be noted
that this is the first deterministic parallel MaxSAT solver. The determinism is a
fundamental feature if one wants to integrate the solver in an application where
the same problem instance must be solved more than once and the results must
be fully reproducible.

The organization of the paper is as follows. First, the MaxSAT problem is
defined and MaxSAT algorithmic approaches are briefly characterized. Next,
section 3 describes different clause sharing heuristics that will be analyzed in
the paper. Section 4 provides a description of our deterministic parallel MaxSAT
solver and an experimental evaluation of the different clause sharing heuristics
is presented in section 5. Finally, the paper concludes and suggests future work.

2 Preliminaries

A Boolean formula in conjunctive normal form (CNF) is defined as a conjunction
(∧) of clauses, where a clause is a disjunction (∨) of literals and a literal is a
Boolean variable x or its negation x̄. A Boolean variable may be assigned truth
values true or false. A positive (negative) literal x (x̄) is said to be satisfied if the
respective variable is assigned value true (false). A positive (negative) literal x
(x̄) is said to be unsatisfied if the respective variable is assigned value false (true).
A variable (and respective literals) not assigned is said to be unassigned. A clause
is said to be satisfied if at least one of its literals is satisfied. A clause is said to
be unsatisfied if all of its literals are unsatisfied. A clause is said to be unit if all
literals but one are unsatisfied and the remaining literal is unassigned. Otherwise,

2



a clause is said to be unresolved. A formula is satisfied if all of its clauses are
satisfied. The Boolean Satisfiability (SAT) problem is to decide whether there
exists an assignment that makes the formula satisfied. Such assignment is called
a solution.

The Maximum Satisfiability (MaxSAT) problem is an optimization version
of the SAT problem which consists in finding an assignment that minimizes
(maximizes) the number of unsatisfied (satisfied) clauses. In the remainder of
the paper, it is assumed that MaxSAT is defined as a minimization problem.
MaxSAT has several variants such as partial MaxSAT, weighted MaxSAT and
weighted partial MaxSAT. In the partial MaxSAT problem, some clauses are
declared as hard, while the rest are declared as soft. The objective in partial
MaxSAT is to find an assignment to problem variables such that all hard clauses
are satisfied, while minimizing the number of unsatisfied soft clauses. Finally, in
the weighted versions of MaxSAT, soft clauses can have weights greater than 1
and the objective is to satisfy all hard clauses while minimizing the total weight
of unsatisfied soft clauses.

2.1 MaxSAT Algorithms

Recently, new algorithms for MaxSAT have been proposed [8, 17, 1, 13, 14]. As a
result, state of the art MaxSAT algorithms are now able to solve many challeng-
ing problem instances. One approach for solving MaxSAT is to make a linear
search on the objective value. In this case, a new relaxation variable is initially
added to each soft clause and the resulting formula is solved by a SAT solver.
Whenever a solution is found, a new constraint on the relaxation variables is
added such that solutions with an higher or equal value are excluded. Usually,
this new constraint is translated into a set of propositional clauses so that a
SAT solver can handle the resulting formula [14]. Otherwise, a pseudo-Boolean
solver must be used. In this case, the solver deals natively with generalizations of
propositional clauses. The algorithm stops when the resulting formula becomes
unsatisfied.

A different approach for MaxSAT relies on modern SAT solvers having the
ability to produce certificates of unsatisfiability [8]. The algorithm starts by
considering all hard and soft clauses in the formula. At each iteration, an unsat-
isfiable subformula is identified and relaxed. The relaxation procedure usually
consists of adding a new relaxation variable to each soft clause in the unsatis-
fiable subformula. Moreover, a new constraint is added such that at most one
of the new relaxation variables can be assigned to true. Again, if one wants to
continue using a SAT solver, this new constraint must be encoded into a set of
propositional clauses. The algorithm stops when the resulting formula is satisfi-
able. Furthermore, several variants of this approach have been proposed [17, 1,
2, 13].

The parallel MaxSAT solver pwbo [18] used in this paper is based on having
several threads running a portfolio of two orthogonal algorithms that follow the
approaches just described: (i) an unsatisfiability-based algorithm that searches
on the lower bound of the optimal solution and (ii) a linear search algorithm

3



that searches on the upper bound. Therefore, this solver performs a parallel
search on both sides of the optimal solution. Furthermore, each thread uses
different procedures to handle the new constraints added at each iteration of the
search [18], thus diversifying the exploration of the search space.

Notice that pwbo is not limited to the best performing algorithm in the
portfolio, since threads can cooperate by exchanging information on the lower
and upper bounds found during the search, as well as exchanging learned clauses
that can prune the search on the other threads. As a result, the parallel MaxSAT
algorithm is complete, but non-deterministic. Although the algorithm always re-
turns an optimal solution, it is not guaranteed that any two runs of the algorithm
return the exact same solution, i.e. the exact same set of assignments to the vari-
ables. Moreover, the time spent may also have large variations.

3 Clause Sharing Heuristics

Clause sharing heuristics can be divided into three categories: (1) static, (2)
dynamic and (3) freezing. The static heuristics share clauses within a given
cutoff, whereas the dynamic heuristics adjust this cutoff during the search. Al-
ternatively, the freezing heuristics temporarily delay the incorporation of shared
clauses until they are expected to be useful in the context of the importing
thread.

3.1 Static

The static heuristics are the most used for clause sharing since they are simple
but still efficient in practice. The following measures are used in these heuristics:

– Size: the clause size is given by the number of literals. Small clauses are
expected to be more useful than larger clauses.

– Literal Block Distance (LBD) [5]: the literal block distance corresponds to
the number of different decision levels involved in a clause. The decision level
of a literal denotes the depth of the decision tree at which the corresponding
variable was assigned a value. Clauses with small LBD are considered as
more relevant.

– Random: randomly decide whether to share each learned clause with a given
probability. This heuristic was designed to evaluate the other heuristics which
are expected to be more effective than a random one.

3.2 Dynamic

It has been observed that the size of learned clauses tends to increase over time.
Consequently, in parallel solving, any static limit may lead to halting the clause
sharing process. Therefore, to continue sharing learned clauses it is necessary
to dynamically increase the limit during search. Hamadi et al. [11] proposed
the following dynamic heuristic. At every k conflicts (corresponding to a period

4



Fig. 1. Freezing procedure for sharing learned clauses

Freeze(ω)?

Import

Clauses

Frozen

Clauses

Add ω

Reevaluate Clauses

For each clause ω

No

Yes

Cleaning

α) the throughput of shared clauses is evaluated between each pair of threads
(ti → tj) according to the following heuristic:

limitα+1
ti→tj

=

{

limitαti→tj
+ qualityαti→tj

×
b

limitαti→tj

if sharing is small

limitαti→tj
− (1− qualityαti→tj

)× a× limitαti→tj
if sharing is large

,

where a and b are positive constants and the value of qualityαti→tj
corresponds

to the quality of shared clauses that were exported from ti and imported by tj .
A shared clause is said to have quality [11] if at least half of its literals are

active. A literal is active if its VSIDS heuristic [23] score is high, i.e. it is likely to
be chosen as a decision variable in the near future. Hence, qualityαti→tj

gives the
ratio between quality shared clauses and the total number of shared clauses in
the period α. If the quality is high then the increase (decrease) in the size limit
of shared clauses will be larger (smaller). The idea behind this heuristic is that
the information recently received from a thread ti is qualitatively linked to the
information which could be received from the same thread ti in the near future.
In our experimental setting, we have selected a = 0.125, b = 8 and α = 3000
conflicts. The throughput at each period is set to 750, i.e. if a thread tj receives
less than 750 shared learned clauses in the period α, it increases the limit of the
size of shared clauses. Otherwise, this limit is decreased. These parameters are
similar to the ones used by Hamadi et al. [11].

3.3 Freezing

There are possible drawbacks to importing clauses shared by other threads. One
drawback is that the newly imported clauses do not become active in pruning
the search space. Another possible drawback is that it might influence the ex-
ploration of the search space, such that the search becomes more closely related

5



with the exploration being performed in the thread from which the clauses orig-
inated. As a result, the diversificaton of the exploration of the search space is
decreased by shifting the context of the current search in the importing thread.

Our motivation for the freezing heuristic is to only import shared clauses
when they are expected to be useful in the near future. For that, the decision to
import new learned clauses shared by other threads must take into consideration
the current search context where these clauses are to be integrated. As a result,
these new clauses should improve the efficiency of the search being carried out,
without making a major change to the search context of the receiving thread.

Figure 1 illustrates the freezing procedure. Each shared clause ω is evaluated
to determine if it will be frozen or imported. If ω is frozen then it will be reeval-
uated later. However, if ω is assigned the frozen state more than k times it is
permanently deleted. When evaluating ω, our goal is to import clauses that are
unsatisfied or that will become unit clauses in the near future. Next, the freezing
heuristic is presented. According to the status of ω (satisfied, unsatisfied, unit
or unresolved), it decides whether ω should be frozen:

– ω is satisfied: Let level denote the current decision level, levelh(ω) the highest
decision level of the satisfied literals in ω, unassignedLits(ω) the number of
unassigned literals in ω and activeLits(ω) the number of active literals in ω.
If (level− levelh(ω) ≤ c) and (unassignedLits(ω)− activeLits(ω) ≤ d) then ω

is imported, otherwise it is frozen. A satisfied clause is expected to be useful
in the near future if it is not necessary to backtrack significantly to make
the clause unit. It is also important that the number of unassigned literals is
small, otherwise the clause may not become unit in the near future. Active
literals are also taken into consideration since they will be assigned in the
near future.

– ω is unsatisfied or unit: ω is always imported;
– ω is unresolved: if (unassignedLits(ω) − activeLits(ω) ≤ d) then the clause

is imported. Otherwise, it is frozen. Similarly to the satisfied case, if the
number of unassigned literals is small then ω is likely to be unit in the near
future.

In our experimental setting, we have selected c = 31, d = 5 and k = 7. In
addition, the frozen clauses are reevaluated every 300 conflicts. These parame-
ters were experimentally tuned. We note that freezing learned clauses has been
recently proposed in the context of deletion strategies for learned clauses in SAT
solving [4]. However, to the best of our knowledge, our solver is the only one
that uses freezing shared clauses in a parallel solving context.

4 Deterministic Parallel MaxSAT

As described in section 2.1, current parallel MaxSAT solvers suffer from non-de-
terministic behavior. It is known that sharing learned clauses and exchanging
information on the lower and upper bounds can prune the search space and
boost the performance of the parallel solver. As a result, cooperation between

6



threads is essential for the performance of parallel solvers. However, this coop-
eration is also responsible for their non-deterministic behavior. To have a better
understanding of the impact of the heuristics for clause sharing that have been
proposed in section 3, it is necessary to use a deterministic version of the solver.
The determinism allows for a fair evaluation of heuristics since it shows that
the gains are coming from the use of different heuristics and not from the non-
determinism of the solver.

In this section, we present the first deterministic parallel MaxSAT solver that
ensures reproducibility of results. The deterministic solver uses synchronization
points to exchange information between threads. Whenever a thread reaches
a synchronization point it waits until the remaining threads reach the same
point. Afterwards, when all threads reach the synchronization point, they share
learned clauses and information regarding the lower and upper bounds. This
synchronization guarantees the determinism of the cooperation between threads.
A similar approach has been recently proposed for deterministic parallel SAT
solving [10, 9]. Next, we describe how the SAT approach can be adapted for
building a deterministic parallel MaxSAT solver.

4.1 Deterministic Solver

The portfolio version of the parallel MaxSAT solver pwbo [18] searches on the
lower and upper bound values of the optimal solution. Half of the threads are
used to search on the lower bound using an unsatisfiability-based algorithm (LB
search), while the remaining threads search on the upper bound using a linear
search algorithm (UB Search).

Our deterministic solver is built on top of pwbo (version 2.0). The goal of
the deterministic solver is to be able to reproduce the same results on each
problem instance by guaranteeing the following: (i) the solution reported by the
solver is always the same and (ii) the search performed by each thread is also the
same. The first requirement guarantees the determinism of the reported solution,
whereas the second requirement guarantees the determinism of the solving time.

Figure 2 exemplifies an execution of the deterministic solver with 4 threads
but it can be easily generalized for more threads. In this example, threads 1
and 2 search on the lower bound value of the optimal solution, while threads
3 and 4 search on the upper bound value of the optimal solution. Each thread
begins by performing its search as in the non-deterministic solver [18]. Every
time a clause is learned, it is exported to the remaining threads. However, in
the deterministic solver, learned clauses are only incorporated in the solver at
synchronization points. This contrasts to the non-deterministic version where
learned clauses can be imported on-the-fly.

When a thread that is searching on the lower bound finds an unsatisfiable
subformula (also know as a core) it stops its search and proceeds to the synchro-
nization point. As can be seen in Figure 2, before entering the synchronization
point each thread exports the core that was found during the last period. Note
that if a core has not been found in the last period then nothing is exported.
Each unsatisfiable core corresponds to an increase in the lower bound value and

7



Fig. 2. Execution of the deterministic solver based on syncronization points

Threadlb

1

LB Search
(export: clauses)

export:
core

sync

import:
core, clauses

LB Search
(export: clauses)

. . .

sync

end

Threadlb

2

LB Search
(export: clauses)

export:
core

sync

import:
core, clauses

LB Search
(export: clauses)

. . .

sync

end

Threadub

3

UB Search
(export: clauses)

export:

solution, UB value

sync

import:
UB value, clauses

UB Search
(export: clauses)

optimal solution

export: solution

sync

end

Threadub

4

UB Search
(export: clauses)

export:

solution, UB value

sync

import:
UB value, clauses

UB Search
(export: clauses)

. . .

sync

end

is used in the unsatisfiability-based algorithm to iteratively relax the MaxSAT
formula [17].

Consider k threads performing lower bound search. At a synchronization
point, each of these k threads compares the cores that were found in the last
period. Our goal is to import the core that corresponds to the largest increase
in the lower bound value. If two threads found a core that corresponds to the
same increase in the lower bound value, then the core with the smallest size is
imported by all threads. If there are two cores that have the same size, then ties
are broken considering the threads identifiers in increasing order. For example,
consider in Figure 2 that thread t1 and thread t2 found a core with the same
size. After the synchronization point, thread t1 does not import the core from
thread t2. On the other hand, thread t2 will discard the core that has been found
in the last period and import the core exported by thread t1.

8



Similarly to the non-deterministic version, all threads that are searching on
the lower bound always have the same cores. This requires a synchronization
point every time a core is found. For problem instances with a large number of
unsatisfiable cores, this approach may result in high idle times since threads that
are searching on the lower bound have to wait for all other threads to reach the
synchronization point. On the other hand, since threads that are searching on
the lower bound will always have the same cores, clause sharing may be more
beneficial between these threads since they are always searching in equivalent
formulas.

Threads that are searching on the upper bound value export their best solu-
tion and the corresponding upper bound value before entering the synchroniza-
tion point. At a synchronization point, each thread imports the smallest upper
bound value between all threads. As a result, all threads that are searching on
the upper bound will have the same upper bound value after the synchronization
point.

Learned clauses are also imported at synchronization points. Each thread
imports the learned clauses that were exported by the remaining threads since
the last synchronization point. Note that threads searching on the lower bound
can also selectively import learned clauses from threads that are performing
an upper bound search. The converse is also true [18]. In order to guarantee
a deterministic behavior, learned clauses must be imported in the same order.
Therefore, in our case, learned clauses are imported using an ascending order
with respect to the threads identifiers.

In addition, we must also guarantee the determinism of the reported solution.
For a given problem instance, the variable assignments of the optimal solution
that the solver outputs must be always the same for all runs of the solver. Every
time a new solution is exported, it is only recorded if its corresponding value
is smaller than the best value found so far. If the new solution has the same
value as the current best value, then the thread identifier is used to decide if
the new solution is recorded or not. If the identifier of the exporting thread
is smaller than the identifier of the thread where the previous solution was
found, then the new solution is recorded. Otherwise, it is discarded. Finally,
a thread stops when proves optimality. However, the remaining threads are only
terminated when their next synchronization point is reached. This is done to
guarantee the determinism of the reported solution, since new optimal solutions
may be found. For example, in Figure 2 thread t3 finds an optimal solution
but it does not immediately terminates the solver. Instead, it waits until the
remaining threads reach their next synchronization point to guarantee that no
other optimal solutions have been found in the meantime.

4.2 Synchronization Points

The deterministic solver is based on synchronization points. However, to use
synchronization points one must choose a deterministic measure. Hamadi et
al. [10, 9] propose to use the number of conflicts as a measure for building the
synchronization points. A simple strategy is to use a static number of conflicts to

9



Table 1. Comparison of the different heuristics for sharing learned clauses

Heuristic #Solved Avg. #Clauses Avg. Size Time (s) Speedup

No sharing 137 − − 32,188.57 1.00
S
ta
ti
c

Random 30 134 10,140.22 128.21 27,394.46 1.18
LBD 5 137 8,947.36 9.94 25,346.69 1.27
Size 8 137 7,529.18 5.30 25,098.85 1.28
Size 32 138 18,027.48 11.76 25,174.29 1.28

Dynamic 138 13,296.28 7.33 24,218.84 1.33
Freezing 140 16,228.53 11.01 21,611.21 1.49

determine when a thread should enter a synchronization point. For example, each
thread has to perform k conflicts before entering the next synchronization point.
Note that there are some issues to be considered when choosing the value for
k. If k is small, then the number of synchronization points is high but learned
clauses and information regarding the bounds is exchanged more frequently.
On the other hand, if k is large, then the number of synchronization points
is low but learned clauses and information regarding the bounds is exchanged
less frequently. Therefore, there is a trade off between the idle time that results
from having a large number of synchronization points and the frequency that
information is exchanged between threads. In our experimental setting, we have
set k to 100 conflicts.

5 Experimental Results

All experiments were run on the partial MaxSAT instances from the industrial
category of the MaxSAT Evaluation 20111. Instances that are easily solved have
similar solving times with and without sharing learned clauses. Hence, if an
instance takes less than 60 seconds to be solved it is not considered in this eval-
uation. Therefore, our results report only to a subset of 232 instances out of the
497 used in the MaxSAT Evaluation 2011. The results for the non-deterministic
parallel solver were obtained by running the solver three times. Similarly to what
is done when analyzing randomized solvers, the median time was taken into ac-
count. As a result, an instance must be solved by at least two of the three runs to
be considered solved by the non-deterministic version. For the deterministic ver-
sions, each solver was run only once. All parallel solvers were run with 4 threads.
The evaluation was performed on two AMD Opteron 6172 processors (2.1 GHz
with 64 GB of RAM) running Fedora Core 13 with a timeout of 1,800 seconds
(wall clock time). The tool runsolver [21] was used to control the execution of
the solvers.

Table 1 shows the results of different sharing heuristics on a deterministic
solver using 4 threads where two threads apply an unsatisfiability-based algo-
rithm, while the other two threads use linear search on the value of the MaxSAT

1 http://www.maxsat.udl.cat/11/

10



solution. Although there are threads running the same algorithmic approach,
the search space exploration differs due to the way they handle the additional
constraints added at each iteration of the solver [18]. For each heuristic consid-
ered, the number of solved instances, the average number of imported clauses
by each thread, the average size of imported clauses, the solving time and the
speedup are presented. Note that the solving time and the speedup in table 1
only refer to the 133 instances that were solved by all heuristics.

The first line in table 1 shows the data for the deterministic solver with no
sharing of learned clauses between the several threads. For the static heuristics
we started by trying a random heuristic that decides with probability 30% if it
shares (or not) each learned clause. As a result, this leads to sharing clauses that
may have a very large size. Notice that randomly sharing clauses can deteriorate
the performance of the solver, since 3 instances less were solved. However, at the
same time, for the instances that were solved, randomly sharing improved the
performance of the solver when compared to not sharing any learned clauses.

Table 1 also shows the results for other static heuristics, namely using literal
block distance with a maximum value of 5 (LBD 5), as well as sharing clauses
with a size limit of 8 and 32 literals (Size 8 and Size 32). Other size limits
were also evaluated with similar results. It was observed that if the limit is too
small then the speedup is reduced since not many clauses are shared. On the
other hand, if the limit is too large then the speedup is also reduced since many
irrelevant clauses are shared. However, a size limit of 32 is comparable to a size
limit of 8, since there are instances where learning larger clauses can be useful.
In some cases, a static limit of 8 for clause sharing is too restrictive and does
not allow the exchange of the clauses that are important for solving an instance.
Nevertheless, notice that any of these heuristics always improve the performance
of the solver in terms of time.

The dynamic heuristic outperforms the static heuristics but is outperformed
by the freezing heuristic. In the dynamic heuristic, each thread starts by im-
porting clauses with at most 8 literals. This cut-off is dynamically adjusted as
described in section 3.2. Table 1 clearly shows the impact of this adjustment.
The average number of imported clauses by each thread almost doubled from
the static heuristic with size 8 to the dynamic heuristic that starts with a cut-off
of size 8.

The freezing heuristic uses a static cut-off of size 32. However, it differs
from the static heuristic of size 32 by delaying the incorporation of the received
learned clauses until they are expected to be useful. Table 1 shows that the
average number of imported clauses by each thread is smaller when using the
freezing heuristic than when using the static heuristic of size 32. Notice that
in the freezing heuristic some imported clauses may be deleted. If a clause is
imported and in the following synchronization periods is not considered to be
helpful for the solver, then this clause will be deleted.

To summarize, although sharing learned clauses does not improve the number
of solved instances significantly, it does reduce the solving time considerably.
The freezing heuristic clearly outperforms all other heuristics in terms of solving

11



Table 2. Comparison between the non-deterministic and deterministic solvers

Solver #Solved Time (s) Avg. Idle CPU (%) Speedup

Non-Deterministic 141 13,401.88 0 1.00
Deterministic 140 21,611.21 43.12 0.62

time and number of instances solved and provides a strong stimulus for further
research.

The deterministic solver was built to perform a fair comparison between
the different heuristics for clause sharing. Table 2 compares the deterministic
solver using the freezing heuristic against the respective non-deterministic solver
that uses the same heuristic. The comparison is done regarding the number of
instances solved, the solving time, the average percentage of idle CPU time per
problem instance and the speedup. The performance of the deterministic solver
is comparable to the corresponding non-deterministic with respect to the number
of instances solved. However, the deterministic solver is much slower than the
non-deterministic solver. Table 2 shows that there is a correlation between the
slowdown of the deterministic solver and the percentage of idle CPU time. For
most of the time almost 2 out of 4 threads are idle. This may explain why the
deterministic solver is 1.6× slower than the non-deterministic solver.

The high idle CPU time shown by the deterministic solver is mostly due
to the synchronization mechanism. Different threads present different search
behaviors and may reach a static synchronization point at different times. This
problem is further accentuated in our solver since the size of the formula can
differ substantially between threads. For example, threads that search on the
upper bound of the optimal solution and use CNF encodings to encode the
constraint on the upper bound value may have a formula that is several times
larger than the formulas in other threads. As future work, we propose to improve
our deterministic solver by implementing a dynamic period for each thread.
A similar approach has been successfully used in parallel deterministic SAT
solving [10, 9].

6 Conclusions

New parallel algorithms have been recently proposed for both SAT and MaxSAT
solving. The main goal of these algorithms is to take advantage of multicore
computer architectures by running several threads at the same time. Moreover,
in a portfolio-based parallel solver, each thread runs a different algorithm on the
same initial formula. However, instead of having a race of several algorithms for
solving a given problem instance, collaborative procedures are usually integrated
in the parallel solver. One of such procedures is to share learned clauses between
the several threads, where each thread runs a different algorithm, thus allowing
to prune the search space already explored in other threads.

In this paper different sharing heuristic procedures already proposed for par-
allel SAT solving are described and integrated in a MaxSAT parallel solver.

12



Moreover, a new heuristic based on the notion of freezing is proposed. This
heuristic delays importing shared clauses by a given thread until it is consid-
ered relevant in the context of its own search. In order to proper evaluate the
effectiveness of the several sharing heuristics, a deterministic parallel MaxSAT
solver based in synchronization points was developed and details are given in
this paper. This allows to have a parallel experimental setup such that the only
variation is the sharing procedure.

Experimental results show that sharing learned clauses in a portfolio-based
parallel MaxSAT solver does not increase significantly the number of solved
instances. However, it does allow a considerable reduction of the solving time.
Moreover, the new freezing heuristic outperforms all other heuristics both in
solving time and number of solved instances. Finally, a preliminary analysis of
the performance of our deterministic parallel MaxSAT solver against the non-
deterministic version shows that the deterministic solver is much slower due to
large idle times. It was observed that this is mainly due to the synchronization
procedure. Nevertheless, this is the first deterministic parallel MaxSAT solver
being proposed so far and the number of solved instances is similar to the non-
deterministic version.

As future work one should consider aggregating several clause sharing heuris-
tic criteria. Variations of the freezing heuristic can also be devised in order to
take into consideration other information from the context of the search space
being explored in the importing thread.

Finally, in order to observe the variance in the idle time, experimental results
will be extended with additional runs of the deterministic solver. The large idle
times in these preliminary results show that our deterministic parallel MaxSAT
solver still has room for improvement. Currently, the synchronization points are
statically determined, but a dynamic procedure such as the one already used in
parallel SAT solving should produce better results. Moreover, specific features
regarding MaxSAT solving should also be considered in order to produce a better
synchronization of the threads.

Acknowledgements

This work was partially supported by FCT under research projects iExplain
(PTDC/EIA-CCO/102077/2008), ParSAT (PTDC/EIA-EIA/103532/2008) and
ASPEN (PTDC/EIA-CCO/110921/2009), and INESC-ID multiannual funding
through the PIDDAC program funds.

References

1. C. Ansótegui, M. Bonet, and J. Levy. Solving (Weighted) Partial MaxSAT through
Satisfiability Testing. In International Conference on Theory and Applications of
Satisfiability Testing, pages 427–440, 2009.

2. C. Ansótegui, M. Bonet, and J. Levy. A New Algorithm for Weighted Partial
MaxSAT. In Twenty-Fourth AAAI Conference on Artificial Intelligence, pages
3–8, 2010.

13



3. J. Argelich, C. M. Li, and F. Manyà. An improved exact solver for partial max-sat.
In Proceedings of the International Conference on Nonconvex Programming: Local
and Global Approaches (NCP-2007), pages 230–231, 2007.

4. G. Audemard, J.-M. Lagniez, B. Mazure, and L. Sais. On Freezing and Reacti-
vating Learnt Clauses. In International Conference on Theory and Applications of
Satisfiability Testing, pages 188–200, 2011.

5. G. Audemard and L. Simon. Predicting Learnt Clauses Quality in Modern SAT
Solvers. In International Joint Conferences on Artificial Intelligence, pages 399–
404, 2009.

6. P. Barth. A Davis-Putnam Enumeration Algorithm for Linear Pseudo-Boolean Op-
timization. Technical Report MPI-I-95-2-003, Max Plank Institute for Computer
Science, 1995.

7. N. Eén and N. Sörensson. Translating pseudo-Boolean constraints into SAT. Jour-
nal on Satisfiability, Boolean Modeling and Computation, 2:1–26, 2006.

8. Z. Fu and S. Malik. On solving the partial MAX-SAT problem. In International
Conference on Theory and Applications of Satisfiability Testing, pages 252–265,
2006.

9. Y. Hamadi, S. Jabbour, C. Piette, and L. Sais. Deterministic Parallel DPLL.
Journal on Satisfiability, Boolean Modeling and Computation, 7(4):127–132, 2011.

10. Y. Hamadi, S. Jabbour, C. Piette, and L. Sais. Deterministic Parallel DPLL:
System Description. In Pragmatics of SAT Workshop, 2011.

11. Y. Hamadi, S. Jabbour, and L. Sais. Control-Based Clause Sharing in Parallel
SAT Solving. In International Joint Conferences on Artificial Intelligence, pages
499–504, 2009.

12. F. Heras, J. Larrosa, and A. Oliveras. MiniMaxSAT: An efficient weighted Max-
SAT solver. Journal of Artificial Intelligence Research, 31:1–32, 2008.

13. F. Heras, A. Morgado, and J. Marques-Silva. Core-Guided Binary Search Algo-
rithms for Maximum Satisfiability. In Twenty-Fifth AAAI Conference on Artificial
Intelligence, pages 36–41, 2011.

14. M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa. QMaxSAT: A Partial
Max-SAT Solver. Journal on Satisfiability, Boolean Modeling and Computation,
8:95–100, 2012.

15. C. M. Li, F. Manyà, and J. Planes. New inference rules for Max-SAT. Journal of
Artificial Intelligence Research, 30:321–359, 2007.

16. H. Lin and K. Su. Exploiting inference rules to compute lower bounds for MAX-
SAT solving. In International Joint Conferences on Artificial Intelligence, pages
2334–2339, 2007.

17. V. Manquinho, J. Marques-Silva, and J. Planes. Algorithms for Weighted Boolean
Optimization. In International Conference on Theory and Applications of Satisfi-
ability Testing, pages 495–508, 2009.

18. R. Martins, V. Manquinho, and I. Lynce. Exploiting Cardinality Encodings in Par-
allel Maximum Satisfiability. In International Conference on Tools with Artificial
Intelligence, pages 313–320, 2011.

19. R. Martins, V. Manquinho, and I. Lynce. Parallel Search for Boolean Optimization.
In RCRA International Workshop on Experimental Evaluation of Algorithms for
solving problems with combinatorial explosion, 2011.

20. R. Martins, V. Manquinho, and I. Lynce. Clause Sharing in Parallel MaxSAT. In
Learning and Intelligent Optimization Conference, 2012.

21. O. Roussel. Controlling a Solver Execution with the runsolver Tool. Journal on
Satisfiability, Boolean Modeling and Computation, 7(4):139–144, 2011.

14



22. H. Sheini and K. Sakallah. Pueblo: A Modern Pseudo-Boolean SAT Solver. In De-
sign, Automation, and Test in Europe (DATE) Conference, pages 684–685, March
2005.

23. L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient Conflict
Driven Learning in Boolean Satisfiability Solver. In International Conference on
Computer-Aided Design, pages 279–285, 2001.

15


