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Abstract. The predominance of multicore processors has increased the inter-
est in developing parallel Boolean Satisfiability (SAT) solvers. As a result, more
parallel SAT solvers are emerging. Even though parallel approaches are known
to boost performance, parallel approaches developed for Boolean optimization
are scarce. This paper proposes parallel search algorithms for Boolean optimiza-
tion and introduces a new parallel solver for Boolean optimization problem in-
stances. Using two threads, an unsatisfiability-based algorithm is used to search
on the lower bound value of the objective function, while at the same time a linear
search is performed on the upper bound value of the objective function. Searching
in both directions and exchanging learned clauses between these two orthogonal
approaches makes the search more efficient. This idea is further extended for a
larger number of threads by dividing the search space considering different local
upper values of the objective function. The parallel search on different local up-
per values leads to constant updates on the lower and upper bound values, which
result in reducing the search space. Moreover, different search strategies are per-
formed on the upper bound value, increasing the diversification of the search.

1 Introduction

An increasing number of parallel Boolean Satisfiability (SAT) solvers have come to
light in the recent past as a result of multicore processors having become the dominant
platform. The use of SAT is widespread with many practical application and it is clear
that the optimization version of SAT, i.e. Boolean optimization, can be applied to solve
many practical optimization problems. The competitive performance and robustness of
Boolean optimization solvers is certainly required to achieve this goal.

When compared with SAT instances, Boolean optimization instances tend to be
more intricate as it is not sufficient to find an assignment that satisfies all the constraints,
but rather an optimization function has to be taken into account. Hence, it comes as a
natural step to develop parallel algorithms to Boolean optimization, following the recent
success in the SAT field.

Although this reasoning comes as natural, there are only a few parallel implementa-
tion for solving Boolean Optimization. SAT4J PB RES//CP 1 implements a resolution
based algorithm that competes with a cutting plane based algorithm to find a new upper
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bound or to prove optimality. When one of the algorithms finds a new upper bound, it
terminates the search of the other algorithm and both restart their search within the new
upper bound. If one of the algorithms proves optimality then the problem is solved and
the search is stopped. Clause sharing is not performed between these two algorithms.
In the context of Integer Linear Programming (ILP), the commercial solver CPLEX is
known to have the option of performing parallel search 2 but no detailed description is
available.

Parallel algorithms have the advantage of allowing to implement orthogonal ap-
proaches that complement each other. That is the case in SAT4J PB RES//CP where
cutting planes are run against resolution. Another alternative, which will be explored in
this paper, is to run an algorithm that searches to increase the lower bound value against
an algorithm that searches to decrease the upper bound value. Furthermore, one may
have more than one algorithm searching on the upper bound value.

The main contribution of this paper is two-fold. First, we introduce a parallel search
algorithm for Boolean optimization that uses two threads: one thread searches to reduce
the upper bound value and the other thread searches to increase the lower bound value.
Second, a more complex parallel algorithm is introduced, which extends the previous
algorithm with additional threads searching to reduce the upper bound value.

The paper is organized as follows. The next section describes the preliminaries,
namely Maximum Satisfiability (MaxSAT) and Pseudo-Boolean Optimization (PBO).
Section 3 describes a parallel two-thread search algorithm for Boolean optimization,
which is extended to a multithread algorithm in section 4. Afterwards, an experimental
evaluation of the new algorithms is presented and the paper concludes.

2 Preliminaries

In this section we briefly describe the Boolean optimization formalisms to be used in
the remainder of the paper, namely Maximum Satisfiability (MaxSAT) and Pseudo-
Boolean Optimization (PBO). Moreover, we also review the encoding from MaxSAT to
PBO.

The MaxSAT problem can be defined as finding an assignment to problem vari-
ables such that it minimizes (maximizes) the number of unsatisfied (satisfied) clauses
in a CNF formula ϕ. However, MaxSAT has several variants such as partial MaxSAT,
weighted MaxSAT and weighted partial MaxSAT. In the partial MaxSAT problem some
clauses in ϕ are declared as hard, while the reminder are declared as soft. The objective
in partial MaxSAT is to find an assignment such that all hard clauses are satisfied while
minimizing the number of unsatisfied soft clauses. Finally, in the weighted versions of
MaxSAT, soft clauses can have weights greater than 1 and the objective is to satisfy all
hard clauses while minimizing the total weight of unsatisfied soft clauses.

A related Boolean optimization formalism is Pseudo-Boolean Optimization (PBO).
PBO is defined as finding an assignment to problem variables such that all pseudo-
Boolean constraints are satisfied and the value of a linear cost function is minimized.
Unlike MaxSAT, constraints in PBO are more general and there are no soft constraints.

2 http://www.ibm.com/software/integration/optimization/cplex-optimizer/
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Formally, one can define PBO as follows:

minimize
∑

j∈N

cj xj

subject to
∑

j∈N

aij lj ≥ bi,

lj ∈ {xj , x̄j}, xj ∈ {0, 1}, aij , bi, cj ∈ N+
0 .

(1)

Notice that propositional clauses are a particular case of pseudo-Boolean constraints
where all coefficients aij and the right-hand side bi are equal to 1. Moreover, despite the
differences one can easily encode MaxSAT instances into PBO. Consider the encoding
of weighted partial MaxSAT to PBO. Since this is the most general variant of MaxSAT,
the other MaxSAT variants trivially follow. The encoding can be as follows:

– Each hard clause in weighted partial MaxSAT formula ϕ is mapped directly as a
pseudo-Boolean constraint.

– For each soft clause ωi =
∑k

j=1 lj in ϕ with positive weight ci, create a new
relaxation variable ri. Next, add the term ciri to the objective function to minimize
and add the constraint ri +

∑k
j=1 lj ≥ 1 to the pseudo-Boolean formula.

Example 1. Consider the weighted partial MaxSAT instance where the formula is com-
posed by a set of hard clauses ϕh and a set of weighted soft clauses ϕs such that:

ϕh = { (x1 ∨ x2 ∨ x3), (x̄2 ∨ x̄3)},
ϕs = { (x̄1, 2), (x1 ∨ x̄2, 3), (x̄1 ∨ x3, 2)}. (2)

According to the described encoding, the corresponding PBO instance would be:

minimize 2r1 + 3r2 + 2r3

subject to x1 + x2 + x3 ≥ 1
x̄2 + x̄3 ≥ 1
r1 + x̄1 ≥ 1

r2 + x1 + x̄2 ≥ 1
r3 + x̄1 + x3 ≥ 1.

(3)

Notice that some optimizations can be applied to the described encoding [18]. For
instance, when encoding a soft clause with only one literal, the relaxation variable does
not need to be generated. In our example, when encoding the weighted soft clause
(x̄1, 2), one can simply add the term 2x1 to the objective function instead of 2r1 and
constraint r1 + x̄1 ≥ 1 does not need to be generated. When using such simplifica-
tions to the encoding, fewer relaxation variables are used, resulting in smaller PBO
formulations. In practice this technique is very useful, since several industrial MaxSAT
formulations have a large number of soft clauses with just one literal. As a result, for
MaxSAT instances where all soft clauses have only one literal, no relaxation variables
are introduced, and the set of variables in the PBO formulation is the same as in the
original MaxSAT instance. In this section we do not review the encoding from PBO to
MaxSAT, since it is not necessary to the reminder of the paper. However, these encod-
ings have already been described in the literature [18].
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3 Parallel Search on the Lower and Upper Bound Values

Unsatisfiability-based algorithms are very effective for several Boolean optimization
problems [10, 18, 2]. These algorithms work by iteratively identifying unsatisfiable sub-
formulas ϕU from the original formula ϕ. At each step, a SAT (or pseudo-Boolean)
solver is used to check if the formula is unsatisfiable. If that is the case, for each soft
constraint3 in the identified unsatisfiable sub-formula ϕU , a new relaxation variable
is added such that when assigned to 1, the soft constraint becomes satisfiable [18].
Moreover, additional constraints are also added to ϕ such that only one of the newly
created relaxation variables can be assigned value 1. Next, the solver checks if the
formula remains unsatisfiable. The procedure ends when the working formula becomes
satisfiable and the solver returns a solution (i.e. the optimum value was found), or if ϕU

only contains hard constraints (i.e. the original problem instance is unsatisfiable) [10].
The original procedure proposed by Fu and Malik [10] was improved, namely by

using more effective encodings [21, 20] for the constraints on the relaxation variables,
as well as different strategies to minimize the overall number of relaxation variables
needed [20, 2]. Moreover, generalizations for the weighted MaxSAT variants have also
been proposed [18, 3].

The most classical approach for Boolean optimization is the use of branch and
bound algorithms where an upper bound on the value of the objective function is up-
dated when a new solution is found. In these algorithms, lower bounds are estimated
and whenever the lower bound is higher or equal to the upper bound, the search proce-
dure can safely backtrack since extending the current set of variables assignments will
surely not result in a better solution. Several MaxSAT and PBO algorithms follow this
approach using different lower bounding procedures [15, 16, 4, 12, 17].

Another classical approach is to perform a linear search on the value of the objective
function [8]. In this case, whenever a new solution is found, the upper bound value is
updated and a new constraint is added such that all solutions with a higher value are
excluded. Several PBO solvers use this approach [23, 9, 14, 1]. Moreover, by using an
encoding to PBO, MaxSAT instances can also be solved using this approach [14].

Notice that the unsatisfiability-based procedures correspond to searching on the
lower bound of the value of the optimal solution. At each iteration the working for-
mula is unsatisfiable, and the algorithm terminates when the working formula becomes
satisfiable. On the other hand, linear search on the values of the objective function
corresponds to searching on the upper bound. In this case, the working formula is sat-
isfiable at each iteration. The algorithm terminates when the problem instance becomes
unsatisfiable and the optimum value is given by the last recorded solution.

An algorithm that searches on both the lower and upper bounds of the objective
function has already been proposed [19]. The search is initially done by a pseudo-
Boolean solver that performs a search on the upper bound value of the objective func-
tion. However, the use of the pseudo-Boolean solver is limited to 10% of the time limit
given to solve the formula. If the PBO solver proves optimality within this time limit,
the optimal solution has been found without having to search on the lower bound side.

3 In MaxSAT a soft constraint is a clause, but for more general formulations, it can be any linear
pseudo-Boolean constraint.
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On the other hand, if the PBO solver was not able to prove optimality within the time
limit, an unsatisfiability-based algorithm is used to search on the lower bound value
of the objective function. wbo [18, 19] is a weighted Boolean optimization solver that
uses this approach. Experimental results show that searching on the upper and lower
bound values leads to solving more instances. Since these approaches are orthogonal,
they complement each other on several classes of problem instances. In this paper, for
simplicity of the algorithmic description, it is assumed that the Boolean optimization
problem to be solved is weighted partial MaxSAT. However, algorithms described next
can be easily generalized to other Boolean formulations.

3.1 Parallel Search

Nowadays, extra computing power is not coming anymore from higher processor fre-
quencies but rather from a growing number of cores and processors. Exploiting this new
architecture will allow Boolean Optimization solvers to become more effective and to
be able to solve more problem instances. In this section we propose to perform a paral-
lel search on the upper and lower bound values of the objective function. Even though
searching on both the upper and the lower bound is not new [21, 19], searching on both
of them in parallel is novel to the best of our knowledge. In this paper we propose the
parallelization of the wbo solver, and the new solver is named pwbo. pwbo uses a lin-
ear search algorithm to search on the upper bound side and an unsatisfiability-based
algorithm for searching on the lower bound side.

A parallel search with these two orthogonal strategies results in a performance as
good as the best strategy for each problem instance. However, if both threads cooperate
through clause sharing, it is possible to perform better than the best strategy. Addition-
ally, both strategies can also cooperate in finding the optimum value. If during the search
the lower bound value provided by the unsatisfiability-based algorithm and the upper
bound value provided by the other thread become the same, it means that the optimum
solution has been found. Therefore, it is not necessary for any of the threads to continue
the search to prove optimality since their combined information already proves it.

3.2 Clause Sharing

It is commonly known that conflict-driven clause learning is crucial for the efficiency of
modern Boolean optimization solvers. The description of conflict-driven clause learning
procedures is out of the scope of the paper and will be assumed. We refer to the literature
for detailed explanations on these procedures [22, 25]. In the context of parallel solving,
it is expected that sharing learned clauses can help to further prune the search space and
boost the performance of the parallel solver.

In parallel SAT solving, learned clauses that have less than a given number of lit-
erals are shared among the different threads. More advanced heuristics can be used for
controlling the throughput and quality of the shared clauses [11]. Moreover, the literal
block distance [5] can also be used for sharing clauses in a parallel context [13]. In
our approach, we start by sharing clauses that have 5 or fewer literals. This cutoff is
dynamically changed using the throughput and quality heuristic proposed by Hamadi
et al. [11]. Additionally, all clauses that have literal block distance 2 are also shared.
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It should be noted that in the pwbo solver not all conflict-driven learned clauses can
be shared between both threads. This is due to the fact that the working formulas are
different. On the unsatisfiability-based algorithm, the input formula ϕMS is a weighted
partial MaxSAT formula with soft and hard constraints.

However, on the thread that makes the linear search on the upper bound value of the
objective function, we encode the input formula ϕMS into a PBO formulation ϕPBO.
As a result of that encoding (see example 1), the set of variables in ϕPBO might have
been extended by additional relaxation variables necessary to encode the soft clauses in
the original formula ϕMS . In order to define the conditions for safe clause sharing, we
start by defining soft and hard learned clauses.

Definition 1 (Soft and Hard Learned Clauses). If in the conflict analysis procedure
used in the unsatisfiability-based algorithm, at least one soft clause is used in the clause
learning process, then the generated learned clause is labeled as soft. On the other
hand, if only hard clauses are used, then the generated learned clause is labeled as
hard.

Since ϕMS contains both soft and hard clauses, it will also have soft and hard
learned clauses. On the other hand, ϕPBO only has hard clauses, and as a result, will
only have hard learned clauses. Nevertheless, as mentioned previously, ϕPBO may con-
tain additional variables not present in ϕMS . As a result, the safe sharing procedure
between the two threads is as follows:

– A hard learned clause from the unsatisfiability-based algorithm can be safely shared
to the other thread. This is due to the fact that the resolution operations used in ϕMS

can also be reproduced in ϕPBO, since all original hard clauses in ϕMS are also
present in ϕPBO.

– A soft learned clause from the unsatisfiability-based algorithm is not shared since
it may not be valid for formula ϕPBO.

– A hard learned clause generated when solving ϕPBO can be shared with the un-
satisfiability-based algorithm if the learned clause does not contain relaxation vari-
ables. This is safe since one can reproduce the generation of the hard learned clause
by resolution steps using just hard clauses also present in ϕMS .

Finally, between iterations of the unsatisfiability-based algorithm, working formula
ϕMS is also extended with additional relaxation variables. However, since these vari-
ables are added to soft clauses, if a conflict-based learned clause contains any relaxation
variable, then it will necessarily be considered a soft clause. This is due to the fact that
at least one soft clause would have been used in the learning procedure.

4 Parallel Search on the Upper Bound Value

The previous section presented a parallel search solver for Boolean optimization based
on two orthogonal strategies. In the proposed approach, one thread is used for each
strategy. For computer architectures with more than two cores, we can extend the pre-
vious idea by performing a parallel search on the upper bound value of the objective
function. Therefore, if n cores are available, we can use one thread to search on the
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lower bound value of the objective function, while at the same time k threads search
on different local upper bound values of the objective function and n − k − 1 threads
search on the upper bound value of the objective function. Local bound threads have a
local upper bound value that is enforced in their search. The iterative search on differ-
ent local upper bound values leads to constant updates on the lower and upper bound
values that will reduce the search space. Next, an example of this approach is described.
Afterwards, a more detailed description of the algorithm is provided.

Example 2. Consider a weighted partial MaxSAT formula ϕMS as input. For the input
formula, one can easily find initial lower and upper bounds. Suppose the initial lower
and upper bound values are 0 and 11, respectively. Moreover, consider also that the
optimal solution is 3 and our goal is to find it using four threads, t0, t1, t2 and t3. Thread
t0 applies an unsatisfiability-based algorithm (i.e., searches on the lower bound of the
optimum value of the objective). This thread starts with a lower bound of 0 and will
iteratively increase the lower bound until the optimum value is found.

Thread t1 searches on the upper bound value of the objective function, while threads
t2 and t3 search on different local upper bound values of the objective function. The
initial input formula ϕMS is encoded into the pseudo-Boolean formalism (see section 2)
and an additional constraint is added to limit the value of the objective function in each
thread. For example, thread t1 starts its search with upper bound value of 11 and threads
t2 and t3 can start their search with respective local upper bound values of 3 and 7.

Suppose that thread t2 finishes its computation and finds that the formula is unsatis-
fiable for an upper bound of 3. This means that there is no solution with values 0, 1 and
2 for the objective function. Therefore, the global lower bound value can be updated to
3. Thread t2 is now free to search on a different local upper bound value, for example
5. In the meantime, thread t3 found a solution with objective value 6. Hence, the global
upper bound value can be updated to 6. Thread t1 updates its upper bound value to 6
and thread t3 is now free to search on a different local upper bound value, for example
4. Afterwards, consider that thread t1 found a solution with objective value 3. Again,
the global upper bound value can be updated to 3. Since the global lower bound value is
the same as the global upper bound value, the optimum has been found and the search
terminates.

4.1 Algorithmic Description

In what follows it is shown how the parallel search on the values of the objec-
tive function can be implemented in pwbo. Algorithm 1 describes pwbo. It receives a
weighted partial MaxSAT formula (ϕMS) and the number of available threads (n). The
thread with index 0 is referred to as the lower bound thread and applies an unsatisfiability-
based algorithm to ϕMS . The thread with index 1 is referred to as the upper bound
thread and searches on the upper bound value of the objective function. The threads
indexed 2 to n − 1 are referred as local upper bound threads and search on differ-
ent local upper bound values of the objective function. For the sake of simplicity, it is
considered that there is only one thread that searches on the upper bound value of the
objective function. However, this algorithm can be easily generalized for k local upper
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Algorithm 1 PWBO Algorithm

INITSHAREDDATA(ϕMS , n)

1 globalLB ← 0
2 globalUB ← 1
3 for each soft clause (ω, c) ∈ ϕMS

4 do globalUB ← globalUB + c
5 threadUB[1]← globalUB
6 localThread[1]← false
7 for (t = 2; t < n; t++)

8 do threadUB[t]← b (t−1)×globalUB
n−1

c
9 localThread[t]← true

10 search← true
11 globalModel← ∅
PWBO(ϕMS , n)

1 INITSHAREDDATA(ϕMS , n)
2 ϕPBO ← ENCODEPBO(ϕMS )
3 PARALLELLOWERALG(ϕMS)
4 for (t = 1; t < n; t++)
5 do PARALLELUPPERALG(ϕPBO, t)
6 � wait until all threads terminate
7 return globalModel

bound threads and n− k− 1 threads that search on the global upper bound value of the
objective function.

Algorithm 1 starts by initializing all data structures shared among all threads. First,
the global lower bound is set to 0 since the weights of each soft clause are non-negative,
and the global upper bound is set to the sum of the weights of all soft clauses plus 1.
Next, each local upper thread is bounded by a local upper bound value in order to
reduce its search space. The array threadUB stores the upper bound values that limit
the search for each thread. This array is continuously updated during the search and will
always contain the upper bound limit for each thread.

Additionally, variable search is set to true. This Boolean flag is used to control
the parallel search. When one thread finds the optimum value, it stops the search of
the remaining threads by setting search to false. Finally, the threads are launched. The
first thread (t0) uses an unsatisfiability-based algorithm, while the remaining threads
(t1, . . . , tn−1) perform a search on different upper bound values of the objective func-
tion. The procedures PARALLELLOWERALG and PARALLELUPPERALG are further
described in algorithm 2. When the optimum value is found, the search terminates and
returns the model for the optimal solution.

Algorithm 2 show the behavior of the lower and upper bound threads. The PAR-
ALLELLOWERALG procedure describes the search using an unsatisfiability-based al-
gorithm. First, the value of the lower bound is initialized to 0. At each iteration, a PB
solver is used (line 2) and its output is a tuple (st, ϕU , model), where st denotes the
resulting status of the solver (satisfiable, unsatisfiable or forced abort), ϕU contains the
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Algorithm 2 Parallel Algorithms for Boolean Optimization

PARALLELLOWERALG(ϕ)

1 localLB ← 0
2 while (search)
3 do (st, ϕU , model)← PBSOLVER(ϕ)
4 if st = UNSAT
5 then localLB ← localLB+ COREWEIGHT(ϕU )
6 RELAXCORE(ϕ, ϕU )
7 UPDATELOWERBOUND(localLB , 0)
8 if globalUB = globalLB
9 then search← false

10 else if st = SAT
11 then UPDATEUPPERBOUND(localLB , 0)
12 globalModel← model
13 search← false

PARALLELUPPERALG(ϕ, id)

1 while (search)
2 do (st, ϕU , model)← PBSOLVER(ϕ ∪ {

P
cj lj ≤ threadUB[id]− 1})

3 if st = UNSAT
4 then UPDATELOWERBOUND(threadUB[id], id)
5 CLEARLOCALCONSTRAINTS(ϕ)
6 else if st = FORCED ABORT
7 then CLEARLOCALCONSTRAINTS(ϕ)
8 else if st = SAT
9 then UPDATEUPPERBOUND(VALUE(MODEL), id)

10 globalModel← model
11 if globalUB = globalLB
12 then search← false

unsatisfiable sub-formula provided by the PB solver if ϕ is unsatisfiable, and model
contains an assignment to the variables of ϕ when the formula is satisfiable. In this
thread, if the outcome of the PB solver is forced abort, it means an optimal solution has
been found by another thread (search was set to false) and the procedure terminates.

When the status of the PB solver is unsatisfiable (line 3), the unsatisfiable sub-
formula ϕU is relaxed in the procedure RELAXCORE. We refer to the literature for
the details of this procedure [2, 18]. Next, if localLB is greater than the current global
lower bound, the global lower bound is updated in UPDATELOWERBOUND (line 7).
Notice that this may result in forcing one or more upper bound threads to abort and
updating their upper bound limits. Otherwise, it means that an upper thread has already
proved a better lower bound, and the search proceeds. If the status of the PB solver
is satisfiable (line 10) it means that the unsatisfiability-based algorithm has found an
optimal solution. As a result, the upper bound is updated (line 11), the solution is stored
(line 12) and the flag search is set to false so that the remaining threads terminate.
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The PARALLELUPPERALG procedure takes as input a PBO formula ϕ (section 2)
and a thread identifier. At each iteration, a PB solver is used to solve ϕ (line 2), with an
additional constraint that limits the value of the objective function. Let this constraint
be named the thread bound constraint.

Notice that the thread bound constraint cannot be shared among all threads, since
it is only valid if the optimum value is lower than the thread upper bound. The same
sharing rules must apply to conflict-driven learned clauses that depend on the thread
bound constraint. Therefore, it is necessary to define what is a local constraint and in
what conditions it can be shared with other threads.

Definition 2 (Local Constraint). The thread bound constraint is labeled a local con-
straint. Let ω be a conflict-driven learned clause and let ϕω be the set of constraints
used in the implication graph to learn ω. The new clause ω is defined as a local con-
straint if at least one constraint in ϕω is a local constraint.

After the call to the PB solver (line 3), if it returns unsatisfiable, it means that a new
lower bound has been found. The lower bound is updated (line 4) and if the thread is
searching on a local upper bound then it gets a new local upper bound value. Since the
formula given to the PB solver was unsatisfiable, it is necessary to remove the thread
bound constraint (line 5). Additionally, all local clauses are also removed since they
may not be valid with the new local upper bound.

If the status of the solver is forced abort, it means that some other thread already
proved that the current search space is redundant. This can happen if the thread local
upper bound is smaller than the global lower bound, or if the thread local upper bound
is greater than the global upper bound. Local constraints are therefore removed (line
7). In fact, the local constraints are only removed when the forced abort is caused by
an update on the global lower bound value. Otherwise, local constraints remain valid.
If the PB solver returns satisfiable, a new upper bound has been found. Therefore, the
global upper bound is updated (line 9) and the model is stored (line 10). If the thread
is searching on a local upper bound then it gets a new local upper bound value, since
the upper bound thread will continue the search on the new upper bound that has been
found. If the thread is searching on the global upper bound the search then proceeds
as usual. Finally, after the necessary updates depending on the PB solver status, it is
checked wether the global upper bound is equal to the global lower bound. If this occurs,
optimality is proved and the search terminates (lines 11-12).

We should note that some details are not fully described in this algorithmic de-
scription due to lack of space. In particular, updates to global data structures are inside
critical regions and locks are used to avoid two or more threads to be updating these
data structures at the same time. Moreover, updates to global lower and upper bounds
only take place when the new values improve the current ones. Additionally, the update
on the saved model is also inside a critical region and is only done when the global
upper bound is updated.

Finally, when the global bounds are updated at UPDATELOWERBOUND and UP-
DATEUPPERBOUND, that may result in forcing the PB solver in other threads to stop
(resulting in a forced abort status). As a result, new thread local upper bounds must be
defined for the aborted threads. Hence, each aborted thread is assigned a new local up-
per bound that covers the broadest range of yet untested bounds. More formally, the new
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local upper bounds are chosen as follows. Let B =< b0, b1 . . . bk−1, bk > be a sorted
list where b0 equals the global lower bound and bk equals the global upper bound, while
the remaining bi are the non-aborted thread upper bounds. Let [bm−1, bm], where 1 ≤
m ≤ k, define an interval such that for all 1 ≤ i ≤ k we have bm − bm−1 ≥ bi − bi−1.
In this case, the new upper bound of the aborted thread is b(bm + bm−1)/2c. The sorted
list B is updated with the new value and this process is repeated for each aborted thread.

4.2 Diversification of the Search

Until this point, all upper bound threads are searching using the same algorithm. To in-
crease diversification of the search we propose to use two threads to search on the global
upper bound value. When updating the upper bound, a PB constraint is added to limit
the value of the objective function. However, instead of simply adding a PB constraint,
we can encode the PB constraint into clauses and add these clauses to the PB solver.
Even though the approaches are equivalent, the search space will be searched differ-
ently. Similar approaches of encoding PB constraints to CNF have been successfully
used in the past [9, 6, 7].

4.3 Clause Sharing

In this section the clause sharing procedure between threads is presented. We start by
describing the clause sharing between the thread searching on the lower bound and the
other threads searching on the upper bound. First, rules for sharing clauses described in
section 3 can be safely applied. The difference is that local constraints cannot be safely
shared with the lower bound thread. Hence, only clauses that are not local and do not
have relaxation variables, are shared with the lower bound thread.

Although local constraints are not shared with the lower bound algorithm, these con-
straints can be shared between upper bound threads. However, sharing local constraints
depends on the thread upper bound. If an importing thread has an upper bound smaller
or equal to the upper bound of the exporting thread, then the import is safe. Otherwise,
the import may be unsafe and the sharing is not done. Note that, when using diversifi-
cation of the search, the clauses that translate the PB constraint cannot be shared since
they have auxiliary variables that do not exist in the remaining upper bound threads.

5 Experimental Results

The parallel algorithms for Boolean optimization were implemented on the top of wbo
and evaluated against state-of-the-art solvers for Boolean Optimization. The solvers
were run on all the partial MaxSAT instances from the industrial category of the MaxSAT
Evaluation 2010 4, which correspond to a set of 497 instances. Results for other cate-
gories could be presented, but the number of industrial instances on the remaining cat-
egories at the MaxSAT evaluation 2010 is low and wbo was already the best solver for
those categories. The evaluation was performed on two AMD Opteron 6172 processors

4 http://www.maxsat.udl.cat/10/
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Table 1. Number of industrial partial MaxSAT instances solved by sequential and parallel solvers

Benchmark set #I QMaxSAT pm2 wbo
pwbo

2T 4T 4T-CNF
bcp-fir 59 50 58 42 44 44 56
bcp-hipp-yRa1 55 46 45 22 22 24 40
bcp-msp 64 26 14 16 15 15 20
bcp-mtg 40 40 40 31 32 33 40
bcp-syn 74 32 39 34 36 36 40
CircuitTraceCompaction 4 4 4 4 4 4 4
HaplotypeAssembly 6 0 5 5 5 5 5
pbo-mqc 168 153 129 147 167 168 168
pbo-routing 15 15 15 15 15 15 15
PROTEIN INS 12 6 3 1 1 1 2
Total 497 372 352 317 341 345 390

(2.1 GHz with 64 GB of RAM) running Fedora Core 13 with a timeout of 1,800 seconds
(wall clock time).

The results were obtained by running each parallel solver on each instance for three
times. Similarly to what is done when analyzing randomized solvers, the median time
was taken into account. This means that an instance must be solved by at least two of
the three runs to be considered solved. We should note, however, that this measure is
more conservative than the one used in the SAT Race 2008 5 which is commonly used
by parallel SAT solvers [11].

Table 1 gives the number of partial MaxSAT instances from the industrial category
that were solved by sequential and parallel solvers. The sequential solvers considered
were QMaxSAT 6 (ranked 1st in the MaxSAT Evaluation 2010), pm2 [2] (ranked 2nd)
and wbo [18, 19] (ranked 3rd). Note that wbo is also our reference solver as the new
parallel algorithms were implemented on the top of wbo. SAT4J MAXSAT [14] and SAT4J
MAXSAT RES//CP were not evaluated since their performance is not comparable to the
remaining state-of-the-art partial MaxSAT solvers. For the 497 instances tested, SAT4J
MAXSAT 2.2.3 and SAT4J MAXSAT RES//CP can only solve 277 and 290 instances,
respectively.

The parallel solvers evaluated correspond to the different versions of pwbo. pwbo
is a parallel solver implemented on the top of wbo. pwbo 2T uses two threads accord-
ing to what is described in section 3, thus having one thread searching on the lower
bound value and another thread searching on the upper bound value. pwbo 4T and pwbo
4T-CNF use four threads according to what is described in section 4, thus having one
thread searching on the lower bound value and three threads searching on the upper
bound value. The difference between pwbo 4T and pwbo 4T-CNF is on the number
of threads that search on local and global upper bound values. Increasing the number
of threads that search on local upper bound values allows to reduce the search space
by finding new lower and upper bounds. On the other hand, increasing the number of

5 http://baldur.iti.uka.de/sat-race-2008/
6 http://www.maxsat.udl.cat/10/solvers/QMaxSat.pdf
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Fig. 1. Cactus plot with running times of solvers
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threads that search on the global upper bound increases the diversification of the search,
since those threads are searching using different strategies. pwbo 4T uses two threads to
search on local upper bound values and one thread to search on the global upper bound
value. On the other hand, pwbo 4T-CNF uses one thread to search on local upper bound
values and two threads to search on the global upper bound value with the different
strategies described in section 4.2. The objective function for partial MaxSAT instances
corresponds to a cardinality constraint, since all coefficients are 1. Therefore, pwbo
4T-CNF uses Sinz’s encoding [24] to translate the cardinality constraint into clauses.

Clearly, all versions of pwbo perform better than the sequential solver wbo. When
analyzing each benchmark family, one can conclude that the benefits obtained from
parallel solvers are not the same for all benchmarks families, although in general the
number of solved instances tends to increase for all families. There is a significant boost
when using two threads (pwbo T2), showing that a parallel search on the lower and
upper bounds makes the search mode efficient and solves more instances. When using
four threads the number of solved instances still increases. pwbo T4 shows that reducing
the search space by doing a local upper bound search allows solving more instances.
Another significant boost is given by the diversification of the search. Indeed, pwbo
T4-CNF with its combination of search diversification and search space reduction is
able to solve more instances than the best sequential solver (QMaxSAT), thus improving
the current state of the art.

Figure 1 contains a cactus plot with the running times of all the solvers for which
data was given in Table 1. With no doubt, the parallel versions of pwbo perform better
than wbo. Moreover, the best performing solver is pwbo T4-CNF that clearly outper-
forms all other solvers, including the best sequential solver QMaxSAT. Finally, Table 2
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Table 2. Speedup on the 312 instances solved by wbo and all pwbo solvers

Solver Time (s) Speedup
wbo 36,208.33 1.00
pwbo 2T 22,798.28 1.59
pwbo 4T 18,203.79 1.99
pwbo 4T-CNF 13,236.87 2.74

contains the speedup resulting from using pwbo, the parallel version of wbo. wbo is
compared against pwbo 2T, pwbo 4T and pwbo 4T-CNF. The results are conclusive. The
speedup increases as the number of threads increases, being almost 2 in pwbo 4T when
local upper bound search is used and close to 3 in pwbo 4T-CNF when diversification of
the search is combined with reduction of the search space.

6 Conclusions

This paper introduces new parallel algorithms for Boolean optimization. This work was
in part motivated by the recent success of parallel SAT algorithms, also taking into ac-
count that parallel algorithms for Boolean optimization are scarce. Two new algorithms
were proposed. The first algorithm uses two threads, one searching on the lower bound
value and the other one searching on the upper bound value of the objective function.
The second algorithm uses an additional number of threads to search on local upper
bound values. Moreover, this algorithm is further improved by increasing the diver-
sification of the search through different search strategies on the global upper bound.
Experimental results, obtained on a significant number of problem instances, clearly
show the efficiency of the new proposed algorithms.

Due to the success of our approach in partial MaxSAT, we plan to further extend
our evaluation to weighted Boolean optimization, as future work. Moreover, we pro-
pose to further increase the diversification of the search by implementing a portfolio of
complementary algorithms. The portfolio of algorithms can then be used to search on
local and global upper bounds thus increasing the efficiency of the solver. Finally, an
experimental study of the scalability of our approach should also be performed.

Acknowledgement. This work was partially supported by FCT under research projects
BSOLO (PTDC/EIA/76572/2006) and iExplain (PTDC/EIA-CCO/102077/2008), and
INESC-ID multiannual funding through the PIDDAC program funds.

References

1. F. Aloul, A. Ramani, I. Markov, and K. A. Sakallah. Generic ILP versus specialized 0-1 ILP:
An update. In International Conference on Computer-Aided Design, pages 450–457, 2002.
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