Parallel Search for Boolean Optimization

Ruben Martins Vasco Manquinho Inês Lynce

INESC-ID/IST, Technical University of Lisbon, Portugal

July 17, 2011

Motivation

- Multicore processors are now predominant;
- In the last years, several parallel SAT solvers have emerged;
- Parallel approaches boost the performance of sequential solvers;
- However, parallel approaches are scarce for Boolean optimization;
- Therefore, we propose new parallel algorithms for Boolean optimization.

Outline

1 Definitions

- 2 Algorithms for Boolean Optimization
- ③ Parallel Search for Boolean Optimization
- 4 Clause Sharing
- **5** Experimental Results
- 6 Conclusions

Boolean Satisfiability (SAT)

- A literal l_i is either a Boolean variable x_i or \overline{x}_i ;
- A clause $\omega = \bigvee_i l_i$: e.g. $\omega_1 = (x_1); \omega_2 = (\overline{x}_1 \lor x_2 \lor x_3); \omega_3 = (\overline{x}_2 \lor \overline{x}_3).$

• CNF formula
$$\varphi = \bigwedge_j \omega_j$$
:
e.g. $\varphi = (\omega_1 \land \omega_2 \land \omega_3)$.

SAT problem is to decide if φ is satisfiable:
 e.g. φ is satisfied when x₁ = 1, x₂ = 1 and x₃ = 0.

Maximum Satisfiability (MaxSAT) Problem

Given a CNF formula φ , find an assignment to problem variables that *maximizes the number of satisfied clauses* in φ (or minimizes the number of unsatisfied clauses).

Partial MaxSAT Problem

Given a conjunction of two CNF formulas φ_h and φ_s , find an assignment to problem variables that *satisfies all hard clauses* (φ_h) and *maximizes the number of satisfied soft clauses* (φ_s).

Pseudo-Boolean Optimization (PBO)

minimize

subject t

$$\begin{array}{ll} \text{hize} & \sum\limits_{j=1}^n c_j \cdot x_j \\ \text{ct to} & \sum\limits_{j=1}^n a_{ij} \cdot l_j \geq b_i, \\ & l_j \in \{x_j, \overline{x}_j\}, x_j \in \{0, 1\}, \\ & a_{ij}, b_i, c_j \in \mathbb{N}_0^+ \end{array}$$

Encode MaxSAT to PBO

- For each *hard* clause $(l_1 \lor l_2 \lor \cdots \lor l_k)$
 - define a pseudo-Boolean constraint as $l_1 + l_2 + \cdots + l_k \ge 1$
- For each *weighted soft clause* (ω, c) where $\omega = (l_1 \lor l_2 \lor \cdots \lor l_k)$
 - define a PB constraint with a new relaxation variable r_i $r_i + l_1 + l_2 + \dots + l_k \ge 1$
 - add $c \cdot r_i$ to the objective function

Encode MaxSAT to PBO

Weighted Partial MaxSAT instance

$$\begin{aligned} \varphi_h &= \{ (x_1 \lor x_2 \lor x_3), (\overline{x}_2 \lor \overline{x}_3) \} \\ \varphi_s &= \{ (\overline{x}_1, 2), (x_1 \lor \overline{x}_2, 3), (\overline{x}_1 \lor x_3, 2) \} \end{aligned}$$

Corresponding PBO instance

$$\begin{array}{lll} \mbox{minimize} & 2r_1 + 3r_2 + 2r_3 \\ \mbox{subject to} & x_1 + x_2 + x_3 \geq 1 \\ & & \overline{x}_2 + \overline{x}_3 \geq 1 \\ & & r_1 + \overline{x}_1 \geq 1 \\ & & r_2 + x_1 + \overline{x}_2 \geq 1 \\ & & r_3 + \overline{x}_1 + x_3 \geq 1 \end{array}$$

Algorithms for Boolean Optimization

Unsatisfiability-based algorithm for MaxSAT (lower bound value search):

- 1 Identify unsatisfiable sub-formula of an UNSAT formula:
 - SAT (PB) solver able to generate an UNSAT core.
- 2 For each unsatisfiable sub-formula φ_C :
 - Relax all (soft) clauses in φ_C by adding a new relaxation variable to each clause
 - Add a new constraint such that at most 1 relaxation variable is assigned value 1
- When the resulting CNF formula is SAT, the solver terminates;
- 4 Otherwise, go back to 1.

Algorithms for Boolean Optimization

Linear search for PBO on the upper bound values of the objective function:

- 1 Search for a solution to the set of constraints;
- 2 Whenever a solution is found:
 - · Update the upper bound value;
 - Add a PB constraint such that all solutions with a higher value of the objective function are discarded;
 - Go back to 1;
- 3 Otherwise, the resulting PBO formula is UNSAT and the solver terminates:
 - The optimum value is given by the last recorded solution.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - The optimum value is found when:
 - · LB or UB thread terminates with a solution;
 - or when LB value = UB value.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - The optimum value is found when:
 - · LB or UB thread terminates with a solution;
 - or when LB value = UB value.

 T_0 returns **UNSAT**, a new lower bound has been found.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - The optimum value is found when:
 - · LB or UB thread terminates with a solution;
 - or when LB value = UB value.

 T_1 returns **SAT**, a new upper bound has been found.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - The optimum value is found when:
 - · LB or UB thread terminates with a solution;
 - or when LB value = UB value.

 T_0 returns **UNSAT**, a new lower bound has been found.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - The optimum value is found when:
 - · LB or UB thread terminates with a solution;
 - or when LB value = UB value.

 T_1 returns **SAT**, a new upper bound has been found.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - The optimum value is found when:
 - · LB or UB thread terminates with a solution;
 - or when LB value = UB value.

LB value = UB value, hence the search terminates.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - (n-2) threads search on local UB (T_2, \ldots, T_n) ;
 - The optimum value is found when:
 - · LB or UB thread terminates with a solution;
 - or when LB value = UB value.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - (n-2) threads search on local UB (T_2, \ldots, T_n) ;
 - The optimum value is found when:
 - · LB or UB thread terminates with a solution;
 - or when LB value = UB value.

 T_0 returns **UNSAT**, a new lower bound has been found.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - (n-2) threads search on local UB (T_2, \ldots, T_n) ;
 - The optimum value is found when:
 - LB or UB thread terminates with a solution;
 - or when LB value = UB value.

 T_3 returns **SAT**, a new upper bound value has been found.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - (n-2) threads search on local UB (T_2, \ldots, T_n) ;
 - The optimum value is found when:
 - LB or UB thread terminates with a solution;
 - or when LB value = UB value.

 T_3 gets a new local upper bound value.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - (n-2) threads search on local UB (T_2, \ldots, T_n) ;
 - The optimum value is found when:
 - LB or UB thread terminates with a solution;
 - or when LB value = UB value.

 T_1 updates its upper bound value.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - (n-2) threads search on local UB (T_2, \ldots, T_n) ;
 - The optimum value is found when:
 - · LB or UB thread terminates with a solution;
 - or when LB value = UB value.

 T_2 returns **UNSAT**, a new lower bound value has been found.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - (n-2) threads search on local UB (T_2, \ldots, T_n) ;
 - The optimum value is found when:
 - LB or UB thread terminates with a solution;
 - or when LB value = UB value.

			LB			UB					
	T_0			T_3	T_2	T_1					
0	1	2	3	4	5	6	7	8	9	10	11

 T_2 gets a new local upper bound value.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - (n-2) threads search on local UB (T_2, \ldots, T_n) ;
 - The optimum value is found when:
 - LB or UB thread terminates with a solution;
 - or when LB value = UB value.

 T_1 returns **SAT**, a new upper bound value has been found.

- Parallel Search:
 - 1 thread searches on the LB (T_0) ;
 - 1 thread searches on the UB (T_1) ;
 - (n-2) threads search on local UB (T_2, \ldots, T_n) ;
 - The optimum value is found when:
 - · LB or UB thread terminates with a solution;
 - or when LB value = UB value.

LB value = UB value, hence the search terminates.

Diversification of the Search

- Use two threads to search on the upper bound (T_1, T_2) ;
- Different strategies for each thread when updating the upper bound:
 - *T*₁ adds a PB constraint to limit the value of the objective function;
 - T₂ uses the *sequential encoding* to translate the PB constraint into clauses.
- The approaches are equivalent, but the search space is searched differently.

Soft and Hard Learned Clauses

If the conflict which gave origin into a new clause only involves hard clauses, then the learned clause is said to be a *hard learned clause*. Otherwise, it is said to be a *soft learned clause*.

Thread Bound Constraint

The PB constraint that is iteratively added to limit the value of the objective function is named *thread bound constraint*.

Example

- Local UB value: 6
- Thread Bound Constraint: $\sum_{j=1}^{n} c_j \cdot x_j < 6$

Clause Sharing

Local Constraint

A thread bound constraint is a *local constraint*. If a conflict which gave origin into a new clause involves a local constraint, then the learned clause is also a *local constraint*.

Example

- T₂ local UB value: 3
 - Thread Bound Constraint: $\sum_{j=1}^{n} c_j \cdot x_j < 3$
 - $-T_2$ learns a local constraint ω_2
- T₃ local UB value: 6
 - Thread Bound Constraint: $\sum_{j=1}^{n} c_j \cdot x_j < 6$
 - $-T_3$ learns a local constraint ω_3
- ω_3 is always valid in T_2 , however ω_2 may not be valid in T_3

Learned clauses created by the different algorithms

Learned Clause	Algorithms				
	LB	Local UB	UB		
Soft	\checkmark				
Hard	\checkmark	\checkmark	\checkmark		
Local		\checkmark			
w/ encoding vars			\checkmark		

Learned clauses *not shared* between the different algorithms

- Soft Learned Clauses
- Learned Clauses with Encoding Variables

Learned clauses *shared* between the different algorithms

- Hard Learned Clauses
- Local Constraints
 - Shared only between UB algorithms and if: the upper bound of the importing thread is *smaller or equal* than the upper bound of the exporting thread.

Parallel Optimization Solvers

Solvers	# Threads				
0010613	LB	local UB	UB		
pwbo 2T	1	0	1		
pwbo 4T	1	2	1		
pwbo 4T-CNF	1	1	2		

- Clause sharing is implemented on all solvers;
- Clauses that have 5 or less literals are shared:
 - this cutoff is dynamically changed during search (e.g. ManySAT);
 - clauses with literal block distance 2 are also shared (e.g. SArTagnan).
- · Learned clauses are exported at each conflict;
- · Shared clauses are imported at each restart.

Experimental Results

- Benchmarks: 497 partial MaxSAT instances from the industrial category of the MaxSAT Evaluation 2010;
- AMD Opteron 6172 processors (2.1 GHz with 64 GB of RAM) running Fedora Core 13;
- Timeout: 1,800 seconds (wall clock time);
- pwbo is a non-deterministic parallel solver:
 - Each version of pwbo was run 3 times on each instance;
 - The runtimes are the median of the runs;
 - An instance is solved if it can be solved in at least 2 runs.

Number of industrial partial MaxSAT instances solved by sequential and parallel solvers

#1	QMaxSAT	pm2	who	pwbo			
<i>#</i> 1			0000	2T	4T	4T-CNF	
497	372	352	317	341	345	390	

Experimental Results

Cactus plot with running times of solvers

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 17/20

Speedup on the instances solved by wbo and all pwbo solvers

Solver	Time (s)	Speedup	
wbo	36,208.33	1.00	
pwbo 2T	22,798.28	1.59	
pwbo 4T	18,203.79	1.99	
pwbo 4T-CNF	13,236.87	2.74	

Conclusions

- · Parallel algorithms for Boolean optimization are scarce;
- New algorithms for parallel Boolean optimization have been proposed:
 - pwbo 2T: searches on the lower and upper bound values
 searching in both directions increase the efficiency of the solver
 - pwbo 4T: also searches on local upper bound values
 constant updates on the bound values reduce the search space
 - pwbo 4T-CNF: two threads search on the upper bound value
 different strategies increase the diversification of the search
 - · Clause sharing is implemented on all parallel solvers
 - clause sharing improve the performance of the solver

- Implement a portfolio of complementary algorithms:
 - Increase diversification of the lower and upper bound search;
 - Improve the effectiveness of the local upper bound search;
 - Change to a portfolio approach when the interval between the lower and upper bound becomes small.
- Study the scalability of our approach;
- On-the-fly clause sharing.