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Motivation

• Multicore processors are now predominant;
• In the last years, several parallel SAT solvers have

emerged;
• Parallel approaches boost the performance of sequential

solvers;
• However, parallel approaches are scarce for Boolean

optimization;
• Therefore, we propose new parallel algorithms for Boolean

optimization.
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Boolean Satisfiability

Boolean Satisfiability (SAT)

• A literal li is either a Boolean variable xi or xi;
• A clause ω =

∨
i li:

e.g. ω1 = (x1); ω2 = (x1 ∨ x2 ∨ x3); ω3 = (x2 ∨ x3).
• CNF formula ϕ =

∧
j ωj :

e.g. ϕ = (ω1 ∧ ω2 ∧ ω3).
• SAT problem is to decide if ϕ is satisfiable:

e.g. ϕ is satisfied when x1 = 1, x2 = 1 and x3 = 0.
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Boolean Optimization

Maximum Satisfiability (MaxSAT) Problem
Given a CNF formula ϕ, find an assignment to problem
variables that maximizes the number of satisfied clauses in
ϕ (or minimizes the number of unsatisfied clauses).

Partial MaxSAT Problem
Given a conjunction of two CNF formulas ϕh and ϕs, find an
assignment to problem variables that satisfies all hard
clauses (ϕh) and maximizes the number of satisfied soft
clauses (ϕs).
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Boolean Optimization

Pseudo-Boolean Optimization (PBO)

minimize
n∑

j=1
cj · xj

subject to
n∑

j=1
aij · lj ≥ bi,

lj ∈ {xj , xj}, xj ∈ {0, 1},
aij , bi, cj ∈ N+

0
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Encode MaxSAT to PBO

• For each hard clause (l1 ∨ l2 ∨ · · · ∨ lk)
• define a pseudo-Boolean constraint as l1 + l2 + · · ·+ lk ≥ 1

• For each weighted soft clause (ω, c) where
ω = (l1 ∨ l2 ∨ · · · ∨ lk)

• define a PB constraint with a new relaxation variable ri

ri + l1 + l2 + · · ·+ lk ≥ 1
• add c · ri to the objective function
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Encode MaxSAT to PBO

Weighted Partial MaxSAT instance

ϕh = {(x1 ∨ x2 ∨ x3), (x2 ∨ x3)}
ϕs = {(x1, 2), (x1 ∨ x2, 3), (x1 ∨ x3, 2)}

Corresponding PBO instance

minimize 2r1 + 3r2 + 2r3

subject to x1 + x2 + x3 ≥ 1
x2 + x3 ≥ 1
r1 + x1 ≥ 1

r2 + x1 + x2 ≥ 1
r3 + x1 + x3 ≥ 1
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Algorithms for Boolean Optimization

Unsatisfiability-based algorithm for MaxSAT (lower bound value
search):

1 Identify unsatisfiable sub-formula of an UNSAT formula:
• SAT (PB) solver able to generate an UNSAT core.

2 For each unsatisfiable sub-formula ϕC :
• Relax all (soft) clauses in ϕC by adding a new relaxation

variable to each clause
• Add a new constraint such that at most 1 relaxation variable

is assigned value 1

3 When the resulting CNF formula is SAT, the solver
terminates;

4 Otherwise, go back to 1.
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Algorithms for Boolean Optimization

Linear search for PBO on the upper bound values of the
objective function:

1 Search for a solution to the set of constraints;
2 Whenever a solution is found:

• Update the upper bound value;
• Add a PB constraint such that all solutions with a higher

value of the objective function are discarded;
• Go back to 1;

3 Otherwise, the resulting PBO formula is UNSAT and the
solver terminates:

• The optimum value is given by the last recorded solution.
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Parallel Search (2 Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

T0 T1

LB UB
0 1 2 3 4 5 6 7 8 9 10 11
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Parallel Search (2 Threads)
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• 1 thread searches on the LB (T0);
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• LB or UB thread terminates with a solution;
• or when LB value = UB value.

T0 ; T1

LB ; UB
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LB value = UB value, hence the search terminates.
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Parallel Search (n Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• (n− 2) threads search on local UB (T2, . . . , Tn);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

LB UB
T0 T2 T3 T1

0 1 2 3 4 5 6 7 8 9 10 11
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Parallel Search (n Threads)
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• The optimum value is found when:

• LB or UB thread terminates with a solution;
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LB UB
T0 T2 T3 T1
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Parallel Search (n Threads)
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LB UB
T0 T2 T3 T1

0 1 2 3 4 5 6 7 8 9 10 11

T1 updates its upper bound value.
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Parallel Search (n Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• (n− 2) threads search on local UB (T2, . . . , Tn);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

LB UB
T0 T2 T3 T1

0 1 2 3 4 5 6 7 8 9 10 11

T2 returns UNSAT, a new lower bound value has been found.
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T1 returns SAT, a new upper bound value has been found.
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Diversification of the Search

• Use two threads to search on the upper bound (T1, T2);
• Different strategies for each thread when updating the

upper bound:
• T1 adds a PB constraint to limit the value of the objective

function;
• T2 uses the sequential encoding to translate the PB

constraint into clauses.

• The approaches are equivalent, but the search space is
searched differently.
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Clause Sharing

Soft and Hard Learned Clauses
If the conflict which gave origin into a new clause only involves
hard clauses, then the learned clause is said to be a hard
learned clause. Otherwise, it is said to be a soft learned
clause.
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Clause Sharing

Thread Bound Constraint
The PB constraint that is iteratively added to limit the value of
the objective function is named thread bound constraint.

Example

• Local UB value: 6

• Thread Bound Constraint:
n∑

j=1
cj · xj < 6
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Clause Sharing

Local Constraint
A thread bound constraint is a local constraint. If a conflict
which gave origin into a new clause involves a local constraint,
then the learned clause is also a local constraint.

Example

• T2 local UB value: 3
− Thread Bound Constraint:

nP
j=1

cj · xj < 3

− T2 learns a local constraint ω2

• T3 local UB value: 6
− Thread Bound Constraint:

nP
j=1

cj · xj < 6

− T3 learns a local constraint ω3

• ω3 is always valid in T2, however ω2 may not be valid in T3
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Clause Sharing

Learned clauses created by the different algorithms

Learned Clause
Algorithms

LB Local UB UB
Soft X
Hard X X X
Local X
w/ encoding vars X
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Clause Sharing

Learned clauses not shared between the different algorithms
• Soft Learned Clauses
• Learned Clauses with Encoding Variables

Learned clauses shared between the different algorithms

• Hard Learned Clauses
• Local Constraints

• Shared only between UB algorithms and if:
the upper bound of the importing thread is smaller or
equal than the upper bound of the exporting thread.
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Parallel Optimization Solvers

Solvers
# Threads

LB local UB UB
pwbo 2T 1 0 1
pwbo 4T 1 2 1
pwbo 4T-CNF 1 1 2

• Clause sharing is implemented on all solvers;
• Clauses that have 5 or less literals are shared:
− this cutoff is dynamically changed during search (e.g. ManySAT);
− clauses with literal block distance 2 are also shared (e.g. SArTagnan).

• Learned clauses are exported at each conflict;
• Shared clauses are imported at each restart.
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Experimental Results

• Benchmarks: 497 partial MaxSAT instances from the
industrial category of the MaxSAT Evaluation 2010;

• AMD Opteron 6172 processors (2.1 GHz with 64 GB of
RAM) running Fedora Core 13;

• Timeout: 1,800 seconds (wall clock time);
• pwbo is a non-deterministic parallel solver:

• Each version of pwbo was run 3 times on each instance;
• The runtimes are the median of the runs;
• An instance is solved if it can be solved in at least 2 runs.
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Experimental Results

Number of industrial partial MaxSAT instances solved by
sequential and parallel solvers

#I QMaxSAT pm2 wbo
pwbo

2T 4T 4T-CNF

497 372 352 317 341 345 390
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Experimental Results
Cactus plot with running times of solvers
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Experimental Results

Speedup on the instances solved by wbo and all pwbo solvers

Solver Time (s) Speedup
wbo 36,208.33 1.00
pwbo 2T 22,798.28 1.59
pwbo 4T 18,203.79 1.99
pwbo 4T-CNF 13,236.87 2.74
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Conclusions

• Parallel algorithms for Boolean optimization are scarce;
• New algorithms for parallel Boolean optimization have

been proposed:
• pwbo 2T: searches on the lower and upper bound values
− searching in both directions increase the efficiency of the solver

• pwbo 4T: also searches on local upper bound values
− constant updates on the bound values reduce the search space

• pwbo 4T-CNF: two threads search on the upper bound value
− different strategies increase the diversification of the search

• Clause sharing is implemented on all parallel solvers
− clause sharing improve the performance of the solver
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Research Directions

• Implement a portfolio of complementary algorithms:
• Increase diversification of the lower and upper bound

search;
• Improve the effectiveness of the local upper bound search;
• Change to a portfolio approach when the interval between

the lower and upper bound becomes small.

• Study the scalability of our approach;
• On-the-fly clause sharing.
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