Ruben Martins Vasco Manquinho Inés Lynce

INESC-ID/IST, Technical University of Lisbon, Portugal

July 17, 2011

+ Multicore processors are now predominant;

* In the last years, several parallel SAT solvers have
emerged;

- Parallel approaches boost the performance of sequential
solvers;

* However, parallel approaches are scarce for Boolean
optimization;

* Therefore, we propose new parallel algorithms for Boolean
optimization.

@ Definitions

@ Algorithms for Boolean Optimization

@ Parallel Search for Boolean Optimization
@ Clause Sharing

® Experimental Results

® Conclusions

Boolean Satisfiability (SAT)

- A literal [; is either a Boolean variable z; or z;;
* Aclause w =/, ;:
e.0. wy = (z1);ws = (T1 Vo V a3);ws = (T2 V T3).
* CNF formula ¢ = /\; w;:
e.g. ¢ = (w1 Awa Aws).
+ SAT problem is to decide if is satisfiable:
e.g. is satisfied when z; =1, x5 = 1 and z3 = 0.

Maximum Satisfiability (MaxSAT) Problem

Given a CNF formula ¢, find an assignment to problem
variables that maximizes the number of satisfied clauses in
o (or minimizes the number of unsatisfied clauses).

Partial MaxSAT Problem

Given a conjunction of two CNF formulas ¢; and ¢, find an
assignment to problem variables that satisfies all hard
clauses () and maximizes the number of satisfied soft
clauses (py).

Pseudo-Boolean Optimization (PBO)
minimize Enj Cj - Tj
j=1

J
l; € {ij,fj},.%'j S {0, 1},
aij,bi,cj € Na_

subject to agj - lj > by,
=1

+ For each hard clause (I, Viy V- V1)
- define a pseudo-Boolean constraintas Iy + 1o + -+ > 1
+ For each weighted soft clause (w,c) where
w = (ll\/lg\/--'\/lk)
- define a PB constraint with a new relaxation variable r;
ritl+lp o+l > 1
+ add ¢ - r; to the objective function

Weighted Partial MaxSAT instance

©h :{(:L‘l \/l‘g\/l‘g),(TQ \/33)}
©s ={(51,2),(.T1\/52,3),(51\/.’1,‘3,2)}

Corresponding PBO instance

minimize 2r1 + 3r9 + 213
subjectto z; + a9+ 23 >1
To+7T3>1

ri+7T12>1

ro+x1+To > 1

r3+x +xz3>1

Unsatisfiability-based algorithm for MaxSAT (lower bound value
search):

@ Identify unsatisfiable sub-formula of an UNSAT formula:
+ SAT (PB) solver able to generate an UNSAT core.
@ For each unsatisfiable sub-formula ¢

- Relax all (soft) clauses in ¢ by adding a new relaxation
variable to each clause

+ Add a new constraint such that at most 1 relaxation variable
is assigned value 1

@ When the resulting CNF formula is SAT, the solver
terminates;

@ Otherwise, go back to 1.

Linear search for PBO on the upper bound values of the
objective function:

@ Search for a solution to the set of constraints;
@ Whenever a solution is found:

+ Update the upper bound value;

+ Add a PB constraint such that all solutions with a higher
value of the objective function are discarded;

+ Go back to 1;

@ Otherwise, the resulting PBO formula is UNSAT and the
solver terminates:

+ The optimum value is given by the last recorded solution.

- Parallel Search:

- 1 thread searches on the LB (Tp);

1 thread searches on the UB (73);

 The optimum value is found when:
* LB or UB thread terminates with a solution;
* or when LB value = UB value.

- Parallel Search:

1 thread searches on the LB (7p);

+ 1 thread searches on the UB (77);

+ The optimum value is found when:
* LB or UB thread terminates with a solution;
> or when LB value = UB value.

2 I O I I R R
L (.l | | | 1 | 1 | | [UB]
(0] 1]2][3]4]5[6]7|8]9]10] 11 |

T, returns UNSAT, a new lower bound has been found.

- Parallel Search:

1 thread searches on the LB (7p);

+ 1 thread searches on the UB (77);

+ The optimum value is found when:
* LB or UB thread terminates with a solution;
* or when LB value = UB value.

I O A I ' O R
L (.l | | | [JuB] | | | |
(0] 1 [2[3]4]|5]6] 7 [8[9]10] 11|

T, returns SAT, a new upper bound has been found.

- Parallel Search:

1 thread searches on the LB (7p);

+ 1 thread searches on the UB (77);

+ The optimum value is found when:
* LB or UB thread terminates with a solution;
> or when LB value = UB value.

T, returns UNSAT, a new lower bound has been found.

- Parallel Search:

1 thread searches on the LB (7p);

+ 1 thread searches on the UB (77);

+ The optimum value is found when:
* LB or UB thread terminates with a solution;
* or when LB value = UB value.

T, returns SAT, a new upper bound has been found.

- Parallel Search:

1 thread searches on the LB (Tp);

+ 1 thread searches on the UB (77);

* The optimum value is found when:
* LB or UB thread terminates with a solution;
= or when LB value = UB value.

LB value = UB value, hence the search terminates.

- Parallel Search:

- 1 thread searches on the LB (Tp);
- 1 thread searches on the UB (73);
* (n — 2) threads search on local UB (15, ...,T,);
 The optimum value is found when:
* LB or UB thread terminates with a solution;
* or when LB value = UB value.

- Parallel Search:

1 thread searches on the LB (7p);
+ 1 thread searches on the UB (77);
* (n — 2) threads search on local UB (1%, ..., T},);
+ The optimum value is found when:
* LB or UB thread terminates with a solution;
* or when LB value = UB value.

Lt [[11 [[[[[uB]
| [o] [| | [B] [[[7]
(0] 1]2][3|4]|5[6]7[8]9]10] 11 |

T, returns UNSAT, a new lower bound has been found.

- Parallel Search:

1 thread searches on the LB (Tp);
- 1 thread searches on the UB (77);
* (n — 2) threads search on local UB (1%, ..., T},);
+ The optimum value is found when:
* LB or UB thread terminates with a solution;
* or when LB value = UB value.

L (.l [[1 Jusl | [[[|
| [B[[T | B | | | |7
[0 1]2][3|4]|5] 6 |7][8[9]10] 11|

T;5 returns SAT, a new upper bound value has been found.

- Parallel Search:

1 thread searches on the LB (Tp);
- 1 thread searches on the UB (77);
* (n — 2) threads search on local UB (1%, ..., T},);
+ The optimum value is found when:
* LB or UB thread terminates with a solution;
* or when LB value = UB value.

T5 gets a new local upper bound value.

- Parallel Search:

1 thread searches on the LB (Tp);
- 1 thread searches on the UB (77);
* (n — 2) threads search on local UB (1%, ..., T},);
+ The optimum value is found when:
* LB or UB thread terminates with a solution;
* or when LB value = UB value.

T, updates its upper bound value.

- Parallel Search:

1 thread searches on the LB (7p);
+ 1 thread searches on the UB (77);
* (n — 2) threads search on local UB (1%, ..., T},);
+ The optimum value is found when:
* LB or UB thread terminates with a solution;
* or when LB value = UB value.

T, returns UNSAT, a new lower bound value has been found.

- Parallel Search:

1 thread searches on the LB (Tp);
- 1 thread searches on the UB (77);
* (n — 2) threads search on local UB (1%, ..., T},);
+ The optimum value is found when:
* LB or UB thread terminates with a solution;
* or when LB value = UB value.

LB

C
cnﬁw

L 1 [(8] | JuB] [[| | |
| [To] | [B[T[T] [| | [|
(0f1]2[8]4]5]6[7[8[9][10]11]

T, gets a new local upper bound value.

- Parallel Search:

1 thread searches on the LB (Tp);
- 1 thread searches on the UB (77);
* (n — 2) threads search on local UB (1%, ..., T},);
+ The optimum value is found when:
* LB or UB thread terminates with a solution;
* or when LB value = UB value.

T, returns SAT, a new upper bound value has been found.

+ Parallel Search:

1 thread searches on the LB (Tp);
- 1 thread searches on the UB (7});
+ (n — 2) threads search on local UB (1%, ..., T},);
+ The optimum value is found when:
* LB or UB thread terminates with a solution;
* or when LB value = UB value.

LB value = UB value, hence the search terminates.

+ Use two threads to search on the upper bound (71, T3);
- Different strategies for each thread when updating the
upper bound:
+ Ty adds a PB constraint to limit the value of the objective
function;
+ T, uses the sequential encoding to translate the PB
constraint into clauses.
+ The approaches are equivalent, but the search space is
searched differently.

Soft and Hard Learned Clauses

If the conflict which gave origin into a new clause only involves
hard clauses, then the learned clause is said to be a hard
learned clause. Otherwise, it is said to be a soft learned
clause.

Thread Bound Constraint
The PB constraint that is iteratively added to limit the value of
the objective function is named thread bound constraint.

Example

* Local UB value: 6

* Thread Bound Constraint:) ¢;-z; <6
j=1

Local Constraint

A thread bound constraint is a local constraint. If a conflict
which gave origin into a new clause involves a local constraint,
then the learned clause is also a local constraint.

Example

* Ty local UB value: 3
— Thread Bound Constraint: > ¢; - z; < 3
j=1
— T> learns a local constraint w-

« T3 local UB value: 6
— Thread Bound Constraint: > ¢; - z; < 6
=1
— T5 learns a local constraint ws

* wg is always valid in T, however ws may not be valid in 73

Learned clauses created by the different algorithms

Algorithms
Learned Clause B | Lgcal UB | UB
Soft v
Hard v v v
Local v
w/ encoding vars v

Learned clauses not shared between the different algorithms
- Soft Learned Clauses
- Learned Clauses with Encoding Variables

Learned clauses shared between the different algorithms

- Hard Learned Clauses
- Local Constraints

+ Shared only between UB algorithms and if:
the upper bound of the importing thread is smaller or
equal than the upper bound of the exporting thread.

Solvers # Threads

LB | local UB | UB
pwbo 2T 1 0 1
pwbo 4T 1 2 1
pwbo 4T-CNF 1 1 2

+ Clause sharing is implemented on all solvers;

+ Clauses that have 5 or less literals are shared:
— this cutoff is dynamically changed during search (e.g. ManySAT);
— clauses with literal block distance 2 are also shared (e.g. SArTagnan).

+ Learned clauses are exported at each conflict;
- Shared clauses are imported at each restart.

+ Benchmarks: 497 partial MaxSAT instances from the
industrial category of the MaxSAT Evaluation 2010;

AMD Opteron 6172 processors (2.1 GHz with 64 GB of
RAM) running Fedora Core 13;

» Timeout: 1,800 seconds (wall clock time);

* pwbo is a non-deterministic parallel solver:

+ Each version of pwbo was run 3 times on each instance;
- The runtimes are the median of the runs;
+ An instance is solved if it can be solved in at least 2 runs.

Number of industrial partial MaxSAT instances solved by
sequential and parallel solvers

pwbo
#l QMaxSAT | pm2 wbo 5T | 4T | 4TCNF
| 497 | 372 352| 317 | 341 | 345| 390 |

Cactus plot with running times of solvers

1800
whbo —v— .
Wbo T2 ----e--— Y !
1600 - Ewbo T4 oo o ¢ .
PM2 v T . '
1400 | QMaxSAT --e-- A d C
pwhbo T4-CNF -~ =~ [i :
g 7 ‘ ,
2 1200 - : : |
g i
) :
2 4000 .
o
£
% 800 i
[5}
S
o
= 600 i
z
400 i

340 360 380 400

260 280 300 320
instances

Speedup on the instances solved by wbo and all pwbo solvers

| Solver | Time (s) | Speedup |
wbo 36,208.33 1.00
pwbo 2T 22,798.28 1.59
pwbo 4T 18,203.79 1.99
pwbo 4T-CNF 13,236.87 2.74

+ Parallel algorithms for Boolean optimization are scarce;

* New algorithms for parallel Boolean optimization have
been proposed:

pwbo 2T: searches on the lower and upper bound values
— searching in both directions increase the efficiency of the solver

pwbo 4T: also searches on local upper bound values
— constant updates on the bound values reduce the search space

pwbo 4T-CNF: two threads search on the upper bound value
— different strategies increase the diversification of the search

Clause sharing is implemented on all parallel solvers
— clause sharing improve the performance of the solver

+ Implement a portfolio of complementary algorithms:
+ Increase diversification of the lower and upper bound
search;
+ Improve the effectiveness of the local upper bound search;
- Change to a portfolio approach when the interval between
the lower and upper bound becomes small.

+ Study the scalability of our approach;
+ On-the-fly clause sharing.

