
Parallel Search for
Boolean Optimization

Ruben Martins Vasco Manquinho Inês Lynce

INESC-ID/IST, Technical University of Lisbon, Portugal

July 17, 2011

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 1/20

Motivation

• Multicore processors are now predominant;
• In the last years, several parallel SAT solvers have

emerged;
• Parallel approaches boost the performance of sequential

solvers;
• However, parallel approaches are scarce for Boolean

optimization;
• Therefore, we propose new parallel algorithms for Boolean

optimization.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 2/20

Outline

1 Definitions

2 Algorithms for Boolean Optimization

3 Parallel Search for Boolean Optimization

4 Clause Sharing

5 Experimental Results

6 Conclusions

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 3/20

Boolean Satisfiability

Boolean Satisfiability (SAT)

• A literal li is either a Boolean variable xi or xi;
• A clause ω =

∨
i li:

e.g. ω1 = (x1); ω2 = (x1 ∨ x2 ∨ x3); ω3 = (x2 ∨ x3).
• CNF formula ϕ =

∧
j ωj :

e.g. ϕ = (ω1 ∧ ω2 ∧ ω3).
• SAT problem is to decide if ϕ is satisfiable:

e.g. ϕ is satisfied when x1 = 1, x2 = 1 and x3 = 0.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 4/20

Boolean Optimization

Maximum Satisfiability (MaxSAT) Problem
Given a CNF formula ϕ, find an assignment to problem
variables that maximizes the number of satisfied clauses in
ϕ (or minimizes the number of unsatisfied clauses).

Partial MaxSAT Problem
Given a conjunction of two CNF formulas ϕh and ϕs, find an
assignment to problem variables that satisfies all hard
clauses (ϕh) and maximizes the number of satisfied soft
clauses (ϕs).

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 5/20

Boolean Optimization

Pseudo-Boolean Optimization (PBO)

minimize
n∑

j=1
cj · xj

subject to
n∑

j=1
aij · lj ≥ bi,

lj ∈ {xj , xj}, xj ∈ {0, 1},
aij , bi, cj ∈ N+

0

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 5/20

Encode MaxSAT to PBO

• For each hard clause (l1 ∨ l2 ∨ · · · ∨ lk)
• define a pseudo-Boolean constraint as l1 + l2 + · · ·+ lk ≥ 1

• For each weighted soft clause (ω, c) where
ω = (l1 ∨ l2 ∨ · · · ∨ lk)

• define a PB constraint with a new relaxation variable ri

ri + l1 + l2 + · · ·+ lk ≥ 1
• add c · ri to the objective function

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 6/20

Encode MaxSAT to PBO

Weighted Partial MaxSAT instance

ϕh = {(x1 ∨ x2 ∨ x3), (x2 ∨ x3)}
ϕs = {(x1, 2), (x1 ∨ x2, 3), (x1 ∨ x3, 2)}

Corresponding PBO instance

minimize 2r1 + 3r2 + 2r3

subject to x1 + x2 + x3 ≥ 1
x2 + x3 ≥ 1
r1 + x1 ≥ 1

r2 + x1 + x2 ≥ 1
r3 + x1 + x3 ≥ 1

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 6/20

Algorithms for Boolean Optimization

Unsatisfiability-based algorithm for MaxSAT (lower bound value
search):

1 Identify unsatisfiable sub-formula of an UNSAT formula:
• SAT (PB) solver able to generate an UNSAT core.

2 For each unsatisfiable sub-formula ϕC :
• Relax all (soft) clauses in ϕC by adding a new relaxation

variable to each clause
• Add a new constraint such that at most 1 relaxation variable

is assigned value 1

3 When the resulting CNF formula is SAT, the solver
terminates;

4 Otherwise, go back to 1.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 7/20

Algorithms for Boolean Optimization

Linear search for PBO on the upper bound values of the
objective function:

1 Search for a solution to the set of constraints;
2 Whenever a solution is found:

• Update the upper bound value;
• Add a PB constraint such that all solutions with a higher

value of the objective function are discarded;
• Go back to 1;

3 Otherwise, the resulting PBO formula is UNSAT and the
solver terminates:

• The optimum value is given by the last recorded solution.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 7/20

Parallel Search (2 Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

T0 T1

LB UB
0 1 2 3 4 5 6 7 8 9 10 11

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 8/20

Parallel Search (2 Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

T0 T1

LB UB
0 1 2 3 4 5 6 7 8 9 10 11

T0 returns UNSAT, a new lower bound has been found.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 8/20

Parallel Search (2 Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

T0 T1

LB UB
0 1 2 3 4 5 6 7 8 9 10 11

T1 returns SAT, a new upper bound has been found.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 8/20

Parallel Search (2 Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

T0 T1

LB UB
0 1 2 3 4 5 6 7 8 9 10 11

T0 returns UNSAT, a new lower bound has been found.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 8/20

Parallel Search (2 Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

T0 ; T1

LB ; UB

0 1 2 3 4 5 6 7 8 9 10 11

T1 returns SAT, a new upper bound has been found.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 8/20

Parallel Search (2 Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

T0 ; T1

LB ; UB

0 1 2 3 4 5 6 7 8 9 10 11

LB value = UB value, hence the search terminates.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 8/20

Parallel Search (n Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• (n− 2) threads search on local UB (T2, . . . , Tn);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

LB UB
T0 T2 T3 T1

0 1 2 3 4 5 6 7 8 9 10 11

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 9/20

Parallel Search (n Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• (n− 2) threads search on local UB (T2, . . . , Tn);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

LB UB
T0 T2 T3 T1

0 1 2 3 4 5 6 7 8 9 10 11

T0 returns UNSAT, a new lower bound has been found.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 9/20

Parallel Search (n Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• (n− 2) threads search on local UB (T2, . . . , Tn);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

LB UB
T0 T2 T3 T1

0 1 2 3 4 5 6 7 8 9 10 11

T3 returns SAT, a new upper bound value has been found.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 9/20

Parallel Search (n Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• (n− 2) threads search on local UB (T2, . . . , Tn);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

LB UB
T0 T2 T3 T1

0 1 2 3 4 5 6 7 8 9 10 11

T3 gets a new local upper bound value.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 9/20

Parallel Search (n Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• (n− 2) threads search on local UB (T2, . . . , Tn);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

LB UB
T0 T2 T3 T1

0 1 2 3 4 5 6 7 8 9 10 11

T1 updates its upper bound value.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 9/20

Parallel Search (n Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• (n− 2) threads search on local UB (T2, . . . , Tn);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

LB UB
T0 T2 T3 T1

0 1 2 3 4 5 6 7 8 9 10 11

T2 returns UNSAT, a new lower bound value has been found.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 9/20

Parallel Search (n Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• (n− 2) threads search on local UB (T2, . . . , Tn);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

LB UB
T0 T3 T2 T1

0 1 2 3 4 5 6 7 8 9 10 11

T2 gets a new local upper bound value.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 9/20

Parallel Search (n Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• (n− 2) threads search on local UB (T2, . . . , Tn);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

LB ; UB
T0 T1 T3 T2

0 1 2 3 4 5 6 7 8 9 10 11

T1 returns SAT, a new upper bound value has been found.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 9/20

Parallel Search (n Threads)

• Parallel Search:
• 1 thread searches on the LB (T0);
• 1 thread searches on the UB (T1);
• (n− 2) threads search on local UB (T2, . . . , Tn);
• The optimum value is found when:

• LB or UB thread terminates with a solution;
• or when LB value = UB value.

LB ; UB
T0 T1 T3 T2

0 1 2 3 4 5 6 7 8 9 10 11

LB value = UB value, hence the search terminates.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 9/20

Diversification of the Search

• Use two threads to search on the upper bound (T1, T2);
• Different strategies for each thread when updating the

upper bound:
• T1 adds a PB constraint to limit the value of the objective

function;
• T2 uses the sequential encoding to translate the PB

constraint into clauses.

• The approaches are equivalent, but the search space is
searched differently.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 10/20

Clause Sharing

Soft and Hard Learned Clauses
If the conflict which gave origin into a new clause only involves
hard clauses, then the learned clause is said to be a hard
learned clause. Otherwise, it is said to be a soft learned
clause.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 11/20

Clause Sharing

Thread Bound Constraint
The PB constraint that is iteratively added to limit the value of
the objective function is named thread bound constraint.

Example

• Local UB value: 6

• Thread Bound Constraint:
n∑

j=1
cj · xj < 6

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 11/20

Clause Sharing

Local Constraint
A thread bound constraint is a local constraint. If a conflict
which gave origin into a new clause involves a local constraint,
then the learned clause is also a local constraint.

Example

• T2 local UB value: 3
− Thread Bound Constraint:

nP
j=1

cj · xj < 3

− T2 learns a local constraint ω2

• T3 local UB value: 6
− Thread Bound Constraint:

nP
j=1

cj · xj < 6

− T3 learns a local constraint ω3

• ω3 is always valid in T2, however ω2 may not be valid in T3

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 11/20

Clause Sharing

Learned clauses created by the different algorithms

Learned Clause
Algorithms

LB Local UB UB
Soft X
Hard X X X
Local X
w/ encoding vars X

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 12/20

Clause Sharing

Learned clauses not shared between the different algorithms
• Soft Learned Clauses
• Learned Clauses with Encoding Variables

Learned clauses shared between the different algorithms

• Hard Learned Clauses
• Local Constraints

• Shared only between UB algorithms and if:
the upper bound of the importing thread is smaller or
equal than the upper bound of the exporting thread.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 13/20

Parallel Optimization Solvers

Solvers
Threads

LB local UB UB
pwbo 2T 1 0 1
pwbo 4T 1 2 1
pwbo 4T-CNF 1 1 2

• Clause sharing is implemented on all solvers;
• Clauses that have 5 or less literals are shared:
− this cutoff is dynamically changed during search (e.g. ManySAT);
− clauses with literal block distance 2 are also shared (e.g. SArTagnan).

• Learned clauses are exported at each conflict;
• Shared clauses are imported at each restart.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 14/20

Experimental Results

• Benchmarks: 497 partial MaxSAT instances from the
industrial category of the MaxSAT Evaluation 2010;

• AMD Opteron 6172 processors (2.1 GHz with 64 GB of
RAM) running Fedora Core 13;

• Timeout: 1,800 seconds (wall clock time);
• pwbo is a non-deterministic parallel solver:

• Each version of pwbo was run 3 times on each instance;
• The runtimes are the median of the runs;
• An instance is solved if it can be solved in at least 2 runs.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 15/20

Experimental Results

Number of industrial partial MaxSAT instances solved by
sequential and parallel solvers

#I QMaxSAT pm2 wbo
pwbo

2T 4T 4T-CNF

497 372 352 317 341 345 390

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 16/20

Experimental Results
Cactus plot with running times of solvers

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 260 280 300 320 340 360 380 400

wa
ll c

lo
ck

 ti
m

e
(s

ec
on

ds
)

instances

wbo
pwbo T2
pwbo T4

PM2
QMaxSAT

pwbo T4-CNF

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 17/20

Experimental Results

Speedup on the instances solved by wbo and all pwbo solvers

Solver Time (s) Speedup
wbo 36,208.33 1.00
pwbo 2T 22,798.28 1.59
pwbo 4T 18,203.79 1.99
pwbo 4T-CNF 13,236.87 2.74

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 18/20

Conclusions

• Parallel algorithms for Boolean optimization are scarce;
• New algorithms for parallel Boolean optimization have

been proposed:
• pwbo 2T: searches on the lower and upper bound values
− searching in both directions increase the efficiency of the solver

• pwbo 4T: also searches on local upper bound values
− constant updates on the bound values reduce the search space

• pwbo 4T-CNF: two threads search on the upper bound value
− different strategies increase the diversification of the search

• Clause sharing is implemented on all parallel solvers
− clause sharing improve the performance of the solver

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 19/20

Research Directions

• Implement a portfolio of complementary algorithms:
• Increase diversification of the lower and upper bound

search;
• Improve the effectiveness of the local upper bound search;
• Change to a portfolio approach when the interval between

the lower and upper bound becomes small.

• Study the scalability of our approach;
• On-the-fly clause sharing.

R. Martins, V. Manquinho, I. Lynce Parallel Search for Boolean Optimization 20/20

