
Breaking Local Symmetries
in Quasigroup Completion Problems

Ruben Martins and Inês Lynce

IST/INESC-ID, Technical University of Lisbon, Portugal
{ruben,ines}@sat.inesc-id.pt

Abstract. Symmetry breaking is well-known as an important technique
for reducing the search space when solving combinatorial problems. Sym-
metries can be broken either during a preprocessing step or during the
search. Local symmetries, in contrast with global symmetries, are applied
to a problem instance for which there is a partial assignment. Given such
assignment, additional symmetries may hold. We perform an experimen-
tal study on breaking local symmetries in quasigroup completion prob-
lems, a well-studied problem among combinatorial problems. We break
local symmetries by adding additional clauses to a SAT encoding. We
conclude that these additional constraints have a puzzling effect on state-
of-the-art SAT solvers, mainly due to the heuristics being used by these
solvers.

1 Introduction

Quasigroups have been extensively solved in the last decade using Boolean sat-
isfiability (SAT) technology (e.g. see [5, 12, 2]). Most often, the challenge is to
solve the quasigroup completion problem that corresponds to a Latin square
with some pre-assigned cells. The causes of the popularity of quasigroups seem
easy to identify: the problem is simple to explain, some instances are easy to
solve, an interesting phase transition can be clearly identified and, of course,
SAT solvers are very efficient at tackling its problem instances. Not surprisingly,
the popular puzzle Sudoku, that has become famous in the last couple of years,
is nothing else but a quasigroup completion problem with only one additional
constraint for each sub-grid.

On the other hand, symmetry breaking is currently a widely used technique
in the domain of search problems (e.g. see [4, 6, 1]). Given that breaking symme-
tries reduces the search space, it seems fairly reasonable trying to break these
symmetries either before the search or even during the search. The more symme-
tries you break the more nodes in the search tree you eliminate. Hence, having
a highly symmetric problem becomes no longer a problem but rather a property
that makes the problem easier to solve.

These two observations bring us to the focus of this paper: symmetry breaking
in quasigroup completion problems. Unfortunately, this task in not straightfor-
ward: traditional symmetries that can be identified beforehand, also know as



global symmetries, do not hold for this problem 1. However, it is possible to eas-
ily identify and break local symmetries, i.e. symmetries that hold given a partial
assignment. We study the effect of breaking local symmetries in a SAT encoding
for the quasigroup completion problem. The experimental results, albeit some-
how surprising, shed light to the role played in SAT solvers by additional clauses
for breaking local symmetries.

This paper is organized as follows. The next section provides the background
for understanding the rest of the paper, namely the definitions for quasigroups
and symmetry breaking. Afterwards, we explain how to break local symmetries
in the quasigroup completion problem. Section 4 provides experimental results
for different problem instances and for different local symmetries. Finally, the
paper concludes.

2 Background

In this section we will clarify some important concepts related with quasigroup
completion problems and symmetry breaking.

2.1 Quasigroup Completion Problems (QCPs)

Quasigroups have been traditionally presented as a combinatorial problem for
which different encodings can be presented. Moreover, quasigroups have the ad-
vantage of providing an endless source of problem instances.

Definition 1 (Quasigroup). A quasigroup is an ordered pair (Q, ·), where
Q is a set and · is a binary operation on Q such that for each a and b in Q,
there exist unique elements x and y in Q such that: a · x = b and y · a = b. The
order n of the quasigroup is the cardinality of the set Q [12].

A particular case of a quasigroup is a n×n multiplication table which defines
a Latin square. Conversely, every Latin square can be taken as the multiplication
table of a quasigroup.

Definition 2 (Latin Square). A Latin square is an n×n table filled with n
different symbols, having one symbol in each cell, in such a way that each symbol
occurs exactly once in each row and exactly once in each column.

Figure 1 shows an example of a 5×5 Latin square as the multiplication table of
a quasigroup. In what follows we will only consider quasigroups as multiplication
tables, i.e. we will refer indistinctly to quasigroups and Latin squares.

In this paper we will study the quasigroup completion problem (QCP), which
is the NP-complete problem of filling a partial Latin square [5]: given a Latin
square with some symbols pre-assigned, identify a complete assignment such that
each symbol occurs exactly once in each row and exactly once in each column,
or prove that such an assignment does not exist. Figure 2 shows a QCP of order
5 and a possible solution.
1 We should note that global symmetries have been studied in the past in the context

of the general definition for quasigroups [8].



· 1 2 3 4 5

1 1 2 3 4 5

2 2 3 4 5 1

3 3 5 1 2 4

4 4 1 5 3 2

5 5 4 2 1 3

Fig. 1. Example of a 5× 5 Latin square as a multiplication table.

1 4

5

4 2

4

5 1

1 3 2 5 4

2 5 4 1 3

4 1 3 2 5

5 4 1 3 2

3 2 5 4 1

Fig. 2. Example of a QCP of order 5.

2.2 QCPs as a SAT Problem

A CNF formula is represented using n Boolean variables x1, x2, . . . , xn, which
can be assigned truth values 0 (false) or 1 (true). A literal l is either a variable xi

(i.e., a positive literal) or its complement ¬xi (i.e., a negative literal). A clause
ω is a disjunction of literals and a CNF formula ϕ is a conjunction of clauses.

Example 1. Consider the following CNF formula: ϕ = {ω1, ω2, ω3} where ω1 =
(x1 ∨ ¬x2), ω2 = (x2 ∨ x3) and ω3 = (¬x2 ∨ ¬x3). This formula has 3 variables
and 3 clauses, each one with two literals. Clause ω1 has one positive literal and
one negative literal. Clause ω2 has only positive literals whereas clause ω3 has
only negative literals.

A literal lj of a clause ωa that is assigned truth value 1 satisfies the clause,
and the clause is said to be satisfied. If the literal is assigned truth value 0 then
it is removed from the clause. A clause with a single literal is said to be unit.
Given a unit clause, the unit clause rule may be applied: the unassigned literal
has to be assigned value 1 for the clause to be satisfied. The derivation of an
empty clause indicates that the formula is unsatisfied for the given assignment.
The formula is satisfied if all its clauses are satisfied.

Example 2. For the formula given in example 1 the truth assignment {x1 =
1, x2 = 1, x3 = 0} is a satisfying assignment and the truth assignment {x1 =
1, x2 = 1, x3 = 1} is not.

The SAT problem consists of deciding whether there exists a truth assignment
to the variables such that the formula becomes satisfied.

Different SAT encodings for QCP have been well studied in the past and
therefore there exist efficient ways of encoding this problem into SAT [13]. Here
we present the two more straightforward ways of encoding this problem: the



minimal encoding and the extended encoding [11]. Those encodings use n Boolean
variables per cell; each variable represents a number assigned to a cell, and the
total number of variables is n3. Let us use the notation qxyz to refer to variables
with 1 ≤ x, y, z ≤ n. Variable qxyz is assigned true if and only if the cell in row
x and column y is assigned the number z. Hence, q253 means that the number 3
appears in row 2, column 5.

The most basic SAT encoding, which is known as the minimal encoding,
includes clauses that represent the following constraints:

– At least one number must be assigned to each cell:∧n
x=1

∧n
y=1

∨n
z=1 qxyz

– No number is repeated in the same row:∧n
y=1

∧n
z=1

∧n−1
x=1

∧n
i=x+1(¬qxyz ∨ ¬qxiz)

– No number is repeated in the same column:∧n
x=1

∧n
z=1

∧n−1
y=1

∧n
i=y+1(¬qxyz ∨ ¬qiyz)

The other encoding, which is known as the extended encoding, adds to the
minimal encoding redundant clauses that represent the following constraints:

– Each number must appear at least once in each row:∧n
x=1

∧n
z=1

∨n
y=1 qxyz

– Each number must appear at least once in each column:∧n
y=1

∧n
z=1

∨n
x=1 qxyz

– No two numbers are assigned to the same cell:∧n
x=1

∧n
y=1

∧n−1
z=1

∧n
i=z+1(¬qxyz ∨ ¬qxyi)

Naturally, the pre-assigned entries of the QCP will be represented as unit
clauses. Both encodings have O(n4) clauses. From the several experimental stud-
ies comparing these two encodings, the extended encoding has been shown to be
clearly more efficient that the minimal encoding [12, 2]. Even though the min-
imal encoding produces smaller formulas, the extended encoding allows more
propagation and has a more realistic representation of the problem structure.
Hence, in this paper we will only use the extended encoding.

Definition 3 (Boolean Constraint Propagation). The process of iterating
the unit clause rule is called Boolean Constraint Propagation (BCP). The
unit clause rule applies whenever a unit clause ωi = (lj) is identified. In this
case, all clauses containing literal lj are declared satisfied, and the literal ¬lj is
removed from all clauses containing it. This simplification may originate new
unit clauses in which case the unit clause rule should be applied again until no
unit clauses remain.

Example 3 (BCP). Consider two clauses ω1 = (x1∨¬x2∨x3) and ω2 = (x2∨x4).
Given the partial assignment {x1 = 0, x3 = 0}, literal ¬x2 in ω1 must be satisfied
and therefore we must assign x2 = 0. Consequently, literal x4 in clause ω2 must
also be satisfied and therefore we must assign x4 = 1.



BCP is widely used in SAT as a simplification rule that can be performed in
polynomial time.

After encoding the problem, for which each pre-assigned cell corresponds to
a unit clause, we apply a simple preprocessor based on unit propagation. The
same idea is used in the generator lsencode 2 by Carla Gomes. This preprocess-
ing greatly reduces the number of variables and clauses in the encoding which
increases its efficiency.

2.3 Symmetry Breaking

Recent advances in encodings include identifying and breaking symmetries [6,
4, 17]. There has been a significant effort for studying the effect of symmetry
breaking in constraint satisfaction, which has further motivated the study of
symmetry breaking in SAT encodings.

Definition 4 (Symmetry). Given a SAT instance P, with a set of constraints
C, a symmetry of P is a bijective function f : A → A where A is the set of
partial or full assignments of P, such that the following holds:

1. Given a ∈ A, if a satisfies the constraints in C, then so does f(a).
2. Similarly, if a does not satisfy the constraints in C, then neither does f(a).

Symmetries cause the existence of redundant search paths, which is a clear
drawback for backtrack search. Breaking symmetries reduces the search space:
this is a clearly advantage for problems having no solution, which implies travers-
ing the whole search space to prove unsatisfiability. For the same reason, breaking
symmetries is also an advantage when all the solutions must be found. Moreover,
experimental evaluation has shown that (partially) breaking symmetries can also
be useful for finding one solution [15]. Observe that with symmetry breaking the
freedom of the search is restricted. On the other hand, there is often a trade-off
between the cost of eliminating symmetries and the savings derived from having
done so.

2 3 4 5 1

1 2 3 4 5

3 5 1 2 4

4 1 5 3 2

5 4 2 1 3

1 2 3 4 5

2 3 4 5 1

3 5 1 2 4

4 1 5 3 2

5 4 2 1 3

Fig. 3. Example of a row symmetry in a quasigroup.

We can find a simple example of symmetries in a completed quasigroup.
Given a quasigroup we can obtain an equivalent quasigroup by permutation of
2 Available at http://www.cs.cornell.edu/gomes/new-demos.htm.



the n symbols or by transposing the matrix (i.e., exchanging rows and columns).
An example of this is shown in Figure 3.

Many methods have been developed for symmetry breaking. Here we present
the three main ways of eliminating symmetry:

1. Remodel the problem [17]. A different encoding, e.g. obtained by defining a
different set of variables, may create a problem with less symmetries.

2. Add constraints to the model [6, 1]. Such constraints merge symmetries in
equivalent classes. Ideally, only one assignment will satisfy these constraints,
instead of n assignments, where n is the number of elements in a given
equivalent class.

3. Change the search process to avoid symmetrically equivalent states [4, 10,
7]. This can be done by adding constraints to ensure that any assignment
symmetric to one assignment already considered will not be explored in
the future, or by performing checks that symmetric equivalents have not
been visited. This is done for both satisfying and unsatisfying assignments.
However, this approach has not found success in SAT. This is unsurprising,
because of the reliance of SAT solvers on very small time between branching
decisions, limiting the overheads that can be accepted and ruling out these
symmetry breaking techniques.

So far we have only mentioned global symmetries. Another interesting type of
symmetries is local symmetries [3]. Different names have been given in the past
to this same concept, namely conditional symmetries [9]. These symmetries refer
to a subproblem P ′ ⊂ P rather then a problem P for which a partial assignment
to the problem P is considered. Also, these symmetries arise during search.

1 2 3 5 4

2 3 1 4 5

3 4 5 2 1

4 5 2 1 3

5 1 4 3 2

1 2 3 4 5

2 3 1 5 4

3 4 5 2 1

4 5 2 1 3

5 1 4 3 2

Fig. 4. Example of a local symmetry in a quasigroup.

Figure 4 shows an example of a local symmetry in a quasigroup: symbols 4
and 5 on the first and second rows can be permuted. Also, if we add constraints
to prevent one of the solutions to be found, we can obtain the eliminated solution
afterwards.

Even though local symmetries are harder to spot, we believe that dealing
with this type of symmetries is an important step in the efficient resolution of
hard combinatorial problems.



3 Symmetry Breaking in QCPs

Quasigroups can be represented by a matrix model. Similarly to all matrix mod-
els, we may consider the usual row and column symmetries, where rows and
columns may be exchanged. Breaking these symmetries has the advantage of
reducing the search space without loosing any of the solutions. Once we have
found the solutions for the reformulated problem for which symmetries have
been eliminated, we may recover the whole set of solutions. However, given that
a QCP starts with a subset of cells pre-assigned, breaking these symmetries has
no effect.

In this section we will study local symmetries in the context of QCPs. These
symmetries have already been mention in the previous section: Figure 4 illus-
trates local symmetries for a QCP of order 5, where symbols 4 and 5 in the first
and second rows may be permuted. If we take a closer look at this figure we can
make a generalization of this local symmetry.

j1 j2

i1 a b

i2 b a

j1 j2

i1 b a

i2 a b

Fig. 5. Local symmetry lsym22 in QCPs.

Consider a quasigroup Q and two rows (i1, i2), two columns (j1, j2) and two
symbols (a, b), with 1 ≤ i1 < i2 ≤ n, 1 ≤ j1 < j2 ≤ n and a, b ∈ {1, . . . , n}.
Considering also that Q[i1, j1] refers to the content of the cell in row i1 and
column j1 of the quasigroup Q and assume that symbol a occurs in cells Q[i1, j1]
and Q[i2, j2] and symbol b occurs in cells Q[i1, j2] and Q[i2, j1]. Let us consider
the two quasigroups illustrated in Figure 5. For these two quasigroups, for which
a partial assignment is given, it is straightforward to identify a function that
defines a local symmetry. In what follows we will refer to this local symmetry as
lsym22.

In order to break lsym22 we impose a lexicographically order in the values of
Q[i1, j1] and Q[i2, j1] by extending our encoding with additional constraints. For
each set of four cells where the pattern shown in Figure 5 may occur for symbols
a and b, we add the following constraints to guarantee that Q[i1, j1] < Q[i2, j1]:

– If a < b : ¬(qi1j1b ∧ qi1j2a ∧ qi2j1a ∧ qi2j2b)

– Else If a > b : ¬(qi1j1a ∧ qi1j2b ∧ qi2j1b ∧ qi2j2a)

This means that only one of the assignments given in Figure 5 may occur.
If a > b then the first partial assignment given in Figure 5 (left) cannot occur,



1.

j1 j2 j3

i1 a b c

i2 b c a

j1 j2 j3

i1 b c a

i2 a b c

2.

j1 j2 j3

i1 a b c

i2 c a b

j1 j2 j3

i1 c a b

i2 a b c

Fig. 6. Local symmetry lsym23 in QCPs.

otherwise if a < b then the other partial assignment given in Figure 5 (right)
cannot occur. Observe that with those clauses we prevent one of the partial
assignments from occurring, although we may not guarantee that one of them
will occur in the solution found.

This reasoning may be extended to patterns including more than four cells.
For example, in Figure 6 we illustrate another local symmetry denoted as lsym23.
Basically we take into account three symbols (a, b, c) and six cells distributed by
two rows (i1, i2) and three columns (j1, j2, j3), with 1 ≤ i1 < i2 ≤ n, 1 ≤ j1 <
j2 < j3 ≤ n and a, b, c ∈ {1, . . . , n}. In this case, the symbols can be assigned in
four distinct ways, but only two local symmetries can be identified, thus grouping
the four patterns in two groups. We may obtain one pattern from another by
permuting rows i1 and i2. We can break these local symmetries similarly to what
we have done with lsym22, i.e., by imposing a lexicographical order between the
values of Q[i1, j1] and Q[i2, j1]. To guarantee that Q[i1, j1] < Q[i2, j1] (for case
1.) we add the following constraints:

– If a < b : ¬(qi1j1b ∧ qi1j2c ∧ qi1j3a ∧ qi2j1a ∧ qi2j2b ∧ qi2j3c)

– Else If a > b : ¬(qi1j1a ∧ qi1j2b ∧ qi1j3c ∧ qi2j1b ∧ qi2j2c ∧ qi2j3a)

Similarly, to guarantee that Q[i1, j1] < Q[i2, j1] (for case 2.), the following
clauses are added:

– If a < c : ¬(qi1j1c ∧ qi1j2a ∧ qi1j3b ∧ qi2j1a ∧ qi2j2b ∧ qi2j3c)

– Else If a > c : ¬(qi1j1a ∧ qi1j2b ∧ qi1j3c ∧ qi2j1c ∧ qi2j2a ∧ qi2j3b)

We may further consider the same pattern but now within three rows and
two columns instead, obtaining the local symmetries lsym32 shown in Figure 7.
Again, we may group these four pattern in two groups of two patterns, for which
one may be obtained from the other by permuting columns j1 and j2. Clearly,
these symmetries may be broken by adding similar clauses to the ones added for



1.

j1 j2

i1 a b

i2 b c

i3 c a

j1 j2

i1 b a

i2 c b

i3 a c

2.

j1 j2

i1 a c

i2 b a

i3 c b

j1 j2

i1 c a

i2 a b

i3 b c

Fig. 7. Local symmetry lsym32 in QCPs.

the lsym23 case. Those clauses will guarantee that Q[i1, j1] < Q[i1, j2]. Finally,
observe that many other local symmetries, similar to the ones that we have just
mentioned, may arise in QCPs (for example, see Figure 8). Such symmetries
involve more rows and columns (and eventually more symbols) and are clearly
more complex.

j1 j2 j3

i1 b a

i2 a b

i3 b a

j1 j2 j3 j4

i1 b a

i2 a b

i3 b a

i4 a b

Fig. 8. Example of other (more complex) local symmetries in QCPs.

4 Experimental Results

In this section we compare the efficiency of the encodings presented in the pre-
vious section against the encoding that does not break symmetries. On a first



approach, we will study the impact of breaking local symmetries on satisfiable
QCP instances and afterwards we will study the impact of breaking those sym-
metries on unsatisfiable QCP instances. Observe that for satisfiable problem
instances the search terminates when one solution is found, regardless the fact
that other solutions may exist. On the other hand, for proving unsatisfiability
the whole search space has to be traversed. For this reason, breaking symmetries
is expected to speedup solving unsatisfiable instances even more than satisfiable
instances. We should note, however, that for other search strategies, rather than
tree search, symmetry breaking may eventually not speedup the search (e.g. for
local search [14]).

For the experiments reported bellow we have used the satisfiable QCP prob-
lem instances from [2] and have generated our own unsatisfiable problem in-
stances. All these instances are located near the phase transition. The results
were obtained on an Intel Xeon 5160 (3.0GHz with 4GB of RAM) and a timeout
of 1000s.

4.1 Satisfiable QCP instances

The local symmetries presented in the previous section occur very often in QCPs.
This fact can be confirmed comparing the number of solutions for QCP instances
with and without local symmetry breaking clauses. We have run relsat 3 to
perform this comparison. We were able to count all the solutions for 30 instances
of order 30. (Larger instances could not be tested in a reasonable amount of
time due to QCPs having in general a significant number of solutions and an
increasing difficulty that grows exponentially with its order. Hence, a small n
was used so that we could get all solutions.) Table 1 shows the percentage of
solutions eliminated by breaking local symmetries. Each value represents the
average number of solutions eliminated for the 30 problem instances. Results
are given for each one of the local symmetries broken (lsym22, lsym23, lsym32)
and for the combination of all of them as well (lsymall).

lsym22 lsym23 lsym32 lsymall

77.191 8.910 10.934 81.668

Table 1. Reduction of the number of solutions when using the different encodings.

Clearly, breaking local symmetries of type lsym22 causes a significant reduc-
tion in the number of solutions of a given problem instance. Breaking this type
of local symmetry is indeed extremely useful. Although it suffices to find only
one solution, the significant reduction of the search space may help to find one
solution faster.

3 Available from http://www.bayardo.org/resources.html.



Order w/o lsym lsym22 lsym23 lsym32

35 22,088.3 +2,852.5 +15,255.1 +14,707.1
37 24,805.4 +3,004.1 +15,377.4 +15,418.6
40 28,476 +3,255.2 +17,107.6 +16,723.1
43 31,808.8 +3,230.9 +15,641.9 +15,317.2
45 35,479.9 +3,665.5 +18,206.6 +18,176.5

Table 2. Number of additional literals to encode lsym22, lsym23 and lsym32.

Order w/o lsym lsym22 lsym32 lsym23 w/o lsym lsym22 lsym32 lsym23

35 100 100 100 100 0.66 0.64 0.825 0.635
37 100 100 100 100 3.44 3.37 3.495 4.015
40 100 100 100 100 18.76 18.63 26.645 19.92
43 90 91 90 89 120.66 134.41 156.11 170.655
45 68 69 68 70 665.22 633.55 802.835 740.22

Table 3. Satisfiable instances using satz with a time limit of 6000s.

Table 2 shows the average number of additional literals needed to break the
different types of local symmetries. This table includes experiments for 500 satis-
fiable instances from [2]. These instances can be distinguished into five subsets of
100 instances having different orders: 35, 37, 40, 43 and 45. Remember that each
local symmetry is broken by adding one clause. In the case of lsym22 all clauses
added have 4 literals and for lsym23 and lsym32 all clauses added have 6 literals.
Given that symmetries involving more cells have a lower probability of occurring
and are broken at the cost of adding larger clauses, in this section we will focus
on the effect of breaking symmetries lsym22, lsym23 and lsym32. Although not
many lsym23 and lsym32 symmetries occur in practice, before performing the
search many of these symmetries have to be considered. Hence, a huge number
of clauses is added. This is not the case for the lsym22 symmetries. In theory
they cannot occur very often but in practice they occur almost as many times
as they occur in theory.

Table 3 shows the percentage of instances solved for each configuration, as
well as the CPU time (in seconds) required for finding one solution. The given
CPU time refers to the median value obtained from running each subset of 100
problem instances. Although different SAT solvers have been tried, satz 4 has
came out as the most efficient solver for solving QCPs. (This conclusion has
also been reached in previous work [2].) satz is a backtrack search SAT solver
enhanced with unit propagation and a look-ahead heuristic. This table clearly
shows that breaking local symmetries seems not to help solving these problems
instances. Although a slightly improvement can be observed for n = 45 and
lsym22, it is not representative. For the remaining cases, satz requires in general
more time when symmetry breaking clauses are added.

4 Available from http://www.laria.u-picardie.fr/∼cli/EnglishPage.html.



These results came as a surprise: we were expecting that symmetry breaking
would reduce the CPU time, given that the number of solutions and the search
space are dramatically reduced. The only possible explanation for this fact is
the heuristic. Clearly, the heuristic is badly affected by the new clauses. In order
to clarify this fact, we have partially disabled satz’s heuristic. The look-ahead
heuristic implemented in satz chooses the variable that once assigned will imply
the highest number of assignments due to unit propagation. We now simply
choose the first unassigned variable to branch on. This makes the heuristic to
choose the variables following a fixed order which is a non-biased approach. This
new version of satz is called blindsatz.

w/o lsym lsym22 lsym32 lsym23 lsymall

88.97 81.57 88.87 88.97 81.095

Table 4. Satisfiable instances using blindsatz with a time limit of 1000s.

-100 -50 0 50 100

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

e w!o lsym a lsym22

0 10 20 30 40

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

e w!o lsym a lsym23

-10 0 10 20 30

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

e w!o lsym a lsym32

-100 -50 0 50 100

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

e w!o lsym a lsymall

Fig. 9. Satisfiable instances against no symmetry breaking (w/o lsym).

Table 4 shows the median CPU time required to find a solution using blind-
satz. Results are reported for only 30 instances with n = 37. (No larger instances
could be tried due to blindsatz being much slower that satz.) For blindsatz,
breaking symmetries of type lsym22 improves the performance. But breaking
symmetries of types lsym23 and lsym32 has almost no impact in the CPU time,



most probably because these symmetries rarely occur in practice and there is a
significant overhead on dealing with additional clauses.

Figure 9 compares directly the performance of using each local symmetry
breaking technique with no symmetry breaking. Each bar represents one of the
30 instances. The bar size corresponds to the difference (in seconds) between
using no symmetry breaking and using a specific type of symmetry breaking
(either lsym22, lsym23, lsym32 or lsymall). From the figure, it is clear that
lsym22 is able to reduce the required CPU time for all but 3 problem instances.
This reduction can be up to 105 seconds. The advantages of using only lsym23 or
lsym32 are not so clear, although a slight improvement may be observed. Finally,
lsymall also reduces the CPU time, even though the reduction is not as large in
general as for the lsym22 approach. However, the lsymall approach seems to be
more robust.

4.2 Unsatisfiable QCP instances

w/o lsym lsym22 lsym32 lsym23 lsymall

376.075 360.655 378.52 377.955 358.47

Table 5. Unsatisfiable instances using blindsatz with a time limit of 1000s.

0 20 40 60 80 100 120 140

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

e w!o lsym a lsym22

-40 -30 -20 -10 0 10 20 30

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

e w!o lsym a lsym23

-40 -20 0 20 40

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

e w!o lsym a lsym32

0 50 100 150 200

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

e w!o lsym a lsymall

Fig. 10. Unsatisfiable instances against no symmetry breaking (w/o lsym).



We finally evaluate the impact of local symmetry breaking in unsatisfiable
problem instances. The first step for this evaluation was the creation of a gener-
ator of unsatisfiable instances. This was done based on [16]. The new generator
generated 30 problem instances of order 35 with 67% pre-assigned values (this
value corresponds to the phase transition). Again, we observed that satz is
more efficient when no symmetry breaking clauses are added. For this reason,
blindsatz was tried as an alternative.

Table 5 shows the median CPU time needed by blindsatz to prove unsatis-
fiability. Moreover, Figure 10 gives four bar charts comparing the results for the
four local symmetry breaking configurations (lsym22, lsym22, lsym32, lsymall)
against no symmetry breaking. With no surprise, lsym22 and lsymall have the
best performance. Again, lsym23 and lsym32 do not improve much the perfor-
mance of the basic encoding in terms of efficiency. In addition, we also observed
that breaking symmetries seems to have more impact on solving harder problem
instances.

5 Conclusions and Future Work

In this paper we have evaluated the impact of breaking local symmetries on SAT
encodings for the quasigroup completion problems. We have identified different
types of local symmetries and observed that some of them can be quite effective
on reducing the number of solutions. However, the addition of new clauses for
breaking symmetries has a negative impact on the performance of the SAT solver.
This is due not only to the overhead of dealing with additional clauses but also
to the heuristics being used by SAT solvers. These heuristics have been designed
not having these clauses into account. As future work we envision developing
new heuristics for coping with symmetry breaking clauses.

Acknowledgments This work is partially supported by Fundação para a Ciência
e Tecnologia under research projects POSI/SRI/41926/01 and POSC/EIA/-
/61852/2004.

References

1. F. Aloul, K. A. Sakallah, and I. Markov. Efficient symmetry breaking for boolean
satisfiability. In International Joint Conference on Artificial Intelligence, pages
271–276, August 2003.

2. C. Ansótegui, A. del Val, C. F. Iván Dotú, and F. Manyá. Modeling choices in
quasigroup completion: SAT vs CSP. In Proceedings of the National Conference
on Artificial Intelligence, 2004.

3. B. Benhamou and M. R. Saidi. Eliminating local symmetry in CSP. In Interna-
tional Symmetry Conference, ISC’07, 2007.

4. C. A. Brown, L. Finkelstein, and P. W. Purdom. Backtrack searching in the pres-
ence of symmetry. In 6th International Conference, on Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, volume 357 of Lecture Notes in Computer
Science, pages 99–110. Springer-Verlag, 1988.



5. C. Colbourn. The complexity of completing partial latin squares. Discrete Applied
Mathematics, pages 25–30, 1984.

6. J. M. Crawford, M. L. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predi-
cates for search problems. In Proceedings of the International Conference on Prin-
ciples of Knowledge and Reasoning, pages 148–159, 1996.

7. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In International
Conference on Principles and Practice of Constraint Programming, pages 93–107,
2001.

8. M. Fujita, J. Slaney, and F. Bennett. Automatic generation of some results in
finite algebra. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 52–57, 1993.

9. I. P. Gent, T. Kelsey, S. A. Linton, I. McDonald, I. Miguel, and B. M. Smith.
Conditional Symmetry Breaking. In Principles and Practice of Constraint Pro-
gramming - CP 2005, pages 256–270, 2005.

10. I. P. Gent and B. M. Smith. Symmetry breaking during search in constraint
programming. In Proceedings of the European Conference on Artificial Intelligence,
pages 599–603, 2000.

11. C. P. Gomes and D. Shmoys. Completing quasigroups or latin squares: A structured
graph coloring problem. In Proceedings for Computational Symposium on Graph
Coloring and Generalizations, Lecture Notes in Computer Science, pages 22–39,
2002.

12. C. P. Gomes and D. Shmoys. The promise of LP to boost CSP techniques for
combinatioral problems. In CP-AI-OR’02, pages 291–305, 2002.

13. H. A. Kautz, Y. Ruan, D. Achlioptas, C. P. Gomes, B. Selman, and M. Stickel.
Balance and filtering in structured satisfiable problems. In IJCAI’01, pages 351–
358, 2001.

14. S. Prestwich. First-solution search with symmetry breaking and implied con-
straints. In CP Workshop on Modelling and Problem Formulation, 2001.

15. A. Ramani and I. L. Markov. Automatically exploiting symmetries in constraint
programming. In Recent Advances in Constraints, volume 3419 of Lecture Notes
in Computer Science, pages 98–112, 2005.

16. P. Shaw, K. Stergiou, and T. Walsh. Arc consistency and quasigroup completion.
In Proceedings of the ECAI-98 workshop on non-binary constraints, 1998.

17. B. M. Smith. Reducing symmetry in a combinatorial design problem. In Third
International Workshop on Integration of AI and OR Techniques, pages 351–359,
2001.


