Parallel Search for Maximum Satisfiability

Ruben Martins

IST, Technical University of Lisbon, Portugal

September 9, 2013

What is Boolean Satisfiability?

CNF Formula:

• Boolean Satisfiability (SAT):

 $\circ~$ Decide if the formula is satisfiable or unsatisfiable

What is Boolean Satisfiability?

CNF Formula:

$\bar{x}_2 \lor \bar{x}_1$	$x_2 \lor \bar{x}_3$	<i>x</i> 1
<i>x</i> 3	$x_2 \lor \bar{x}_1$	$\bar{x}_3 \lor x_1$

• Formula is unsatisfiable

What is Boolean Satisfiability?

CNF Formula:

$\bar{x}_2 \lor \bar{x}_1$	$x_2 \lor \bar{x}_3$	<i>x</i> 1
<i>x</i> 3	$x_2 \lor \bar{x}_1$	$\bar{x}_3 \lor x_1$

- Formula is unsatisfiable
- How many clauses can we satisfy?

What is Maximum Satisfiability?

CNF Formula:

$\bar{x}_2 \lor \bar{x}_1$	$x_2 \lor \bar{x}_3$	<i>x</i> 1
<i>x</i> 3	$x_2 \lor \bar{x}_1$	$\bar{x}_3 \lor x_1$

- Maximum Satisfiability (MaxSAT):
 - Find an assignment that maximizes (minimizes) number of satisfied (unsatisfied) clauses

What is Maximum Satisfiability?

CNF Formula:

$$\begin{array}{c} \bar{x}_2 \lor \bar{x}_1 \\ x_3 \end{array} \quad \begin{array}{c} x_2 \lor \bar{x}_3 \\ x_2 \lor \bar{x}_1 \end{array} \quad \begin{array}{c} x_3 \lor x_1 \end{array}$$

• An optimal solution would be:

$$\nu = \{x_1 = 1, x_2 = 1, x_3 = 1\}$$

• This assignment unsatisfies only 1 clause

MaxSAT Problems

- MaxSAT:
 - All clauses are soft
 - Minimize number of unsatisfied soft clauses
- Partial MaxSAT:
 - Clauses are soft or hard
 - Hard clauses must be satisfied
 - Minimize number of unsatisfied soft clauses
- Weighted Partial MaxSAT:
 - Clauses are soft or hard
 - Weights associated with soft clauses
 - Minimize sum of weights of unsatisfied soft clauses

Why is MaxSAT Important?

- Many real-world applications can be encoded to MaxSAT:
 - Software package upgradeability:
 - Eclipse platform uses MaxSAT for managing the plugins dependencies
 - Error localization in C code
 - Debugging of hardware designs
 - Haplotyping with pedigrees
 - Reasoning over Biological Networks
 - Course timetabling
 - Combinatorial auctions
 - ° ...
- MaxSAT algorithms are effective for solving real-word problems

Outline

- MaxSAT Algorithms:
 - Linear search algorithms
 - Unsatisfiability-based algorithms
- Parallel MaxSAT:
 - Parallel algorithms
 - Deterministic approaches
 - Clause sharing heuristics
- Sequential MaxSAT:
 - Partitioning-based algorithms

- Optimum solution (OPT):
 - Assignment with minimum cost
- Upper Bound (UB) value:
 - Cost greater than or equal to OPT
- Linear search algorithms:
 - Refine UB value until OPT is found

- Optimum solution (OPT):
 - Assignment with minimum cost
- Upper Bound (UB) value:
 - Cost greater than or equal to OPT
- Linear search algorithms:
 - Refine UB value until OPT is found

- Optimum solution (OPT):
 - Assignment with minimum cost
- Upper Bound (UB) value:
 - Cost greater than or equal to OPT
- Linear search algorithms:
 - Refine UB value until OPT is found

Partial MaxSAT Formula:

 $\begin{array}{lll} \varphi_h \mbox{ (Hard):} & \bar{x}_2 \lor \bar{x}_1 & x_2 \lor \bar{x}_3 \\ \\ \varphi_s \mbox{ (Soft):} & x_1 & x_3 & x_2 \lor \bar{x}_1 & \bar{x}_3 \lor x_1 \end{array}$

- $\varphi_h: \qquad \bar{x}_2 \lor \bar{x}_1 \qquad x_2 \lor \bar{x}_3$ $\varphi_s: \qquad x_1 \lor r_1 \qquad x_3 \lor r_2 \qquad x_2 \lor \bar{x}_1 \lor r_3 \qquad \bar{x}_3 \lor x_1 \lor r_4$
- Relax all soft clauses
- Relaxation variables:
 - $V_R = \{r_1, r_2, r_3, r_4\}$
 - If a soft clause ω_i is **unsatisfied**, then $r_i = 1$
 - If a soft clause ω_i is **satisfied**, then $r_i = 0$

Partial MaxSAT Formula:

$$\varphi_h$$
: $\bar{x}_2 \lor \bar{x}_1$ $x_2 \lor \bar{x}_3$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \bar{x}_1 \lor r_3$ $\bar{x}_3 \lor x_1 \lor r_4$

$$V_R = \{r_1, r_2, r_3, r_4\}$$

• Formula is satisfiable

$$\nu = \{x_1 = 1, x_2 = 0, x_3 = 0, r_1 = 0, r_2 = 1, r_3 = 1, r_4 = 0\}$$

• Goal: Minimize the number of relaxation variables assigned to 1

$$\varphi_h$$
: $\bar{x}_2 \lor \bar{x}_1$ $x_2 \lor \bar{x}_3$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \bar{x}_1 \lor r_3$ $\bar{x}_3 \lor x_1 \lor r_4$

$$\mu = 2$$
 $V_R = \{r_1, r_2, r_3, r_4\}$

- *r*₂ and *r*₃ were assigned truth value 1:
 - $\circ~$ Current solution unsatisfies 2 soft clauses
- Can less than 2 soft clauses be unsatisfied?

Partial MaxSAT Formula:

- $\varphi_h: \quad \bar{x}_2 \lor \bar{x}_1 \quad x_2 \lor \bar{x}_3 \quad \mathsf{CNF}(\sum_{r_i \in V_R} r_i \le 1)$
- $\varphi_s: \quad x_1 \vee r_1 \quad x_3 \vee r_2 \qquad x_2 \vee \bar{x}_1 \vee r_3 \qquad \bar{x}_3 \vee x_1 \vee r_4$

$$\mu = 2$$
 $V_R = \{r_1, r_2, r_3, r_4\}$

• Add cardinality constraint to refine UB value: • $CNF(r_1 + r_2 + r_3 + r_4 \le 1)$

$$\varphi_h$$
: $\bar{x}_2 \lor \bar{x}_1$ $x_2 \lor \bar{x}_3$ $\mathsf{CNF}(\sum_{r_i \in V_R} r_i \le 1)$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \bar{x}_1 \lor r_3$ $\bar{x}_3 \lor x_1 \lor r_4$

$$\mu = 2$$
 $V_R = \{r_1, r_2, r_3, r_4\}$

- Formula is unsatisfiable:
 - $\,\circ\,$ There are no solutions that unsatisfy 1 or less soft clauses

Partial MaxSAT Formula:

$$\varphi_h$$
: $\overline{x}_2 \lor \overline{x}_1$ $x_2 \lor \overline{x}_3$ φ_s : x_1 x_3 $x_2 \lor \overline{x}_1$ $\overline{x}_3 \lor x_1$

$$\mu = 2$$
 $V_R = \{r_1, r_2, r_3, r_4\}$

• Optimal solution:

•
$$\nu = \{x_1 = 1, x_2 = 0, x_3 = 0\}$$

- Lower Bound (LB) value:
 - Cost smaller than or equal to OPT
- Unsatisfiability-based algorithms:
 - $\circ~$ Use unsatisfiable cores to refine LB value until OPT is found

- Lower Bound (LB) value:
 - Cost smaller than or equal to OPT
- Unsatisfiability-based algorithms:
 - $\circ~$ Use unsatisfiable cores to refine LB value until OPT is found

- Lower Bound (LB) value:
 - Cost smaller than or equal to OPT
- Unsatisfiability-based algorithms:
 - $\circ~$ Use unsatisfiable cores to refine LB value until OPT is found

Partial MaxSAT Formula:

 $\begin{array}{lll} \varphi_h \mbox{ (Hard):} & \bar{x}_2 \lor \bar{x}_1 & x_2 \lor \bar{x}_3 \\ \\ \varphi_s \mbox{ (Soft):} & x_1 & x_3 & x_2 \lor \bar{x}_1 & \bar{x}_3 \lor x_1 \end{array}$

Partial MaxSAT Formula:

$$\varphi_h$$
: $\bar{x}_2 \lor \bar{x}_1$ $x_2 \lor \bar{x}_3$ φ_s : x_1 x_3 $x_2 \lor \bar{x}_1$ $\bar{x}_3 \lor x_1$

• Formula is unsatisfiable

$$\varphi_h$$
: $\overline{x}_2 \lor \overline{x}_1$ $x_2 \lor \overline{x}_3$ φ_s : x_1 x_3 $x_2 \lor \overline{x}_1$ $\overline{x}_3 \lor x_1$

- Formula is unsatisfiable
- Identify an unsatisfiable core

$$\varphi_h$$
: $\bar{x}_2 \lor \bar{x}_1$ $x_2 \lor \bar{x}_3$ $\mathsf{CNF}(r_1 + r_2 \le 1)$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \bar{x}_1$ $\bar{x}_3 \lor x_1$

- Relax unsatisfiable core:
 - Add relaxation variables
 - $\circ~$ Add at-most-one constraint

Partial MaxSAT Formula:

$$\varphi_h$$
: $\bar{x}_2 \lor \bar{x}_1$ $x_2 \lor \bar{x}_3$ $\mathsf{CNF}(r_1 + r_2 \le 1)$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \bar{x}_1$ $\bar{x}_3 \lor x_1$

• Formula is unsatisfiable

$$\varphi_h$$
: $\bar{x}_2 \lor \bar{x}_1$ $x_2 \lor \bar{x}_3$ $\mathsf{CNF}(r_1 + r_2 \le 1)$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \bar{x}_1$ $\bar{x}_3 \lor x_1$

- Formula is unsatisfiable
- Identify an unsatisfiable core

- $\varphi_h: \quad \bar{x}_2 \lor \bar{x}_1 \qquad x_2 \lor \bar{x}_3 \qquad \mathsf{CNF}(r_1 + r_2 \le 1) \qquad \mathsf{CNF}(r_3 + \ldots + r_6 \le 1)$ $\varphi_s: \quad x_1 \lor r_1 \lor r_3 \qquad x_3 \lor r_2 \lor r_4 \qquad x_2 \lor \bar{x}_1 \lor r_5 \qquad \bar{x}_3 \lor x_1 \lor r_6$
 - Relax unsatisfiable core:
 - Add relaxation variables
 - · Add at-most-one constraint

φ_h :	$\bar{x}_2 \lor \bar{x}_1$	$x_2 \lor \bar{x}_3$	$CNF(r_1+r_2\leq 1)$	$CNF(r_3 + \ldots + r_6 \leq 1)$
φ_{s} :	$x_1 \lor r_1 \lor r_3$	$x_3 \lor r_2 \lor r_4$	$x_2 \lor ar{x}_1 \lor r_5$	$ar{x}_3 ee x_1 ee r_6$

- Formula is satisfiable
- Optimal solution:

$$\circ \ \nu = \{x_1 = 1, x_2 = 0, x_3 = 0\}$$

Outline

- MaxSAT Algorithms:
 - Linear search algorithms
 - Unsatisfiability-based algorithms
- Parallel MaxSAT:
 - Parallel algorithms
 - Deterministic approaches
 - Clause sharing heuristics
- Sequential MaxSAT:
 - Partitioning-based algorithms

Why Parallel MaxSAT?

- Multicore processors are now predominant
- Several parallel SAT solvers have emerged:
 - Search space splitting
 - Portfolio
- Parallel approaches for MaxSAT are just starting
- This thesis presents the **first** parallel MaxSAT algorithms

Parallel MaxSAT (2 threads)

- Linear search algorithms:
 - UB search
- Unsatisfiability-based algorithms:
 - LB search

Parallel MaxSAT (2 threads)

- Linear search algorithms:
 - UB search
- Unsatisfiability-based algorithms:
 - LB search
- Parallel search:
 - $\circ~$ Search on LB and UB of the optimal solution
 - Exchange information

Parallel MaxSAT (*n* threads) [RCRA'11, ICTAI'11, AI Comm.'12]

- Splitting approach:
 - $\circ~$ Search on different values of the upper bound
- Portfolio approach:
 - Multiple threads perform lower and upper bound search

- Local Upper Bound (LUB):
 - $\circ~$ Cost between LB and UB
- Splitting approach:
 - \circ 1 thread searches on the LB (T_1)
 - \circ 1 thread searches on the UB (T_2)
 - Remaining threads search on LUB (T_3, T_4)

- Portfolio approach:
 - Half threads search on the LB (T_1, T_2)
 - Half threads search on the UB (T_3, T_4)
 - Diversification of the search using different cardinality constraints

Parallel MaxSAT (Experimental Results)

- Benchmarks: 497 industrial partial MaxSAT instances
- Timeout: 1,800 seconds
- Solvers:
 - WBO (sequential MaxSAT solver 1 run):
 - Uses a linear search algorithm for 10% of the time limit
 - · If no solution is found changes to unsatisfiability-based algorithm
 - PWBO (parallel MaxSAT solver 10 runs):
 - 2 threads, PWBO-T2
 - 4 and 8 threads, PWBO-S (splitting approach)
 - 4 and 8 threads, PWBO-P (portfolio approach)

Parallel MaxSAT (Experimental Results)

• Number of instances solved by each solver and speedup of PWBO:

	#Solved	Speedup
WBO	317	1.00
PWBO-T2	398	2.69
PWBO-P-T4	399	3.92
PWBO-S-T4	399	4.16
PWBO-S-T8	399	4.83
PWBO-P-T8	403	5.19

Parallel MaxSAT (Experimental Results)

• Impact of sharing learned clauses:

- PWBO exhibits non-deterministic behavior:
 - $\circ~$ Different runs of the solver may find different solutions
- 504 partial industrial benchmarks (10 runs):

#Solved	Avg. #Models	Avg. Δ run time
405	7.52	20.77%

- PWBO exhibits non-deterministic behavior:
 - $\circ~$ Different runs of the solver may find different solutions
- 504 partial industrial benchmarks (10 runs):

#Solved	Avg. $\#Models$	Avg. Δ run time
405	7.52	20.77%

• Solution: import information at fixed points during the search

• Deterministic version of PWBO-P:

The definition of synchronization points must be deterministic:
 Synchronize after k conflicts (period)

18 / 27

Different kinds of synchronization:

- Standard synchronization:
 - $\circ~$ Lower bound search syncs at each core
- Period synchronization:
 - $\circ~$ Lower bound search syncs at each period
- Dynamic synchronization:
 - Dynamically adjust the size of the period

Deterministic Parallel MaxSAT (Results)

• Comparison between non-deterministic and deterministic solvers:

Solver	#Solved	Speedup	
Non-Deterministic	405	1.00	
Standard	400	0.77	
Period	400	0.88	
Dynamic	401	0.90	

• Performance of deterministic solvers are comparable to performance of non-deterministic solver

- Sharing learned clauses improves the performance of the solver
- Not all learned clauses should be shared

- Sharing learned clauses improves the performance of the solver
- Not all learned clauses should be shared
- Question: which learned clauses should be shared?

Clause Sharing Heuristics

Static:

 $\circ~$ Learned clauses are shared within a given cutoff

- Dynamic:
 - $\circ\;$ Dynamic heuristics adjust the cutoff during the search

Freezing:

 $\circ~$ Shared clauses are frozen until expected to be useful

Clause Sharing Heuristics (Experimental Results)

- Benchmarks: 504 industrial partial MaxSAT instances
- Portfolio version of PWBO with 4 threads:
 - $\circ~$ Fair evaluation: dynamic deterministic version of ${\rm PWBO}$ was used
- Solvers:
 - Static heuristics: LBD 5, Size 8, Size 32
 - $\circ~$ Dynamic heuristic: starts with a cutoff of size 8
 - $\circ~$ Freezing heuristic: uses a cutoff of size 32 $\,$

Clause Sharing Heuristics (Experimental Results)

• Comparison between clause sharing heuristics:

	Avg. $\#$ Clauses	Avg. Size	#Solved	Speedup
No Sharing	-	-	400	1.00
Random	40,686.10	99.57	400	1.12
LBD 5	20,822.01	12.66	401	1.25
Size 8	16,903.33	5.41	401	1.28
Size 32	48,687.91	13.42	401	1.24
Dynamic	28,496.23	8.57	401	1.38
Freezing	31,827.38	10.93	402	1.37

Outline

- MaxSAT Algorithms:
 - Linear search algorithms
 - Unsatisfiability-based algorithms
- Parallel MaxSAT:
 - Parallel algorithms
 - Deterministic approaches
 - Clause sharing heuristics
- Sequential MaxSAT:
 - Partitioning-based algorithms

Improving Sequential MaxSAT

- Unsatisfiability-based algorithms are very effective
- Performance is related with unsatisfiable cores given by SAT solver:
 - Some unsatisfiable cores may be unnecessarily large
 - Solution: Partitioning of the soft clauses

[ECAI'12]

(1) Partition the soft clauses

- (1) Partition the soft clauses
- (2) Add a new partition to the formula

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable:
 - Relax unsatisfiable core

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable:
 - Relax unsatisfiable core
- (4) The formula is satisfiable:
 - If there are no more partitions:
 - ▷ Optimum found
 - Otherwise, go back to 2

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable:
 - Relax unsatisfiable core
- (4) The formula is satisfiable:
 - $\circ~$ If there are no more partitions:
 - ▷ Optimum found
 - $\circ~$ Otherwise, go back to 2

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable:
 - Relax unsatisfiable core
- (4) The formula is satisfiable:
 - $\circ~$ If there are no more partitions:
 - ▷ Optimum found
 - $\circ~$ Otherwise, go back to 2

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable:
 - Relax unsatisfiable core
- (4) The formula is satisfiable:
 - If there are no more partitions:
 - ▷ Optimum found
 - Otherwise, go back to 2

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable:
 - Relax unsatisfiable core
- (4) The formula is satisfiable:
 - If there are no more partitions:
 ▷ Optimum found
 - $\circ~$ Otherwise, go back to 2

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable: • Relax unsatisfiable core
- (4) The formula is satisfiable:
 - If there are no more partitions:
 ▷ Optimum found
 - $\circ~$ Otherwise, go back to 2

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable: • Relax unsatisfiable core
- (4) The formula is satisfiable:
 - If there are no more partitions:
 - Optimum found
 - $\circ~$ Otherwise, go back to 2

- Weight-based partitioning:
 - $\circ~$ Soft clauses with the same weight belong to the same partition
- Graph-based partitioning:
 - Hypergraph graph representation
 - Variable Incidence Graph (VIG) representation
 - Clause-Variable Incidence Graph (CVIG) representation

MaxSAT Partitioning (Results)

• Benchmarks:

- 504 industrial partial MaxSAT instances
- 598 weighted partial MaxSAT instances

Solvers:

- WBO
- WEIGHT (Weight-based partitioning)
- \circ RDM (Random partitioning 16 partitions)
- \circ HYP (Hypergraph partitioning 16 partitions)
- \circ VIG (Community partitioning Variable Incidence Graph)
- $\circ~{}_{\rm CVIG}$ (Community partitioning Clause-Variable Incidence Graph)
- VBS (Virtual Best Solver)

MaxSAT Partitioning (Results)

• Running times of solvers for industrial partial MaxSAT instances

26 / 27

MaxSAT Partitioning (Results)

• Running times of solvers for weighted partial MaxSAT instances

26 / 27

Conclusions

- PWBO first parallel MaxSAT solver for multicore architectures:
 - $\circ~$ Winner of several tracks in the MaxSAT evaluations
 - Publicly available: http://sat.inesc-id.pt/pwbo/
- Deterministic parallel MaxSAT solvers have comparable performance to non-deterministic
- Sharing learned clauses boost the performance of the solver
- Partitioning-based techniques improves sequential MaxSAT

Publications

- International Journals, Conferences, Workshops:
 - 2013: AI Comm.'13*, SAT'13, RCRA'13
 - o 2012: Constraints'12, AI Comm.'12, ECAI'12, LION'12, RCRA'12
 - 2011: ICTAI'11, RCRA'11
 - 2010: SAT'10, ICTAI'10
 - 2009: ModRef'09

* Under review