
Parallel Search for Maximum Satisfiability

Ruben Martins

IST, Technical University of Lisbon, Portugal

September 9, 2013

What is Boolean Satisfiability?

CNF Formula:

x̄2 ∨ x̄1 x2 ∨ x̄3 x1

x3 x2 ∨ x̄1 x̄3 ∨ x1

• Boolean Satisfiability (SAT):
◦ Decide if the formula is satisfiable or unsatisfiable

2 / 27

What is Boolean Satisfiability?

CNF Formula:

x̄2 ∨ x̄1 x2 ∨ x̄3 x1

x3 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is unsatisfiable

2 / 27

What is Boolean Satisfiability?

CNF Formula:

x̄2 ∨ x̄1 x2 ∨ x̄3 x1

x3 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is unsatisfiable

• How many clauses can we satisfy?

2 / 27

What is Maximum Satisfiability?

CNF Formula:

x̄2 ∨ x̄1 x2 ∨ x̄3 x1

x3 x2 ∨ x̄1 x̄3 ∨ x1

• Maximum Satisfiability (MaxSAT):
◦ Find an assignment that maximizes (minimizes) number of satisfied

(unsatisfied) clauses

3 / 27

What is Maximum Satisfiability?

CNF Formula:

x̄2 ∨ x̄1 x2 ∨ x̄3 x1

x3 x2 ∨ x̄1 x̄3 ∨ x1

• An optimal solution would be:
◦ ν = {x1 = 1, x2 = 1, x3 = 1}

• This assignment unsatisfies only 1 clause

3 / 27

MaxSAT Problems

• MaxSAT:
◦ All clauses are soft
◦ Minimize number of unsatisfied soft clauses

• Partial MaxSAT:
◦ Clauses are soft or hard
◦ Hard clauses must be satisfied
◦ Minimize number of unsatisfied soft clauses

• Weighted Partial MaxSAT:
◦ Clauses are soft or hard
◦ Weights associated with soft clauses
◦ Minimize sum of weights of unsatisfied soft clauses

4 / 27

Why is MaxSAT Important?

• Many real-world applications can be encoded to MaxSAT:

◦ Software package upgradeability:

• Eclipse platform uses MaxSAT for managing the plugins dependencies

◦ Error localization in C code
◦ Debugging of hardware designs
◦ Haplotyping with pedigrees
◦ Reasoning over Biological Networks
◦ Course timetabling
◦ Combinatorial auctions
◦ . . .

• MaxSAT algorithms are effective for solving real-word problems

5 / 27

Outline

• MaxSAT Algorithms:
◦ Linear search algorithms
◦ Unsatisfiability-based algorithms

• Parallel MaxSAT:
◦ Parallel algorithms
◦ Deterministic approaches
◦ Clause sharing heuristics

• Sequential MaxSAT:
◦ Partitioning-based algorithms

6 / 27

Linear Search Algorithms

UB

OPT

• Optimum solution (OPT):
◦ Assignment with minimum cost

• Upper Bound (UB) value:
◦ Cost greater than or equal to OPT

• Linear search algorithms:
◦ Refine UB value until OPT is found

7 / 27

Linear Search Algorithms

UB

OPT

• Optimum solution (OPT):
◦ Assignment with minimum cost

• Upper Bound (UB) value:
◦ Cost greater than or equal to OPT

• Linear search algorithms:
◦ Refine UB value until OPT is found

7 / 27

Linear Search Algorithms

UB

OPT

• Optimum solution (OPT):
◦ Assignment with minimum cost

• Upper Bound (UB) value:
◦ Cost greater than or equal to OPT

• Linear search algorithms:
◦ Refine UB value until OPT is found

7 / 27

Linear Search Algorithms

Partial MaxSAT Formula:

ϕh (Hard): x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs (Soft): x1 x3 x2 ∨ x̄1 x̄3 ∨ x1

8 / 27

Linear Search Algorithms

Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

• Relax all soft clauses

• Relaxation variables:
◦ VR = {r1, r2, r3, r4}
◦ If a soft clause ωi is unsatisfied, then ri = 1
◦ If a soft clause ωi is satisfied, then ri = 0

8 / 27

Linear Search Algorithms

Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

VR = {r1, r2, r3, r4}

• Formula is satisfiable
◦ ν = {x1 = 1, x2 = 0, x3 = 0, r1 = 0, r2 = 1, r3 = 1, r4 = 0}

• Goal: Minimize the number of relaxation variables assigned to 1

8 / 27

Linear Search Algorithms

Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

µ = 2 VR = {r1, r2, r3, r4}

• r2 and r3 were assigned truth value 1:
◦ Current solution unsatisfies 2 soft clauses

• Can less than 2 soft clauses be unsatisfied?

8 / 27

Linear Search Algorithms

Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(
∑

ri∈VR
ri ≤ 1)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

µ = 2 VR = {r1, r2, r3, r4}

• Add cardinality constraint to refine UB value:
◦ CNF(r1 + r2 + r3 + r4 ≤ 1)

8 / 27

Linear Search Algorithms

Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(
∑

ri∈VR
ri ≤ 1)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

µ = 2 VR = {r1, r2, r3, r4}

• Formula is unsatisfiable:
◦ There are no solutions that unsatisfy 1 or less soft clauses

8 / 27

Linear Search Algorithms

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 x3 x2 ∨ x̄1 x̄3 ∨ x1

µ = 2 VR = {r1, r2, r3, r4}

• Optimal solution:
◦ ν = {x1 = 1, x2 = 0, x3 = 0}

8 / 27

Unsatisfiability-based Algorithms

LB

OPT

• Lower Bound (LB) value:
◦ Cost smaller than or equal to OPT

• Unsatisfiability-based algorithms:
◦ Use unsatisfiable cores to refine LB value until OPT is found

9 / 27

Unsatisfiability-based Algorithms

LB

OPT

• Lower Bound (LB) value:
◦ Cost smaller than or equal to OPT

• Unsatisfiability-based algorithms:
◦ Use unsatisfiable cores to refine LB value until OPT is found

9 / 27

Unsatisfiability-based Algorithms

LB

OPT

• Lower Bound (LB) value:
◦ Cost smaller than or equal to OPT

• Unsatisfiability-based algorithms:
◦ Use unsatisfiable cores to refine LB value until OPT is found

9 / 27

Unsatisfiability-based Algorithms

Partial MaxSAT Formula:

ϕh (Hard): x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs (Soft): x1 x3 x2 ∨ x̄1 x̄3 ∨ x1

10 / 27

Unsatisfiability-based Algorithms

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 x3 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is unsatisfiable

10 / 27

Unsatisfiability-based Algorithms

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 x3 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is unsatisfiable

• Identify an unsatisfiable core

10 / 27

Unsatisfiability-based Algorithms

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 x̄3 ∨ x1

• Relax unsatisfiable core:
◦ Add relaxation variables
◦ Add at-most-one constraint

10 / 27

Unsatisfiability-based Algorithms

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is unsatisfiable

10 / 27

Unsatisfiability-based Algorithms

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is unsatisfiable

• Identify an unsatisfiable core

10 / 27

Unsatisfiability-based Algorithms

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1) CNF(r3 + . . .+ r6 ≤ 1)

ϕs : x1 ∨ r1 ∨ r3 x3 ∨ r2 ∨ r4 x2 ∨ x̄1 ∨ r5 x̄3 ∨ x1 ∨ r6

• Relax unsatisfiable core:
◦ Add relaxation variables
◦ Add at-most-one constraint

10 / 27

Unsatisfiability-based Algorithms

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1) CNF(r3 + . . .+ r6 ≤ 1)

ϕs : x1 ∨ r1 ∨ r3 x3 ∨ r2 ∨ r4 x2 ∨ x̄1 ∨ r5 x̄3 ∨ x1 ∨ r6

• Formula is satisfiable

• Optimal solution:
◦ ν = {x1 = 1, x2 = 0, x3 = 0}

10 / 27

Outline

• MaxSAT Algorithms:
◦ Linear search algorithms
◦ Unsatisfiability-based algorithms

• Parallel MaxSAT:
◦ Parallel algorithms
◦ Deterministic approaches
◦ Clause sharing heuristics

• Sequential MaxSAT:
◦ Partitioning-based algorithms

11 / 27

Why Parallel MaxSAT?

• Multicore processors are now predominant

• Several parallel SAT solvers have emerged:
◦ Search space splitting
◦ Portfolio

• Parallel approaches for MaxSAT are just starting

• This thesis presents the first parallel MaxSAT algorithms

12 / 27

Parallel MaxSAT (2 threads) [RCRA’11, AI Comm.’12]

UBLB

OPT

• Linear search algorithms:
◦ UB search

• Unsatisfiability-based algorithms:
◦ LB search

13 / 27

Parallel MaxSAT (2 threads) [RCRA’11, AI Comm.’12]

T1 T2

UBLB

OPT

• Linear search algorithms:
◦ UB search

• Unsatisfiability-based algorithms:
◦ LB search

• Parallel search:
◦ Search on LB and UB of the optimal solution
◦ Exchange information

13 / 27

Parallel MaxSAT (n threads) [RCRA’11, ICTAI’11, AI Comm.’12]

• Splitting approach:
◦ Search on different values of the upper bound

• Portfolio approach:
◦ Multiple threads perform lower and upper bound search

14 / 27

Parallel MaxSAT (Splitting) [RCRA’11, AI Comm.’12]

T1 T2T3 T4

LUBLUB UBLB

OPT

• Local Upper Bound (LUB):
◦ Cost between LB and UB

• Splitting approach:
◦ 1 thread searches on the LB (T1)
◦ 1 thread searches on the UB (T2)
◦ Remaining threads search on LUB (T3,T4)

15 / 27

Parallel MaxSAT (Portfolio) [ICTAI’11, AI Comm.’12]

T1

T2

T3

T4

UBLB

OPT

• Portfolio approach:
◦ Half threads search on the LB (T1,T2)
◦ Half threads search on the UB (T3,T4)
◦ Diversification of the search using different cardinality constraints

16 / 27

Parallel MaxSAT (Experimental Results)

• Benchmarks: 497 industrial partial MaxSAT instances

• Timeout: 1,800 seconds

• Solvers:
◦ wbo (sequential MaxSAT solver - 1 run):

• Uses a linear search algorithm for 10% of the time limit
• If no solution is found changes to unsatisfiability-based algorithm

◦ pwbo (parallel MaxSAT solver - 10 runs):

• 2 threads, pwbo-t2
• 4 and 8 threads, pwbo-s (splitting approach)
• 4 and 8 threads, pwbo-p (portfolio approach)

17 / 27

Parallel MaxSAT (Experimental Results)

• Number of instances solved by each solver and speedup of pwbo:

#Solved Speedup
wbo 317 1.00
pwbo-t2 398 2.69
pwbo-p-t4 399 3.92
pwbo-s-t4 399 4.16
pwbo-s-t8 399 4.83
pwbo-p-t8 403 5.19

17 / 27

Parallel MaxSAT (Experimental Results)

• Impact of sharing learned clauses:

10
1

10
2

10
3

10
1

10
2

10
3

P
W

B
O

-P
-T

8
 w

/o
 s

h
ar

in
g

PWBO-P-T8 w/ sharing

10
1

10
2

10
3

10
1

10
2

10
3

P
W

B
O

-S
-T

8
 w

/o
 s

h
ar

in
g

PWBO-S-T8 w/ sharing

17 / 27

Deterministic Parallel MaxSAT [RCRA’12, AI Comm.’13]

• pwbo exhibits non-deterministic behavior:
◦ Different runs of the solver may find different solutions

• 504 partial industrial benchmarks (10 runs):

#Solved Avg. #Models Avg. ∆ run time

405 7.52 20.77%

• Solution: import information at fixed points during the search

18 / 27

Deterministic Parallel MaxSAT [RCRA’12, AI Comm.’13]

• pwbo exhibits non-deterministic behavior:
◦ Different runs of the solver may find different solutions

• 504 partial industrial benchmarks (10 runs):

#Solved Avg. #Models Avg. ∆ run time

405 7.52 20.77%

• Solution: import information at fixed points during the search

18 / 27

Deterministic Parallel MaxSAT [RCRA’12, AI Comm.’13]

• Deterministic version of pwbo-p:Figure 1: Execution of the deterministic solver based on syncronization points

Threadlb
1 (t1)

LB Search
(export: clauses)

export:
unsat core

sync

import:
unsat core, clauses

LB Search
(export: clauses)

. . .

sync

end

Threadlb
2 (t2)

LB Search
(export: clauses)

export:
unsat core

sync

import:
unsat core, clauses

LB Search
(export: clauses)

. . .

sync

end

Threadub
3 (t3)

UB Search
(export: clauses)

export:
solution, UB value

sync

import:
UB value, clauses

UB Search
(export: clauses)

optimal solution
export: solution

sync

end

Threadub
4 (t4)

UB Search
(export: clauses)

export:
solution, UB value

sync

import:
UB value, clauses

UB Search
(export: clauses)

. . .

sync

end

1

Figure 5.1: Execution of the deterministic solver based on synchronization points

identifiers in increasing order. For example, consider in Figure 5.1 that thread t1 and thread t2

find an unsatisfiable core with the same cost and size. After the synchronization point, thread t1

does not import the unsatisfiable core from thread t2. On the other hand, thread t2 discards the

unsatisfiable core that was found in the last period and imports the unsatisfiable core exported by

thread t1. Notice that, similarly to the non-deterministic version, all threads that are searching

on the lower bound always have the same unsatisfiable cores after a synchronization point.

Threads that are searching on the upper bound export their best solution and the corresponding

upper bound value before reaching the synchronization point. At a synchronization point, each

thread imports the smallest upper bound value between all threads. As a result, all threads that

are searching on the upper bound will have the same upper bound value after the synchronization

point.

Learned clauses are also imported at synchronization points. Each thread imports the learned

clauses that were exported by the remaining threads since the last synchronization point. Note that

71

• The definition of synchronization points must be deterministic:
◦ Synchronize after k conflicts (period)

18 / 27

Deterministic Parallel MaxSAT [RCRA’12, AI Comm.’13]

Different kinds of synchronization:

• Standard synchronization:
◦ Lower bound search syncs at each core

• Period synchronization:
◦ Lower bound search syncs at each period

• Dynamic synchronization:
◦ Dynamically adjust the size of the period

18 / 27

Deterministic Parallel MaxSAT (Results)

• Comparison between non-deterministic and deterministic solvers:

Solver #Solved Speedup

Non-Deterministic 405 1.00
Standard 400 0.77
Period 400 0.88
Dynamic 401 0.90

• Performance of deterministic solvers are comparable to
performance of non-deterministic solver

19 / 27

Clause Sharing Heuristics [LION’12, AI Comm.’13]

• Sharing learned clauses improves the performance of the solver

• Not all learned clauses should be shared

• Question: which learned clauses should be shared?

20 / 27

Clause Sharing Heuristics [LION’12, AI Comm.’13]

• Sharing learned clauses improves the performance of the solver

• Not all learned clauses should be shared

• Question: which learned clauses should be shared?

20 / 27

Clause Sharing Heuristics [LION’12, AI Comm.’13]

• Static:
◦ Learned clauses are shared within a given cutoff

• Dynamic:
◦ Dynamic heuristics adjust the cutoff during the search

• Freezing:
◦ Shared clauses are frozen until expected to be useful

20 / 27

Clause Sharing Heuristics (Experimental Results)

• Benchmarks: 504 industrial partial MaxSAT instances

• Portfolio version of pwbo with 4 threads:
◦ Fair evaluation: dynamic deterministic version of pwbo was used

• Solvers:
◦ Static heuristics: LBD 5, Size 8, Size 32
◦ Dynamic heuristic: starts with a cutoff of size 8
◦ Freezing heuristic: uses a cutoff of size 32

21 / 27

Clause Sharing Heuristics (Experimental Results)

• Comparison between clause sharing heuristics:

Avg. #Clauses Avg. Size #Solved Speedup
No Sharing - - 400 1.00
Random 40,686.10 99.57 400 1.12
LBD 5 20,822.01 12.66 401 1.25
Size 8 16,903.33 5.41 401 1.28
Size 32 48,687.91 13.42 401 1.24
Dynamic 28,496.23 8.57 401 1.38
Freezing 31,827.38 10.93 402 1.37

21 / 27

Outline

• MaxSAT Algorithms:
◦ Linear search algorithms
◦ Unsatisfiability-based algorithms

• Parallel MaxSAT:
◦ Parallel algorithms
◦ Deterministic approaches
◦ Clause sharing heuristics

• Sequential MaxSAT:
◦ Partitioning-based algorithms

22 / 27

Improving Sequential MaxSAT [ECAI’12, SAT’13]

• Unsatisfiability-based algorithms are very effective

• Performance is related with unsatisfiable cores given by SAT solver:

◦ Some unsatisfiable cores may be unnecessarily large

◦ Solution: Partitioning of the soft clauses

23 / 27

Partition-based MaxSAT algorithms [ECAI’12]

(1) Partition the soft clauses
γ1 γ2 γ3

24 / 27

Partition-based MaxSAT algorithms [ECAI’12]

(1) Partition the soft clauses

(2) Add a new partition to the formula
γ1 γ2 γ3

24 / 27

Partition-based MaxSAT algorithms [ECAI’12]

(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
◦ Relax unsatisfiable core

γ1 γ2 γ3

24 / 27

Partition-based MaxSAT algorithms [ECAI’12]

(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
◦ Relax unsatisfiable core

(4) The formula is satisfiable:
◦ If there are no more partitions:
. Optimum found

◦ Otherwise, go back to 2

γ1 γ2 γ3

24 / 27

Partition-based MaxSAT algorithms [ECAI’12]

(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
◦ Relax unsatisfiable core

(4) The formula is satisfiable:
◦ If there are no more partitions:
. Optimum found

◦ Otherwise, go back to 2

γ1 γ2 γ3

γ1 ∪ γ2

24 / 27

Partition-based MaxSAT algorithms [ECAI’12]

(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
◦ Relax unsatisfiable core

(4) The formula is satisfiable:
◦ If there are no more partitions:
. Optimum found

◦ Otherwise, go back to 2

γ1 γ2 γ3

γ1 ∪ γ2

24 / 27

Partition-based MaxSAT algorithms [ECAI’12]

(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
◦ Relax unsatisfiable core

(4) The formula is satisfiable:
◦ If there are no more partitions:
. Optimum found

◦ Otherwise, go back to 2

γ1 γ2 γ3

γ1 ∪ γ2

24 / 27

Partition-based MaxSAT algorithms [ECAI’12]

(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
◦ Relax unsatisfiable core

(4) The formula is satisfiable:
◦ If there are no more partitions:
. Optimum found

◦ Otherwise, go back to 2

γ1 γ2 γ3

γ1 ∪ γ2

γ1 ∪ γ2 ∪ γ3

24 / 27

Partition-based MaxSAT algorithms [ECAI’12]

(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
◦ Relax unsatisfiable core

(4) The formula is satisfiable:
◦ If there are no more partitions:
. Optimum found

◦ Otherwise, go back to 2

γ1 γ2 γ3

γ1 ∪ γ2

γ1 ∪ γ2 ∪ γ3

24 / 27

Partition-based MaxSAT algorithms [ECAI’12]

(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
◦ Relax unsatisfiable core

(4) The formula is satisfiable:
◦ If there are no more partitions:
. Optimum found

◦ Otherwise, go back to 2

γ1 γ2 γ3

γ1 ∪ γ2

γ1 ∪ γ2 ∪ γ3

24 / 27

MaxSAT Partitioning [ECAI’12, SAT’13]

• Weight-based partitioning:
◦ Soft clauses with the same weight belong to the same partition

• Graph-based partitioning:
◦ Hypergraph graph representation
◦ Variable Incidence Graph (VIG) representation
◦ Clause-Variable Incidence Graph (CVIG) representation

25 / 27

MaxSAT Partitioning (Results)

• Benchmarks:
◦ 504 industrial partial MaxSAT instances

◦ 598 weighted partial MaxSAT instances

• Solvers:
◦ wbo

◦ weight (Weight-based partitioning)

◦ rdm (Random partitioning − 16 partitions)

◦ hyp (Hypergraph partitioning − 16 partitions)

◦ vig (Community partitioning − Variable Incidence Graph)

◦ cvig (Community partitioning − Clause-Variable Incidence Graph)

◦ vbs (Virtual Best Solver)

26 / 27

MaxSAT Partitioning (Results)

• Running times of solvers for industrial partial MaxSAT instances

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 100 150 200 250 300

se
co

n
d

s

instances

WBO
rdm
hyp

CVIG
VIG
VBS

26 / 27

MaxSAT Partitioning (Results)

• Running times of solvers for weighted partial MaxSAT instances

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 100 150 200 250 300 350 400

se
co

n
d

s

instances

rdm
hyp

VIG
CVIG
WBO

weight
VBS

26 / 27

Conclusions

• pwbo first parallel MaxSAT solver for multicore architectures:
◦ Winner of several tracks in the MaxSAT evaluations
◦ Publicly available: http://sat.inesc-id.pt/pwbo/

• Deterministic parallel MaxSAT solvers have comparable
performance to non-deterministic

• Sharing learned clauses boost the performance of the solver

• Partitioning-based techniques improves sequential MaxSAT

27 / 27

Publications

• International Journals, Conferences, Workshops:
◦ 2013: AI Comm.’13∗, SAT’13, RCRA’13

◦ 2012: Constraints’12, AI Comm.’12, ECAI’12, LION’12, RCRA’12

◦ 2011: ICTAI’11, RCRA’11

◦ 2010: SAT’10, ICTAI’10

◦ 2009: ModRef’09

∗ Under review

27 / 27

