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How to encode a problem into SAT?

c famous problem (in CNF)
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How to encode a problem into SAT?

c pigeon hole problem
pcnf69
140
250
360
-1-20
-1-30
-2-30
-4-50
-4-60
560

# pigeon[1]@hole[1] V pigeon[1]@hole[2
# pigeon[2]@hole[1] V pigeon[2]@hole[2
# pigeon[3]@hole[1] V pigeon[3]@hole[2

# —pigeon[1]@hole[1]
# —pigeon[1]@hole[1]
# —pigeon[2]@hole[1]
# —pigeon[1]@hole[2]
# —pigeon[1]@hole[2]
# —pigeon|[2]@hole[2]

[1] ]
[2] ]
[3] ]
—pigeon[2]@hole[1]
—pigeon|[3]@hole[1]
—pigeon|[3]@hole[1]
—pigeon[2]@hole[2]
—pigeon|[3]@hole[2]
—pigeon[3]@hole[2]
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Encoding to CNF

e What to encode?
o Boolean formulas
e Tseitin's encoding
e Plaisted& Greenbaum’s encoding
O cee
Natural numbers
Cardinality constraints
Pseudo-Boolean (PB) constraints
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Encoding to CNF

e What to encode?
o Boolean formulas
e Tseitin's encoding
e Plaisted& Greenbaum’s encoding
O cee
Natural numbers
Cardinality constraints
Pseudo-Boolean (PB) constraints

O O O O

L4 There are no CNF pr0b|emS ! [Source: Peter J. Stuckey 2013]

o Structure is lost when encoding to CNF



.
Why CNF?

e Any propositional formula may be converted into an equisatisfiable
CNF formula with only linear increase in size:

o Use Tseitin's encoding !

e CNF makes it possible to perform interesting deductions
(resolution)

e SAT solvers use CNF as the standard input format



Tseitin's encoding

Convert ¢ = (aV b) — (aV ) to an equisatisfiable CNF formula

e For each subformula, introduce new variables: t; for ¢, t, for
(aV b), t3 for (aV T), and t4 for ©

e Stipulate equivalences and convert them to CNF:
ty < (tz — l'3) = 1 = (?1VE2\/t3)/\(t2\/t1)\/(f3\/t1)

thr (aVb)=wa=(BVavbA@EVE)A(bV )
ts3 e (aVi)=@3=(Va)A(tsVt) A(EV VL)

t4<—>5:<p4:(t4VE)/\(t4VC)

@]

O O O

e The formula t; A @1 A w2 A 3 A @a is equisatisfiable to ¢ and is in
CNF



Tseitin's encoding

e Using automated tools to encode to CNF:
e.g limboole: http://fmv. jku.at/limboole
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Tseitin's encoding

e Using automated tools to encode to CNF:
e.g limboole: http://fmv. jku.at/limboole

e Tseitin's encoding may add many redundant variables/clauses !

o Using limboole for the pigeon hole problem (n=3) creates a formula
with 40 variables and 98 clauses

o After unit propagation the formula has 12 variables and 28 clauses

O


http://fmv.jku.at/limboole

How to encode natural numbers?

e Onehot encoding:

o Each number is represented by a boolean variable: xp ... x,
o At most one number: A, X V X;
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e Onehot encoding:

o Each number is represented by a boolean variable: xp ... x,
o At most one number: A, X V X;

e Unary encoding:
o Each variable x, is true iff the number is equal to or greater than n:
e.g. xo = 1 represents that the number is equal to or greater than 2

o x; implies xj1: /\l.<j>_<,-\/xj



How to encode natural numbers?

e Onehot encoding:
o Each number is represented by a boolean variable: xp ... x,
o At most one number: A, X V X;

e Unary encoding:
o Each variable x, is true iff the number is equal to or greater than n:
e.g. xo = 1 represents that the number is equal to or greater than 2

o x; implies xj1: /\l.<j>_<,-\/xj

e Binary encoding:
o Use [logzn] auxiliary variables to represent n in binary

e.g. Consider n = 3:
X0 (nymber 0) corresponds to the binary representation 00
Xo V bg, Xo V b1



How to encode cardinality constraints?

At-most-one constraints:

¢ Naive (pairwise) encoding for at-most-one constraints:

o Cardinality constraint: x; +x +x3 + x5 <1

o Clauses:
(X]_ = _\Xg) —ix1 V xo
(X1 = _|X3) =X V X3
(x1 = —xq) —x1 V —xg

o Complexity: O(n?) clauses



How to encode cardinality constraints?

At-most-k constraints:

e Naive encoding for at-most-k constraints:

o Cardinality constraint: x; +x, + x3 + x5 < 2

o Clauses:
(x1 A x2 = —x3) (=x1 V —x2 V —x3)
(1 A x2 = —xq) (mx1 V —x2 V —xq)
(2 A x3 = —xq) (mx2 V —x3 V —xq)

o Complexity: O(n*) clauses



Encodings for cardinality constraints

’ Encoding \ Clauses \ Variables \ Type
Pairwise O(n?) 0 at-most-one
Ladder O(n) O(n) at-most-one
Bitwise O(n logy n) | O(logs n) at-most-one
Commander | O(n) O(n) at-most-one
Product O(n) O(n) at-most-one
Sequential O(nk) O(nk) at-most-k
Totalizer O(nk) O(n logy n) | at-most-k
Sorters O(n logz n) | O(n logs n) | at-most-k




Encodings for cardinality constraints

’ Encoding \ Clauses \ Variables \ Type
Pairwise O(n?) 0 at-most-one
Ladder O(n) O(n) at-most-one
Bitwise O(n logy n) | O(logs n) at-most-one
Commander | O(n) O(n) at-most-one
Product O(n) O(n) at-most-one
Sequential O(nk) O(nk) at-most-k
Totalizer O(nk) O(n logy n) | at-most-k
Sorters O(n logz n) | O(n logs n) | at-most-k

e Example on the board



Encodings for cardinality constraints

’ Encoding \ Clauses \ Variables \ Type
Pairwise O(n?) 0 at-most-one
Ladder O(n) O(n) at-most-one
Bitwise O(n logy n) | O(logs n) at-most-one
Commander | O(n) O(n) at-most-one
Product O(n) O(n) at-most-one
Sequential O(nk) O(nk) at-most-k
Totalizer O(nk) O(n logy n) | at-most-k
Sorters O(n logz n) | O(n logs n) | at-most-k

e Many more encodings exist
e They can also be generalized to pseudo-Boolean constraints:
0 aixy+axxo+ ...+ apx, < k



Simplification of encodings

e Many problems are highly symmetrical
e.g Quasigroups:
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Simplification of encodings
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Simplification of encodings
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Simplification of encodings

e Many problems are highly symmetrical
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Simplification of encodings

e Many problems are highly symmetrical

e.g Quasigroups:

2

1

9

1

5

418 |7

1

219136

1

1

7152|638

41918|6|2]|5

1

1

6/5/2|9|7]4|3

9/5(2(6(3|8|7|4

3

1
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415|7|8

1

916 (2|3|5

5/12(8|6|4|7|3]9

314]9

8

2184|736
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Simplification of encodings

e Many problems are highly symmetrical
e.g Quasigroups:

e Breaking symmetries:

o Change the search algorithm of the SAT solver?
o Remodel the problem

o Add symmetry breaking constraints

e.g. Impose lexicographical order
o Automated tools for finding symmetries:
e shatter http://www.aloul.net/Tools/shatter/
e Other simplifications:
o Formula simplification by preprocessing

e CP3 http://tools.computational-logic.org/content/riss3g.php

10
-


http://www.aloul.net/Tools/shatter/
http://tools.computational-logic.org/content/riss3g.php

Incremental SAT solving

e Calling a SAT solver solver multiple times
e Changing the formula at each iteration

o Adding new clauses is easy!
o How to remove clauses?

11



Incremental SAT solving

Calling a SAT solver solver multiple times
Changing the formula at each iteration

o Adding new clauses is easy!
o How to remove clauses?

e Use assumptions
Add a fresh variables to clauses that you may want to remove:

o (aV bV f), where f is a fresh variable
o Set f to 0 to consider the clause
o Set f to 1 to remove the clause

11
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Other tips for encodings

e Tweaking solver parameters

o Changing the set of decision variables
Bumping activity of more important variables

O
o ...
o Disclaimer: | would not recommend on doing this !

e Order of variable indexes
o Close variables are usually related

e Solutions close to zero
o SAT solvers usually branch on 0 first

12



Encoding a problem into SAT — Towers of Hanoi

13



Encoding a problem into SAT — Towers of Hanoi

e Only one disk may be moved at a time;
e No disk may be placed on the top of a smaller disk;

e Each move consists in taking the upper disk from one of the towers
and sliding it onto the top of another tower.

13



How to encode ToH?

STRIPS planning mode:

e \ariables

Actions: preconditions — postconditions

Initial state

Goal state

14



How to encode ToH?

[Source: Selman & Kautz 1996]

Variables: on(d, dt, i); clear(dt, i)
Actions: move(d, dt, dt, i) = obj(d, i) A from(dt, i) A to(dt, )
o preconditions:

clear(d, i), clear(dt’, i), on(d, dt, i)

o postconditions:
on(d, dt', i+ 1), clear(dt, i + 1), —on(d, dt, i), ~clear(dt',i + 1)

Initial state:

o on(dy, d>,1),...,0n(dr—1,d,, 1), 0n(dp, t1,1)
clear(dy, 1), clear(ty, 1), clear(tz, 1), clear(ts, 1)

o All other variables initialized to false

Goal state:
o on(dy,dr,2" —1),...,0n(dy—1,ds, 2" — 1), 0n(d,, t1,2" — 1)

14



How to encode ToH?

[Source: Selman & Kautz 1996]

Constraints:

Exactly one disk is moved at each time step

There is exactly one movement at each time step

There are no movements to exactly the same position

For a movement to be done the preconditions must be satisfied
After performing a movement the postconditions are implied
No disks can be moved to the top of smaller disks

Initial state holds at time step 0

Goal state holds ate time step 27 — 1

Preserve the value of variables that were unaffected by movements

14



How good is this encoding?

Time limit of 10,000 seconds using picosat

n | Selman
4 0.16
5 8.31
6 54.70
7 | 5252.27
8 _

9 -

10 -

11 -

12 -

15



A more compact encoding

[Source: Prestwich 2007]

e Actions: move(d, dt,dt,i) = obj(d, i) A from(dt, i) A to(dt, )
o Before:
e Movements from disks/towers to disks/towers
o Now:

e Movements from towers to towers
e Clear variable can be removed

e More compact encoding:

o Before: 5 towers requires 1,931 variables and 14,468 clauses
o Now: 5 towers only requires 821 variables and 6,457 clauses

16



How good is this encoding?

n | Selman | Prestwich
4 0.16 0.01
5 8.31 0.08
6 54.70 0.47
7 | 5252.27 3.65
8 - 109.7
9 - 7126.57
10 - -

11 - -

12 = =

e Can we do better?

o Look at the properties of the problem !




ToH Properties (Recursion)

e Given a ToH of size n, one may easily find a solution taking into
account the solution for a ToH of size n — 1
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ToH Properties (Recursion)

f

e Given a ToH of size n, one may easily find a solution taking into
account the solution for a ToH of size n — 1

e The order of the disks to be moved after moving the largest disk is
exactly the same as before
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ToH Properties (Recursion)

e Given a ToH of size n, one may easily find a solution taking into
account the solution for a ToH of size n — 1

e The order of the disks to be moved after moving the largest disk is
exactly the same as before
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ToH Properties (Symmetry)

e ToH can be solved in 2" — 1 steps

e Considering the relationship between the movement of the disks
after/before moving the largest disk we only need to determine the
first 271 — 1 steps

19



ToH Properties (Symmetry)

-4

e ToH can be solved in 2" — 1 steps

e Considering the relationship between the movement of the disks
after/before moving the largest disk we only need to determine the
first 271 — 1 steps

19



ToH Properties (Parity)

e When moving disks, no two odd/even disks can be moved next to
each other
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ToH Properties (Parity)
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e When moving disks, no two odd/even disks can be moved next to
each other
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ToH Properties (Parity)

RNy

e When moving disks, no two odd/even disks can be moved next to
each other

20



ToH Properties (Parity)

Y

e When moving disks, no two odd/even disks can be moved next to
each other
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ToH Properties (Parity)

-4

e When moving disks, no two odd/even disks can be moved next to
each other

20



ToH Properties (Cycle)

e All disks cycle in a given order between the towers:

o If nis even the odd disks will cycle clockwise (T; — T, — T3 — Ty)
while the even disks will cycle counterclockwise
(Tl — T3 — T2 = Tl)
o If nis odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise
21
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ToH Properties (Cycle)

-

e All disks cycle in a given order between the towers:

o If nis even the odd disks will cycle clockwise (T; — T, — T3 — Ty)
while the even disks will cycle counterclockwise
(Tl — T3 — T2 = Tl)
o If nis odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise
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ToH Properties (Cycle)

PRy

e All disks cycle in a given order between the towers:

o If nis even the odd disks will cycle clockwise (T; — T, — T3 — Ty)
while the even disks will cycle counterclockwise
(Tl — T3 — T2 = Tl)
o If nis odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise
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ToH Properties (Cycle)

Y

e All disks cycle in a given order between the towers:

o If nis even the odd disks will cycle clockwise (T; — T, — T3 — Ty)
while the even disks will cycle counterclockwise
(Tl — T3 — T2 = Tl)
o If nis odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise
21



ToH Properties (Cycle)
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e All disks cycle in a given order between the towers:

o If nis even the odd disks will cycle clockwise (T; — T, — T3 — Ty)
while the even disks will cycle counterclockwise
(Tl — T3 — T2 = Tl)
o If nis odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise
21



Experimental Results

’ Size \ Selman ‘ Prestwich

Disk Parity | Disk Cycle |

4 0,16 0.01 0 0

5 8.31 0.08 0.01 0.02
6 54.70 0.47 0.03 0.05
7 | 5252.27 3.65 0.70 0.20
8 - 109.7 5.19 5.18
9 - 7126.57 79.11 7.65
10 - - 1997.19 973.95
11 - - - 1206.37
12 - - - -

e Disk Parity and Disk Cycle encodings use the symmetry property




Experimental Results

’ Size \ Selman ‘ Prestwich

Disk Parity | Disk Cycle |

4 0,16 0.01 0 0

5 8.31 0.08 0.01 0.02
6 54.70 0.47 0.03 0.05
7 | 5252.27 3.65 0.70 0.20
8 - 109.7 5.19 5.18
9 - 7126.57 79.11 7.65
10 - - 1997.19 973.95
11 - - - 1206.37
12 - - - -

e Disk Parity and Disk Cycle encodings use the symmetry property
e Can we still do better?

22



A new encoding for ToH

e The Disk Sequence encoding:
o The recursive property determines the disks to be moved at each step

o Taking into consideration this we can keep only the variables on and
drop all the others

e Problem can be solved with just unit propagation !

23



Experimental Results

’ Size \ Selman \ Prestwich \ Disk Parity \ Disk Cycle \ Disk Sequence ‘

4 0.16 0.01 0 0 0
5 8.31 0.08 0.01 0.02 0
6 54.70 0.47 0.03 0.05 0
7 5252.27 3.65 0.70 0.20 0.01
8 - 109.7 5.19 5.18 0.03
9 - 7126.57 79.11 7.65 0.09
10 - - 1997.19 973.95 0.23
11 - - - 1206.37 0.56
12 - - - - 1.32

24



How is the structure of these formulas?

Selman encoding (n = 3)
SATGraf— https://ece.uwaterloo.ca/~vganesh/EvoGraph/Download.html
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How is the structure of these formulas?

Prestwich encoding (n = 3)
SATGraf— https://ece.uwaterloo.ca/~vganesh/EvoGraph/Download.html
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How is the structure of these formulas?

Disk Sequence encoding (n = 3)
SATGraf— nttps://ece.uwaterloo.ca/~vganesh/EvoGraph/Download.html
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Conclusions

e Encoding is an art !
o Hard to evaluate which encoding is the best

o Small encoding not necessarily means better one

e Each problem is unique !
o Use your domain knowledge
o Encode the properties of the problem

o Break symmetries

e Automated tools ?
o Can make your life easier
o Not as good as handmade encodings
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