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How to encode a problem into SAT?

c famous problem (in CNF)
p cnf 6 9
1 4 0
2 5 0
3 6 0
-1 -2 0
-1 -3 0
-2 -3 0
-4 -5 0
-4 -6 0
-5 -6 0
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How to encode a problem into SAT?

c pigeon hole problem
p cnf 6 9
1 4 0 # pigeon[1]@hole[1] ∨ pigeon[1]@hole[2]
2 5 0 # pigeon[2]@hole[1] ∨ pigeon[2]@hole[2]
3 6 0 # pigeon[3]@hole[1] ∨ pigeon[3]@hole[2]
-1 -2 0 # ¬pigeon[1]@hole[1] ∨ ¬pigeon[2]@hole[1]
-1 -3 0 # ¬pigeon[1]@hole[1] ∨ ¬pigeon[3]@hole[1]
-2 -3 0 # ¬pigeon[2]@hole[1] ∨ ¬pigeon[3]@hole[1]
-4 -5 0 # ¬pigeon[1]@hole[2] ∨ ¬pigeon[2]@hole[2]
-4 -6 0 # ¬pigeon[1]@hole[2] ∨ ¬pigeon[3]@hole[2]
-5 -6 0 # ¬pigeon[2]@hole[2] ∨ ¬pigeon[3]@hole[2]
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Encoding to CNF

• What to encode?
◦ Boolean formulas

• Tseitin’s encoding
• Plaisted&Greenbaum’s encoding
• . . .

◦ Natural numbers
◦ Cardinality constraints
◦ Pseudo-Boolean (PB) constraints
◦ . . .

• There are no CNF problems ! [Source: Peter J. Stuckey 2013]

◦ Structure is lost when encoding to CNF
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Why CNF?

• Any propositional formula may be converted into an equisatisfiable
CNF formula with only linear increase in size:

◦ Use Tseitin’s encoding !

• CNF makes it possible to perform interesting deductions
(resolution)

• SAT solvers use CNF as the standard input format
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Tseitin’s encoding

Convert ϕ = (a ∨ b)→ (a ∨ c̄) to an equisatisfiable CNF formula

• For each subformula, introduce new variables: t1 for ϕ, t2 for
(a ∨ b), t3 for (a ∨ c̄), and t4 for c̄

• Stipulate equivalences and convert them to CNF:
◦ t1 ↔ (t2 → t3)⇒ ϕ1 = (t̄1 ∨ t̄2 ∨ t3) ∧ (t2 ∨ t1) ∨ (t̄3 ∨ t1)
◦ t2 ↔ (a ∨ b)⇒ ϕ2 = (t̄2 ∨ a ∨ b) ∧ (ā ∨ t2) ∧ (b̄ ∨ t2)
◦ t3 ↔ (a ∨ t̄4)⇒ ϕ3 = (t̄3 ∨ a) ∧ (t̄3 ∨ t4) ∧ (ā ∨ t̄4 ∨ t3)
◦ t4 ↔ c̄ ⇒ ϕ4 = (t4 ∨ c̄) ∧ (t4 ∨ c)

• The formula t1 ∧ ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 is equisatisfiable to ϕ and is in
CNF
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Tseitin’s encoding

• Using automated tools to encode to CNF:

e.g limboole: http://fmv.jku.at/limboole

• Tseitin’s encoding may add many redundant variables/clauses !

◦ Using limboole for the pigeon hole problem (n=3) creates a formula
with 40 variables and 98 clauses

◦ After unit propagation the formula has 12 variables and 28 clauses
◦ Original CNF formula only has 6 variables and 9 clauses
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How to encode natural numbers?

• Onehot encoding:
◦ Each number is represented by a boolean variable: x0 . . . xn
◦ At most one number:

∧
i 6=j x̄i ∨ x̄j

• Unary encoding:
◦ Each variable xn is true iff the number is equal to or greater than n:

e.g. x2 = 1 represents that the number is equal to or greater than 2

◦ xi implies xi+1:
∧

i<j x̄i ∨ xj

• Binary encoding:
◦ Use dlog2ne auxiliary variables to represent n in binary

e.g. Consider n = 3:
x0 (number 0) corresponds to the binary representation 00
x̄0 ∨ b̄0, x̄0 ∨ b̄1
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How to encode cardinality constraints?

At-most-one constraints:

• Naive (pairwise) encoding for at-most-one constraints:

◦ Cardinality constraint: x1 + x2 + x3 + x4 ≤ 1
◦ Clauses:

(x1 ⇒ ¬x2)
(x1 ⇒ ¬x3)
(x1 ⇒ ¬x4)

. . .


¬x1 ∨ ¬x2
¬x1 ∨ ¬x3
¬x1 ∨ ¬x4

. . .

◦ Complexity: O(n2) clauses
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How to encode cardinality constraints?

At-most-k constraints:

• Naive encoding for at-most-k constraints:

◦ Cardinality constraint: x1 + x2 + x3 + x4 ≤ 2
◦ Clauses:

(x1 ∧ x2 ⇒ ¬x3)
(x1 ∧ x2 ⇒ ¬x4)
(x2 ∧ x3 ⇒ ¬x4)

. . .


(¬x1 ∨ ¬x2 ∨ ¬x3)
(¬x1 ∨ ¬x2 ∨ ¬x4)
(¬x2 ∨ ¬x3 ∨ ¬x4)

. . .

◦ Complexity: O(nk) clauses
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Encodings for cardinality constraints

Encoding Clauses Variables Type

Pairwise O(n2) 0 at-most-one

Ladder O(n) O(n) at-most-one

Bitwise O(n log2 n) O(log2 n) at-most-one

Commander O(n) O(n) at-most-one

Product O(n) O(n) at-most-one

Sequential O(nk) O(nk) at-most-k

Totalizer O(nk) O(n log2 n) at-most-k

Sorters O(n log2
2 n) O(n log2

2 n) at-most-k
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Encodings for cardinality constraints

Encoding Clauses Variables Type

Pairwise O(n2) 0 at-most-one

Ladder O(n) O(n) at-most-one
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• Example on the board
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Encodings for cardinality constraints

Encoding Clauses Variables Type

Pairwise O(n2) 0 at-most-one

Ladder O(n) O(n) at-most-one

Bitwise O(n log2 n) O(log2 n) at-most-one

Commander O(n) O(n) at-most-one

Product O(n) O(n) at-most-one

Sequential O(nk) O(nk) at-most-k

Totalizer O(nk) O(n log2 n) at-most-k

Sorters O(n log2
2 n) O(n log2

2 n) at-most-k

• Many more encodings exist

• They can also be generalized to pseudo-Boolean constraints:
◦ a1x1 + a2x2 + . . . + anxn ≤ k
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Simplification of encodings

• Many problems are highly symmetrical

e.g Quasigroups:

0
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0

0
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Simplification of encodings

• Many problems are highly symmetrical

e.g Quasigroups:

6 9 3 7 8 4 5 1 2

4 8 7 5 1 2 9 3 6

1 2 5 9 6 3 8 7 4

9 3 2 6 5 1 4 8 7

5 6 8 2 4 7 3 9 1

7 4 1 3 9 8 6 2 5

3 1 9 4 7 5 2 6 8

8 5 6 1 2 9 7 4 3

2 7 4 8 3 6 1 5 9
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Simplification of encodings

• Many problems are highly symmetrical

e.g Quasigroups:

6 7 3 9 8 4 5 1 2

4 5 7 8 1 2 9 3 6

1 9 5 2 6 3 8 7 4

9 6 2 3 5 1 4 8 7

5 2 8 6 4 7 3 9 1

7 3 1 4 9 8 6 2 5

3 4 9 1 7 5 2 6 8

8 1 6 5 2 9 7 4 3

2 8 4 7 3 6 1 5 9
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Simplification of encodings

• Many problems are highly symmetrical

e.g Quasigroups:

• Breaking symmetries:
◦ Change the search algorithm of the SAT solver?

◦ Remodel the problem

◦ Add symmetry breaking constraints

e.g. Impose lexicographical order

◦ Automated tools for finding symmetries:

• shatter http://www.aloul.net/Tools/shatter/

• Other simplifications:
◦ Formula simplification by preprocessing

• CP3 http://tools.computational-logic.org/content/riss3g.php
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Incremental SAT solving

• Calling a SAT solver solver multiple times

• Changing the formula at each iteration
◦ Adding new clauses is easy!
◦ How to remove clauses?

• Use assumptions

• Add a fresh variables to clauses that you may want to remove:
◦ (a ∨ b ∨ f ), where f is a fresh variable
◦ Set f to 0 to consider the clause
◦ Set f to 1 to remove the clause
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Other tips for encodings

• Tweaking solver parameters
◦ Changing the set of decision variables
◦ Bumping activity of more important variables
◦ . . .
◦ Disclaimer: I would not recommend on doing this !

• Order of variable indexes
◦ Close variables are usually related

• Solutions close to zero
◦ SAT solvers usually branch on 0 first
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Encoding a problem into SAT – Towers of Hanoi

• Only one disk may be moved at a time;

• No disk may be placed on the top of a smaller disk;

• Each move consists in taking the upper disk from one of the towers
and sliding it onto the top of another tower.
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How to encode ToH?

STRIPS planning mode:

• Variables

• Actions: preconditions → postconditions

• Initial state

• Goal state
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How to encode ToH?

[Source: Selman & Kautz 1996]

• Variables: on(d , dt, i); clear(dt, i)

• Actions: move(d , dt, dt, i) = obj(d , i) ∧ from(dt, i) ∧ to(dt, i)
◦ preconditions:

clear(d , i), clear(dt ′, i), on(d , dt, i)
◦ postconditions:

on(d , dt ′, i + 1), clear(dt, i + 1),¬on(d , dt, i),¬clear(dt ′, i + 1)

• Initial state:
◦ on(d1, d2, 1), . . . , on(dn−1, dn, 1), on(dn, t1, 1)

clear(d1, 1), clear(t1, 1), clear(t2, 1), clear(t3, 1)
◦ All other variables initialized to false

• Goal state:
◦ on(d1, d2, 2n − 1), . . . , on(dn−1, dn, 2n − 1), on(dn, t1, 2n − 1)
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How to encode ToH?

[Source: Selman & Kautz 1996]

Constraints:

• Exactly one disk is moved at each time step

• There is exactly one movement at each time step

• There are no movements to exactly the same position

• For a movement to be done the preconditions must be satisfied

• After performing a movement the postconditions are implied

• No disks can be moved to the top of smaller disks

• Initial state holds at time step 0

• Goal state holds ate time step 2n − 1

• Preserve the value of variables that were unaffected by movements
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How good is this encoding?

Time limit of 10,000 seconds using picosat

n Selman

4 0.16
5 8.31
6 54.70
7 5252.27
8 -
9 -

10 -
11 -
12 -
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A more compact encoding

[Source: Prestwich 2007]

• Actions: move(d , dt, dt, i) = obj(d , i) ∧ from(dt, i) ∧ to(dt, i)
◦ Before:

• Movements from disks/towers to disks/towers

◦ Now:

• Movements from towers to towers
• Clear variable can be removed

• More compact encoding:
◦ Before: 5 towers requires 1,931 variables and 14,468 clauses
◦ Now: 5 towers only requires 821 variables and 6,457 clauses
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How good is this encoding?

n Selman Prestwich

4 0.16 0.01
5 8.31 0.08
6 54.70 0.47
7 5252.27 3.65
8 - 109.7
9 - 7126.57

10 - -
11 - -
12 - -

• Can we do better?
◦ Look at the properties of the problem !
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ToH Properties (Recursion)

• Given a ToH of size n, one may easily find a solution taking into
account the solution for a ToH of size n − 1

• The order of the disks to be moved after moving the largest disk is
exactly the same as before
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ToH Properties (Symmetry)

• ToH can be solved in 2n − 1 steps

• Considering the relationship between the movement of the disks
after/before moving the largest disk we only need to determine the
first 2n−1 − 1 steps
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ToH Properties (Parity)

• When moving disks, no two odd/even disks can be moved next to
each other
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ToH Properties (Cycle)

• All disks cycle in a given order between the towers:

◦ If n is even the odd disks will cycle clockwise (T1 → T2 → T3 → T1)
while the even disks will cycle counterclockwise
(T1 → T3 → T2 → T1)

◦ If n is odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise
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Experimental Results

Size Selman Prestwich Disk Parity Disk Cycle

4 0,16 0.01 0 0

5 8.31 0.08 0.01 0.02

6 54.70 0.47 0.03 0.05

7 5252.27 3.65 0.70 0.20

8 - 109.7 5.19 5.18

9 - 7126.57 79.11 7.65

10 - - 1997.19 973.95

11 - - - 1206.37

12 - - - -

• Disk Parity and Disk Cycle encodings use the symmetry property

• Can we still do better?
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A new encoding for ToH

• The Disk Sequence encoding:

◦ The recursive property determines the disks to be moved at each step

◦ Taking into consideration this we can keep only the variables on and
drop all the others

◦ Recursion+Symmetry+Parity:

• Problem can be solved with just unit propagation !
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Experimental Results

Size Selman Prestwich Disk Parity Disk Cycle Disk Sequence

4 0.16 0.01 0 0 0
5 8.31 0.08 0.01 0.02 0
6 54.70 0.47 0.03 0.05 0
7 5252.27 3.65 0.70 0.20 0.01
8 - 109.7 5.19 5.18 0.03
9 - 7126.57 79.11 7.65 0.09

10 - - 1997.19 973.95 0.23
11 - - - 1206.37 0.56
12 - - - - 1.32
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How is the structure of these formulas?

Selman encoding (n = 3)
SATGraf− https://ece.uwaterloo.ca/~vganesh/EvoGraph/Download.html
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How is the structure of these formulas?
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SATGraf− https://ece.uwaterloo.ca/~vganesh/EvoGraph/Download.html
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Conclusions

• Encoding is an art !

◦ Hard to evaluate which encoding is the best

◦ Small encoding not necessarily means better one

• Each problem is unique !

◦ Use your domain knowledge

◦ Encode the properties of the problem

◦ Break symmetries

• Automated tools ?
◦ Can make your life easier

◦ Not as good as handmade encodings
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