SATisfiability Solving: How to solve problems with SAT?

Ruben Martins

University of Oxford

February 13, 2014

c famous problem (in CNF) p cnf 6 9 140 250 360 -1 -2 0 -1 -3 0 -2 -3 0 -4 -5 0 -4 -6 0 -5 -6 0

How to encode a problem into SAT?

c pigeon hole problem

- p cnf 6 9 1 4 0 2 5 0 3 6 0 -1 -2 0 -1 -3 0
- -2 -3 0 -4 -5 0
- -4 -6 0
- -5 -6 0

 $\begin{array}{l} \# \ pigeon[1]@hole[1] \lor pigeon[1]@hole[2] \\ \# \ pigeon[2]@hole[1] \lor pigeon[2]@hole[2] \\ \# \ pigeon[3]@hole[1] \lor \ pigeon[3]@hole[2] \\ \# \ \neg pigeon[1]@hole[1] \lor \ \neg pigeon[2]@hole[1] \\ \# \ \neg pigeon[1]@hole[1] \lor \ \neg pigeon[3]@hole[1] \\ \# \ \neg pigeon[2]@hole[1] \lor \ \neg pigeon[3]@hole[1] \\ \# \ \neg pigeon[2]@hole[2] \lor \ \neg pigeon[2]@hole[2] \\ \# \ \neg pigeon[1]@hole[2] \lor \ \neg pigeon[3]@hole[2] \\ \# \ \neg pigeon[2]@hole[2] \lor \ \neg pigeon[3]@hole[2] \\ \# \ \neg pigeon[2]@hole[2] \lor \ \neg pigeon[3]@hole[2] \\ \end{array}$

Encoding to CNF

- What to encode?
 - Boolean formulas
 - Tseitin's encoding
 - Plaisted&Greenbaum's encoding
 - ...
 - Natural numbers
 - Cardinality constraints
 - Pseudo-Boolean (PB) constraints

o ...

Encoding to CNF

- What to encode?
 - Boolean formulas
 - Tseitin's encoding
 - Plaisted&Greenbaum's encoding
 - ...
 - Natural numbers
 - Cardinality constraints
 - Pseudo-Boolean (PB) constraints

o ...

• There are no CNF problems !

[Source: Peter J. Stuckey 2013]

• Structure is lost when encoding to CNF

- Any propositional formula may be converted into an equisatisfiable CNF formula with only linear increase in size:
 - Use Tseitin's encoding !

• CNF makes it possible to perform interesting deductions (resolution)

• SAT solvers use CNF as the standard input format

Convert $\varphi = (a \lor b) \to (a \lor \bar{c})$ to an equisatisfiable CNF formula

- For each subformula, introduce new variables: t₁ for φ, t₂ for (a ∨ b), t₃ for (a ∨ c̄), and t₄ for c̄
- Stipulate equivalences and convert them to CNF:

$$\begin{array}{l} \circ \ t_1 \leftrightarrow (t_2 \to t_3) \Rightarrow \varphi_1 = (\overline{t}_1 \lor \overline{t}_2 \lor t_3) \land (t_2 \lor t_1) \lor (\overline{t}_3 \lor t_1) \\ \circ \ t_2 \leftrightarrow (a \lor b) \Rightarrow \varphi_2 = (\overline{t}_2 \lor a \lor b) \land (\overline{a} \lor t_2) \land (\overline{b} \lor t_2) \\ \circ \ t_3 \leftrightarrow (a \lor \overline{t}_4) \Rightarrow \varphi_3 = (\overline{t}_3 \lor a) \land (\overline{t}_3 \lor t_4) \land (\overline{a} \lor \overline{t}_4 \lor t_3) \\ \circ \ t_4 \leftrightarrow \overline{c} \Rightarrow \varphi_4 = (t_4 \lor \overline{c}) \land (t_4 \lor c) \end{array}$$

• The formula $t_1 \land \varphi_1 \land \varphi_2 \land \varphi_3 \land \varphi_4$ is equisatisfiable to φ and is in CNF

• Using automated tools to encode to CNF: e.g limboole: http://fmv.jku.at/limboole

- Using automated tools to encode to CNF: e.g limboole: http://fmv.jku.at/limboole
- Tseitin's encoding may add many redundant variables/clauses !
 - $\circ~$ Using limboole for the pigeon hole problem (n=3) creates a formula with 40 variables and 98 clauses
 - After unit propagation the formula has 12 variables and 28 clauses
 - Original CNF formula only has 6 variables and 9 clauses

How to encode natural numbers?

- Onehot encoding:
 - Each number is represented by a boolean variable: $x_0 \dots x_n$
 - At most one number: $\bigwedge_{i\neq j} \bar{x}_i \vee \bar{x}_j$

How to encode natural numbers?

• Onehot encoding:

- Each number is represented by a boolean variable: $x_0 \dots x_n$
- At most one number: $\bigwedge_{i\neq i} \bar{x}_i \vee \bar{x}_j$

• Unary encoding:

• Each variable x_n is true iff the number is equal to or greater than n:

e.g. $x_2 = 1$ represents that the number is equal to or greater than 2

•
$$x_i$$
 implies x_{i+1} : $\bigwedge_{i < j} \bar{x}_i \lor x_j$

How to encode natural numbers?

• Onehot encoding:

- Each number is represented by a boolean variable: $x_0 \dots x_n$
- At most one number: $\bigwedge_{i\neq j} \bar{x}_i \vee \bar{x}_j$

• Unary encoding:

- Each variable x_n is true iff the number is equal to or greater than n:
 - e.g. $x_2 = 1$ represents that the number is equal to or greater than 2

$$\circ x_i$$
 implies $x_{i+1}: \bigwedge_{i < j} \overline{x}_i \lor x_j$

• Binary encoding:

• Use $\lceil log_2 n \rceil$ auxiliary variables to represent *n* in binary

e.g. Consider
$$n = 3$$
:

 x_0 (number 0) corresponds to the binary representation 00 $\bar{x}_0 \lor \bar{b}_0, ~\bar{x}_0 \lor \bar{b}_1$

How to encode cardinality constraints?

At-most-one constraints:

- Naive (pairwise) encoding for at-most-one constraints:
 - $\circ~$ Cardinality constraint: $x_1+x_2+x_3+x_4\leq 1$

Clauses:

$$\begin{array}{c} (x_1 \Rightarrow \neg x_2) \\ (x_1 \Rightarrow \neg x_3) \\ (x_1 \Rightarrow \neg x_4) \\ \dots \end{array} \end{array} \right\} \begin{array}{c} \neg x_1 \lor \neg x_2 \\ \neg x_1 \lor \neg x_3 \\ \neg x_1 \lor \neg x_4 \\ \dots \end{array}$$

• Complexity: $\mathcal{O}(n^2)$ clauses

How to encode cardinality constraints?

At-most-k constraints:

- Naive encoding for at-most-k constraints:
 - Cardinality constraint: $x_1 + x_2 + x_3 + x_4 \le 2$
 - Clauses:

$$\begin{pmatrix} (x_1 \land x_2 \Rightarrow \neg x_3) \\ (x_1 \land x_2 \Rightarrow \neg x_4) \\ (x_2 \land x_3 \Rightarrow \neg x_4) \\ \dots \end{pmatrix} \begin{pmatrix} (\neg x_1 \lor \neg x_2 \lor \neg x_3) \\ (\neg x_1 \lor \neg x_2 \lor \neg x_4) \\ (\neg x_2 \lor \neg x_3 \lor \neg x_4) \\ \dots \end{pmatrix}$$

• Complexity: $\mathcal{O}(n^k)$ clauses

Encodings for cardinality constraints

Encoding	Clauses	Variables	Туре
Pairwise	$\mathcal{O}(n^2)$	0	at-most-one
Ladder	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one
Bitwise	$\mathcal{O}(n \log_2 n)$	$\mathcal{O}(\log_2 n)$	at-most-one
Commander	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one
Product	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one
Sequential	$\mathcal{O}(nk)$	$\mathcal{O}(nk)$	at-most-k
Totalizer	$\mathcal{O}(nk)$	$\mathcal{O}(n \log_2 n)$	at-most-k
Sorters	$\mathcal{O}(n \log_2^2 n)$	$\mathcal{O}(n \log_2^2 n)$	at-most-k

Encodings for cardinality constraints

Encoding	Clauses	Variables	Туре
Pairwise	$\mathcal{O}(n^2)$	0	at-most-one
Ladder	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one
Bitwise	$\mathcal{O}(n \log_2 n)$	$\mathcal{O}(\log_2 n)$	at-most-one
Commander	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one
Product	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one
Sequential	$\mathcal{O}(nk)$	$\mathcal{O}(nk)$	at-most-k
Totalizer	$\mathcal{O}(nk)$	$\mathcal{O}(n \log_2 n)$	at-most-k
Sorters	$\mathcal{O}(n \log_2^2 n)$	$\mathcal{O}(n \log_2^2 n)$	at-most-k

• Example on the board

Encodings for cardinality constraints

Encoding	Clauses	Variables	Туре
Pairwise	$\mathcal{O}(n^2)$	0	at-most-one
Ladder	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one
Bitwise	$\mathcal{O}(n \log_2 n)$	$\mathcal{O}(\log_2 n)$	at-most-one
Commander	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one
Product	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one
Sequential	$\mathcal{O}(nk)$	$\mathcal{O}(nk)$	at-most-k
Totalizer	$\mathcal{O}(nk)$	$\mathcal{O}(n \log_2 n)$	at-most-k
Sorters	$\mathcal{O}(n \log_2^2 n)$	$\mathcal{O}(n \log_2^2 n)$	at-most-k

- Many more encodings exist
- They can also be generalized to pseudo-Boolean constraints:
 - $\circ a_1x_1 + a_2x_2 + \ldots + a_nx_n \leq k$

4	8	7	5	1	2	9	3	6

6	9	3	7	8	4	5	1	2
4	8	7	5	1	2	9	3	6
1	2	5	9	6	3	8	7	4
9	3	2	6	5	1	4	8	7
5	6	8	2	4	7	3	9	1
7	4	1	3	9	8	6	2	5
3	1	9	4	7	5	2	6	8
8	5	6	1	2	9	7	4	3
2	7	4	8	3	6	1	5	9

6	9	3	7	8	4	5	1	2
4	8	7	5	1	2	9	3	6
1	2	5	9	6	3	8	7	4
9	3	2	6	5	1	4	8	7
5	6	8	2	4	7	3	9	1
7	4	1	3	9	8	6	2	5
3	1	9	4	7	5	2	6	8
8	5	6	1	2	9	7	4	3
2	7	4	8	3	6	1	5	9

4	8	7	5	1	2	9	3	6
6	9	3	7	8	4	5	1	2
1	2	5	9	6	3	8	7	4
9	3	2	6	5	1	4	8	7
5	6	8	2	4	7	3	9	1
7	4	1	3	9	8	6	2	5
3	1	9	4	7	5	2	6	8
8	5	6	1	2	9	7	4	3
2	7	4	8	3	6	1	5	9

6	9	3	7	8	4	5	1	2
4	8	7	5	1	2	9	3	6
1	2	5	9	6	3	8	7	4
9	3	2	6	5	1	4	8	7
5	6	8	2	4	7	3	9	1
7	4	1	3	9	8	6	2	5
3	1	9	4	7	5	2	6	8
8	5	6	1	2	9	7	4	3
2	7	4	8	3	6	1	5	9

6	7	3	9	8	4	5	1	2
4	5	7	8	1	2	9	3	6
1	9	5	2	6	3	8	7	4
9	6	2	3	5	1	4	8	7
5	2	8	6	4	7	3	9	1
7	3	1	4	9	8	6	2	5
3	4	9	1	7	5	2	6	8
8	1	6	5	2	9	7	4	3
2	8	4	7	3	6	1	5	9

- Many problems are highly symmetrical e.g Quasigroups:
- Breaking symmetries:
 - o Change the search algorithm of the SAT solver?
 - \circ Remodel the problem
 - Add symmetry breaking constraints
 - e.g. Impose lexicographical order
 - Automated tools for finding symmetries:
 - shatter http://www.aloul.net/Tools/shatter/
- Other simplifications:
 - Formula simplification by preprocessing
 - CP3 http://tools.computational-logic.org/content/riss3g.php

Incremental SAT solving

- Calling a SAT solver solver multiple times
- Changing the formula at each iteration
 - Adding new clauses is easy!
 - How to remove clauses?

Incremental SAT solving

- Calling a SAT solver solver multiple times
- Changing the formula at each iteration
 - Adding new clauses is easy!
 - How to remove clauses?
- Use assumptions
- Add a fresh variables to clauses that you may want to remove:
 - $(a \lor b \lor f)$, where f is a fresh variable
 - \circ Set f to 0 to consider the clause
 - Set f to 1 to remove the clause

Other tips for encodings

• Tweaking solver parameters

- Changing the set of decision variables
- Bumping activity of more important variables
- ° ...
- Disclaimer: I would not recommend on doing this !

• Order of variable indexes

• Close variables are usually related

• Solutions close to zero

• SAT solvers usually branch on 0 first

Encoding a problem into SAT – Towers of Hanoi

Encoding a problem into SAT – Towers of Hanoi

- Only one disk may be moved at a time;
- No disk may be placed on the top of a smaller disk;
- Each move consists in taking the upper disk from one of the towers and sliding it onto the top of another tower.

How to encode ToH?

STRIPS planning mode:

- Variables
- Actions: preconditions \rightarrow postconditions
- Initial state
- Goal state

How to encode ToH?

[Source: Selman & Kautz 1996]

- Variables: on(d, dt, i); clear(dt, i)
- Actions: $move(d, dt, dt, i) = obj(d, i) \land from(dt, i) \land to(dt, i)$
 - preconditions: clear(d, i), clear(dt', i), on(d, dt, i)
 - postconditions: on(d, dt', i + 1), clear(dt, i + 1), ¬on(d, dt, i), ¬clear(dt', i + 1)
- Initial state:
 - $\circ on(d_1, d_2, 1), \dots, on(d_{n-1}, d_n, 1), on(d_n, t_1, 1) \\ clear(d_1, 1), clear(t_1, 1), clear(t_2, 1), clear(t_3, 1)$
 - All other variables initialized to false
- Goal state:

•
$$on(d_1, d_2, 2^n - 1), \dots, on(d_{n-1}, d_n, 2^n - 1), on(d_n, t_1, 2^n - 1)$$

How to encode ToH?

[Source: Selman & Kautz 1996]

Constraints:

- Exactly one disk is moved at each time step
- There is exactly one movement at each time step
- There are no movements to exactly the same position
- · For a movement to be done the preconditions must be satisfied
- After performing a movement the postconditions are implied
- No disks can be moved to the top of smaller disks
- Initial state holds at time step 0
- Goal state holds ate time step $2^n 1$
- · Preserve the value of variables that were unaffected by movements

How good is this encoding?

Time limit of 10,000 seconds using picosat

n	Selman
4	0.16
5	8.31
6	54.70
7	5252.27
8	-
9	-
10	-
11	-
12	-

[Source: Prestwich 2007]

- Actions: $move(d, dt, dt, i) = obj(d, i) \land from(dt, i) \land to(dt, i)$
 - Before:
 - Movements from disks/towers to disks/towers
 - Now:
 - Movements from towers to towers
 - Clear variable can be removed
- More compact encoding:
 - Before: 5 towers requires 1,931 variables and 14,468 clauses
 - Now: 5 towers only requires 821 variables and 6,457 clauses

How good is this encoding?

n	Selman	Prestwich
4	0.16	0.01
5	8.31	0.08
6	54.70	0.47
7	5252.27	3.65
8	-	109.7
9	-	7126.57
10	-	-
11	-	-
12	-	-

- Can we do better?
 - Look at the properties of the problem !

• Given a ToH of size n, one may easily find a solution taking into account the solution for a ToH of size n - 1

• Given a ToH of size n, one may easily find a solution taking into account the solution for a ToH of size n - 1

- Given a ToH of size n, one may easily find a solution taking into account the solution for a ToH of size n 1
- The order of the disks to be moved after moving the largest disk is exactly the same as before

- Given a ToH of size n, one may easily find a solution taking into account the solution for a ToH of size n 1
- The order of the disks to be moved after moving the largest disk is exactly the same as before

ToH Properties (Symmetry)

- ToH can be solved in $2^n 1$ steps
- Considering the relationship between the movement of the disks after/before moving the largest disk we only need to determine the first $2^{n-1} 1$ steps

ToH Properties (Symmetry)

- ToH can be solved in $2^n 1$ steps
- Considering the relationship between the movement of the disks after/before moving the largest disk we only need to determine the first $2^{n-1} 1$ steps

- All disks cycle in a given order between the towers:
 - If *n* is even the odd disks will cycle clockwise $(T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_1)$ while the even disks will cycle counterclockwise $(T_1 \rightarrow T_3 \rightarrow T_2 \rightarrow T_1)$
 - If *n* is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

- All disks cycle in a given order between the towers:
 - If *n* is even the odd disks will cycle clockwise $(T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_1)$ while the even disks will cycle counterclockwise $(T_1 \rightarrow T_3 \rightarrow T_2 \rightarrow T_1)$
 - If *n* is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

- All disks cycle in a given order between the towers:
 - If *n* is even the odd disks will cycle clockwise $(T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_1)$ while the even disks will cycle counterclockwise $(T_1 \rightarrow T_3 \rightarrow T_2 \rightarrow T_1)$
 - If *n* is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

- All disks cycle in a given order between the towers:
 - If *n* is even the odd disks will cycle clockwise $(T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_1)$ while the even disks will cycle counterclockwise $(T_1 \rightarrow T_3 \rightarrow T_2 \rightarrow T_1)$
 - If *n* is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

- All disks cycle in a given order between the towers:
 - If *n* is even the odd disks will cycle clockwise $(T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_1)$ while the even disks will cycle counterclockwise $(T_1 \rightarrow T_3 \rightarrow T_2 \rightarrow T_1)$
 - If *n* is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

- All disks cycle in a given order between the towers:
 - If *n* is even the odd disks will cycle clockwise $(T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_1)$ while the even disks will cycle counterclockwise $(T_1 \rightarrow T_3 \rightarrow T_2 \rightarrow T_1)$
 - If *n* is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

- All disks cycle in a given order between the towers:
 - If *n* is even the odd disks will cycle clockwise $(T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_1)$ while the even disks will cycle counterclockwise $(T_1 \rightarrow T_3 \rightarrow T_2 \rightarrow T_1)$
 - If *n* is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

- All disks cycle in a given order between the towers:
 - If *n* is even the odd disks will cycle clockwise $(T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_1)$ while the even disks will cycle counterclockwise $(T_1 \rightarrow T_3 \rightarrow T_2 \rightarrow T_1)$
 - If *n* is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

- All disks cycle in a given order between the towers:
 - If *n* is even the odd disks will cycle clockwise $(T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_1)$ while the even disks will cycle counterclockwise $(T_1 \rightarrow T_3 \rightarrow T_2 \rightarrow T_1)$
 - If *n* is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

Experimental Results

Size	Selman	Prestwich	Disk Parity	Disk Cycle
4	0,16	0.01	0	0
5	8.31	0.08	0.01	0.02
6	54.70	0.47	0.03	0.05
7	5252.27	3.65	0.70	0.20
8	-	109.7	5.19	5.18
9	-	7126.57	79.11	7.65
10	-	-	1997.19	973.95
11	-	-	-	1206.37
12	-	-	-	-

• Disk Parity and Disk Cycle encodings use the symmetry property

Experimental Results

Size	Selman	Prestwich	Disk Parity	Disk Cycle
4	0,16	0.01	0	0
5	8.31	0.08	0.01	0.02
6	54.70	0.47	0.03	0.05
7	5252.27	3.65	0.70	0.20
8	-	109.7	5.19	5.18
9	-	7126.57	79.11	7.65
10	-	-	1997.19	973.95
11	-	-	-	1206.37
12	-	-	-	-

- Disk Parity and Disk Cycle encodings use the symmetry property
- Can we still do better?

A new encoding for ToH

- The Disk Sequence encoding:
 - $\circ~$ The recursive property determines the disks to be moved at each step
 - Taking into consideration this we can keep only the variables *on* and drop all the others
 - Recursion+Symmetry+Parity:
 - Problem can be solved with just unit propagation !

Experimental Results

Size	Selman	Prestwich	Disk Parity	Disk Cycle	Disk Sequence
4	0.16	0.01	0	0	0
5	8.31	0.08	0.01	0.02	0
6	54.70	0.47	0.03	0.05	0
7	5252.27	3.65	0.70	0.20	0.01
8	-	109.7	5.19	5.18	0.03
9	-	7126.57	79.11	7.65	0.09
10	-	-	1997.19	973.95	0.23
11	-	-	-	1206.37	0.56
12	-	-	-	-	1.32

How is the structure of these formulas?

Selman encoding (n = 3)

SATGraf- https://ece.uwaterloo.ca/~vganesh/EvoGraph/Download.html

How is the structure of these formulas?

Prestwich encoding (n = 3)

SATGraf- https://ece.uwaterloo.ca/~vganesh/EvoGraph/Download.html

How is the structure of these formulas?

Disk Sequence encoding (n = 3)

SATGraf- https://ece.uwaterloo.ca/~vganesh/EvoGraph/Download.html

Conclusions

Encoding is an art !

- $\circ~$ Hard to evaluate which encoding is the best
- Small encoding not necessarily means better one
- Each problem is unique !
 - Use your domain knowledge
 - Encode the properties of the problem
 - Break symmetries
- Automated tools ?
 - Can make your life easier
 - Not as good as handmade encodings