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Thanks

Joao Marques-Silva:

• Providing some of the slides given in this talk

• SAT Summer School 2013, “CDCL SAT Solvers & SAT-Based
Problem Solving”:
http://satsmt2013.ics.aalto.fi/slides/Marques-Silva.pdf
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The Success of SAT

• Well-known NP-complete decision problem [C71]

• In practice, SAT is a success story of Computer Science
◦ Hundreds (even more?) of practical applications
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SAT Solver Improvement

[Source: Le Berre&Biere 2011]
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Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forklift (2003)
Siege (2003)
Zchaff (2004)
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)
Rsat (2007)
Minisat 2.1 (2008)
Precosat (2009)
Glucose (2009)
Clasp (2009)
Cryptominisat (2010)
Lingeling (2010)
Minisat 2.2 (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)
Lingeling 587f (2011)
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Outline

• Basic Definitions

• DPLL

• CDCL
◦ Features

◦ Performance

◦ Why do CDCL solvers work in practice?
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Preliminaries

• Variables: w , x , y , z , a, b, c , . . .

• Literals: w , x̄ , ȳ , a, . . . , but also ¬w ,¬y , . . .
• Clauses: disjunction of literals or set of literals

• Formula: conjunction of clauses or set of clauses

• Model (satisfying assignment): partial/total mapping from
variables to {0, 1}

• Formula can be SAT/UNSAT

• Example:

F , (r) ∧ (r̄ ∨ s) ∧ (w̄ ∨ a) ∧ (x̄ ∨ b) ∧ (ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

◦ Example models:

• {r , s, a, b, c, d}
• {r , s, x̄ , y , w̄ , z , ā, b, c, d}
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Resolution

• Resolution rule: [DP60,R65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

◦ Complete proof system for propositional logic

◦ Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with α′ ⊆ α): [e.g. SP04,EB05]

(α ∨ x) (α′ ∨ x̄)
(α)

◦ (α) subsumes (α ∨ x)

7



Resolution

• Resolution rule: [DP60,R65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

◦ Complete proof system for propositional logic

(x ∨ a) (x̄ ∨ a) (ȳ ∨ ā) (y ∨ ā)
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Unit Propagation

F = (r) ∧ (r̄ ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)

(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Additional definitions:
◦ Antecedent (or reason) of an implied assignment

• (b̄ ∨ c̄ ∨ d) for d

◦ Associate assignment with decision levels

• w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
• r = 1 @ 0, d = 1 @ 4, ...
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The DPLL Algorithm

Assign value
to variable

Unassigned
variables ?

Unit 
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

9



The DPLL Algorithm

Assign value
to variable

Unassigned
variables ?

Unit 
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)
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Level Dec. Unit Prop.

0

1

2

3

∅

x

y
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Level Dec. Unit Prop.

0

1

2

3

∅

x

ȳ
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ȳ
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y

a ā
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What is a CDCL SAT Solver?

• Extend DPLL SAT solver with: [DP60,DLL62]

◦ Clause learning & non-chronological backtracking [MSS96,BS97,Z97]

◦ Search restarts [GSK98,BMS00,H07,B08]

◦ Lazy data structures

• Watched literals [MMZZM01]

◦ Conflict-guided branching

◦ ...
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How Significant are CDCL SAT Solvers?
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Clause Learning

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

• Analyze conflict

◦ Reasons: x and z

• Decision variable & literals assigned at lower decision levels

◦ Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

◦ Learned clauses result from (selected) resolution operations
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Clause Learning – After Bracktracking

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

• Clause (x̄ ∨ z̄) is asserting at decision level 1

• Learned clauses are always asserting [MSS96,MSS99]

• Backtracking differs from plain DPLL:
◦ Always bactrack after a conflict [MMZZM01]
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Unique Implication Points (UIPs)
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(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)
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Clause Minimization
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Clause Minimization

Level Dec. Unit Prop.

0

1

2

3

∅

xxx

yyy

zzz c

bbb

a

⊥
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• Other minimization techniques exist:
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• Minimization eliminates on average more than 30% of literals
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Search Restarts

• Heavy-tail behavior: [GSK98]

◦ 10,000 runs, branching randomization on industrial instance

• Use rapid randomized restarts (search restarts)
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Search Restarts

• Restart search after a number
of conflicts

• Increase cutoff after each
restart
◦ Guarantees completeness
◦ Different policies exist

• Works for SAT & UNSAT
instances. Why?

• Learned clauses effective after
restart(s)

solutioncutoffcutoff
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Data Structures Basics

• Each literal l should access clauses containing l
◦ Why?

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals

◦ Clause learning can generate large clauses

• Clause learning to be effective requires a more efficient
representation: Watched Literals
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Watched Literals

[MMZZM01]

• Important states of a clause

• Associate 2 references with
each clause

• Deciding unit requires
traversing all literals

• References unchanged when
backtracking

• Watched literals are one
example of lazy data structures
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Additional Key Techniques

• Lightweight branching (VSIDS) [e.g. MMZZM01]

◦ Increments the activity of variables that participated in the creation of
conflict clauses

◦ Pick the literal with the highest activity as the next decision variable

• Clause deletion policies
◦ Not practical to keep all learned clauses
◦ Delete less used clauses [e.g. MSS96,GN02,ES03]
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How important is each feature of a CDCL solver?

• CDCL solvers share four major features:
◦ Conflict-driven clause learning
◦ Search Restarts
◦ Unit propagation using watched literals
◦ Conflict-based branching

• How important is each major feature for the performance of a
CDCL solver? [KSMS11]
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Empirical study of a CDCL solver

[Source: Katebi, Sakallah & Marques-Silva 2011]

• Experimental approach:
◦ MiniSAT as the CDCL solver

◦ 1,000 benchmarks from 12 application areas, since early 1990s:

• Circuit testing (atpg), Bioinformatics (bioinf), product configuration
(config), cryptanalysis (crypto), equivalence checking (equiv), FPGA
routing (fpga), hardware bounded model checking (hbmc), hardware
verification (hverif), network configuration (netcfg), planning (plan),
software verification (sverif), term rewriting (termrw)

◦ Each benchmark: 10 random reorderings of the CNF

◦ Disable one feature at a time and compare with the base case

◦ For each configuration count the number of instances solved in under
1,000 seconds
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Impact of Conflict-driven clause learning

Family Runs ¬CL CDCL

atpg 1,000 965 1,000
bioinf 300 19 150
config 500 472 500
crypto 300 52 237
equiv 300 50 231
fpga 500 325 470
hbmc 2,500 762 2,333
hverif 2,000 1,413 1,984
netcfg 100 0 87
plan 800 327 650
sverif 1,200 336 1,006
termrw 500 116 420

Total 10,000 4,827 9,068
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Impact of Conflict-based branching

• Variable State Independent Decaying Sum (VSIDS)

• Dynamic Largest Individual Sum (DLIS):
◦ Each literal has a counter with the number of times it appears in

unresolved clauses
◦ Pick the literal with the highest sum as the next decision literal

• Random Heuristic
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Impact of Conflict-based branching

CDCL
Family Runs DLIS RDM (VSIDS)

atpg 1,000 1,000 1,000 1,000
bioinf 300 34 46 150
config 500 500 500 500
crypto 300 22 35 237
equiv 300 92 162 231
fpga 500 403 421 470
hbmc 2,500 1,872 2,057 2,333
hverif 2,000 1,700 1,949 1,984
netcfg 100 20 72 87
plan 800 449 490 650
sverif 1,200 592 302 1,006
termrw 500 248 291 420

Total 10,000 6,932 7,325 9,068
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Impact of Watched Literals and Search Restarts

Family Runs ¬2WL ¬RST CDCL

atpg 1,000 1,000 1,000 1,000
bioinf 300 88 141 150
config 500 500 500 500
crypto 300 113 235 237
equiv 300 187 224 231
fpga 500 444 441 470
hbmc 2,500 2,241 2,307 2,333
hverif 2,000 1,934 1,967 1,984
netcfg 100 60 74 87
plan 800 559 564 650
sverif 1,200 937 754 1,006
termrw 500 346 446 420

Total 10,000 8,409 8,653 9,068
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Empirical study of a CDCL solver

[Source: Katebi, Sakallah & Marques-Silva 2011]

Introduction

Features

Setup

Results

Insights

Conclusion

Experiment 1: Results
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• Importance of major features:
◦ CL > VSIDS > 2WL > RST
◦ Combination of all four features yields best performance
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How easy is to make a SAT solver?

Donald Knuth:

• Professor Emeritus at Stanford University

• Author of several books, TEX, . . .

• Wrote several small SAT solvers for Volume 4B of the new edition
of “The Art of Computer Programming”:
◦ http://www-cs-faculty.stanford.edu/~knuth/programs.html
◦ DPLL solver (SAT10), CDCL solver (SAT13)

27
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How easy is to make a SAT solver?

100 benchmarks, SAT Race 2008, 900 seconds time limit
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Which SAT solver should I use?

• Using as a black-box:
◦ Check the SAT competition: http://www.satcompetition.org/
◦ Lingeling, Glucose perform well

• Using the API or changing the source code:
◦ MiniSAT (simple and easy to extend)
◦ Glucose (based on MiniSAT with better performance)

• Disclaimer !
◦ Patent on Chaff: US 20030084411 A1
◦ Watched Literals and VSIDS heuristic

28
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Why do CDCL solvers work in practice?

• CL as powerful as general resolution (RES) [PD09]

• In practice:
◦ RES impractical in practice
◦ CL very effective in practice

• So, why does CL work in practice?
◦ Clause learning explained by sequence of (trivial) resolution operations

◦ Clause learning (somehow) identifies the right resolution operations

• From the analysis of conflicts resulting from unit propagation

◦ Hard problems can be solved by exploiting structure !

29



Why do CDCL solvers work in practice?

[Source: Ansótegui, Giráldez-Cru & Levy 2012]

Example

Q = 0.560 Q = 0.097

”In practice, Q values for networks showing a strong community
structure range from 0.3 to 0.7, higher values are rare.”

Newman et al. (2004).

Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy The Community Structure of SAT Formulas

Industrial benchmark Random benchmark
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Why do CDCL solvers work in practice?

[W99,ABL09,AGCL12]

• Transform a CNF formula into a graph and analyze its structure
◦ For example using the modularity measure [AGCL12]

• Industrial benchmarks have a clear community structure

• Modularity slowly decreases with learned clauses
◦ Does not completely destroy the structure of the formula
◦ May change the partitions

• Random benchmarks do not have community structure
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Conclusions

The secret ingredients for having an efficient SAT solver:

• Make mistakes !
◦ Learn from your conflicts

◦ Perform non-chronological backtracking

◦ Restart the search

• Be lazy !

◦ Lazy data structures

◦ Lightweight heuristics
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Next Talk

• SATisfiability Solving: How to solve problems with SAT?
◦ Encoding to CNF

◦ Impact of different encodings

◦ Successful encoding techniques

• What is the structure of your encoding ?
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