
The Impact of Modelling in SAT Problem Solving

Ruben Martins
IST/INESC-ID

Technical University of Lisbon
Lisbon, Portugal

ruben@sat.inesc-id.pt

Abstract

When given a SAT problem, one has two major tasks:
to model the problem and to solve the selected model.
Whilst much work in SAT algorithms is for building
efficient solvers, we argue that many modeling decisions
have a direct impact on the solvers performance. We
will focus on four distinct problems: Social Golfer,
Round Robin, Quasigroup Completation and Towers
of Hanoi. Our empirical evaluation on those problems
shows that different encodings can improve or degrade
search dramatically.

1 Introduction

Recently, we have seen a remarkable progress in
propositional satisfiability (SAT), with theoretical and
practical contributions. Even though SAT solvers
have exponential run time in the worst case, they can
currently be used to solve hard problem instances.

The SAT community is extremely motivated for con-
tinuously improving SAT solvers performance. How-
ever, there is much to be done with respect to SAT
encodings. We believe that many applications do not
benefit from the efficiency in SAT solving due to inef-
ficiencies introduced while producing SAT encodings.

This paper contributes to a better understanding of
the impact of SAT modelling. For that, we will study
four distinct problems: Social Golfer, Round Robin,
Quasigroup Completation and Towers of Hanoi.

The rest of the paper is organized as follows. The
next section gives some insights on how to encode a
problem into SAT. Sections 3, 4, 5 and 6, respectly,
describe the Social Golfer, Round Robin, Quasigroup
Completation and Towers of Hanoi problems. In
each of those sections we propose SAT encodings for
each problem and compare them to already known
encodings. Finally, we conclude the paper and suggest
future work.

2 Background

A CNF formula is represented using n Boolean vari-
ables, x1, x2, . . . , xn, which can be assigned truth val-
ues 0 (false) or 1 (true). A literal l is either a variable
xi (i.e., a positive literal) or its complement ¬xi (i.e., a
negative literal). A clause ω is a disjunction of literals
and a CNF formula ϕ is a conjunction of clauses. The
formula is satisfied if all its clauses are satisfied.

The SAT problem consists of deciding whether there
exists a truth assignment to the variables such that the
formula becomes satisfied.

To encode a problem into SAT one must define
a set of variables and a set of constraints on the
variables. The set of variables may be defined based
on different criteria: the most intuitive variables set,
the set with minimum cardinality, the set that will
require the smallest number of clauses, etc. Moreover,
the definition of the set of constraints may require the
definition of additional auxiliary variables. In some
cases, these variables are really essential; in other cases,
we prefer to have more variables rather than more
clauses.

One important step when encoding a problem into
SAT is dealing with symmetries. Symmetries cause
the existence of redundant search paths, which is a
clear drawback for backtrack search. Observe that
with symmetry breaking the freedom of the search is
restricted. On the other hand, there is often a trade-
off between the cost of eliminating symmetries and the
savings derived from having done so.

Many methods have been developed for symmetry
breaking. Here we present the three main ways of
eliminating symmetry:

1. Remodel the problem[21, 10]. A different en-
coding, e.g. obtained by defining a different
set of variables, may create a problem with less
symmetries.

2. Add constraints to the model[18]. Such con-
straints merge symmetries in equivalent classes.



3. Change the search process to avoid symmetrically
equivalent states[3, 7].

3 Social Golfer

The Social Golfer problem is derived from a question
posted to sci.op-research in May 1998:

On a local golf club, there are 32 social golfers,
each of whom plays golf once a week, and always in
groups of 4. Our goal is to to come up with a schedule
of plays for these golfers, to last as many weeks as
possible, such that no golfer plays in the same group
as any other golfer on more than one occasion. In other
words, this problem can be described more explicitly by
enumerating four constraints which must be satisfied:

1. The golf club has 32 members.

2. Each member plays golf once a week.

3. Golfers always play in groups of 4.

4. No golfer plays in the same group as any other
golfer twice.

For some years, it was not known if a 10 week
solution for 32 golfers exists. In 2004, Aguado found
a solution using design-theoretic techniques[1]. So far,
no constraint programming technique has been able to
solve this instance, so it remains a valuable benchmark
for the constraint programming community. The best
known solution from constraint programming is from
Stefano Novello, who found out a 9-week solution by
using ECLiPSe.

Even though the Social Golfer problem was de-
scribed for 32 golfers playing in groups of 4, it can
be easily generalized. An instance to the problem is
characterized by a triple w-p-g, where w is the number
of weeks, p is the number of players per group and g is
the number of groups.

For example, figure 1 gives a solution for the social
golfer problem 3-2-2, i.e. for scheduling 4 golfers
playing in 2 groups of 2 golfers each for 3 weeks.

Week Group 1 Group 2
1 [1,2] [3,4]
2 [1,3] [2,4]
3 [1,4] [2,3]

Figure 1: A solution for the Social Golfer problem 3-2-
2.

The Social Golfer problem is related with other
well-known combinatorial problems, such as, Round
Robin[5] and Kirkman’s Schoolgirl[4].

The social golfer problem is also well-known for
being a case study of symmetry for constraint pro-
gramming (e.g. see [21, 13]). This problem is highly
symmetric, exhibiting the following symmetries:

• Golfers within a group are interchangeable. Order
has no significance for groups of golfers.

• Groups within a week are interchangeable. Again,
order has no significance when considering groups
within a week.

• Weeks are interchangeable. There are no order
constraints with respect to weeks.

3.1 A SAT encoding for the Social
Golfer problem

We have defined SAT variables based on the possible
groups of golfers:

• GROUP (X)k, where X represents any of the
possible groups of golfers with size p× g and with
1 ≤ k ≤ w.

Since we have w weeks, we need
(

x
p

)
× w variables

to encode our problem.
We define the set of constraints as following:

• Each golfer plays at least once per week:∧w

k=1

∧p×g

j=1

∨
X

GROUP (X)k, with j ∈ X

• Each golfer plays at most once per week:∧w

k=1

∧p×g

j=1

∧
X
¬GROUP (X)k ∨ ¬GROUP (X′)k, with

j ∈ {X, X′} and X 6= X′

• No golfer plays in the same group as any other
golfer more than once:∧w

k=1

∧w

y=1

∧p×g

j=1

∧p×g

z=j+1

∧
X

∧
X′ ¬GROUP (X)k ∨

¬GROUP (X′)y , with j, z ∈ {X, X′} and X 6= X′

In order to break the symmetries between groups
and between players we add the following constraints:

• The group of golfers, GROUP (X), with {1, j} ∈
X, plays in week j:∧w

j=1
GROUP (X)k, com 1, j ∈ X

• We fix the first week as following:
GROUP (1, . . . , g)1

. . .

GROUP (p× g − g + 1, . . . , p× g)1

Since our variables represent each group, the sym-
metries inside each group are automactly deleted.

Our goal with this encoding is to solve the Social
Golfer problem instances with the form w-2-g. We will



not use this encoding on problems with larger groups
since our formula grows exponentially with the size of
the group. Although we are only encoding a small
subset of problems, we hope to solve them efficiently.
We will also use this encoding for the Round Robin
problem, which is described in the next section.

3.2 Experimental Results

In this section we will compare our encoding with the
one presented by Gent and Lynce[9]. For that, we used
an Intel Xeon 5160 (3.0GHz with 4GB of RAM) and
the solver Minisat1.

Problem Gent & Lynce Martins
15-2-8 1.19 0.1
17-2-9 333.2 0.2
19-2-10 293.38 0.5
21-2-11 3.46 1
23-2-12 97.18 1.57
25-2-13 138.45 14.39
27-2-14 597.43 6.85
29-2-15 946.56 9.81

Figure 2: Comparison between Gent and Lynce encod-
ing and our own encoding.

Figure 2 show us that our encoding is more efficient
than the one proposed by Gent and Lynce. We also
observe that our encoding is more compact than Gent
and Lynce encoding, i.e., uses fewer variables and
clauses. Even though our encoding grows exponentially
with the size of the group, we also compared both
encodings for the Social Golfer problem instance 7-
3-5 which is equivalent to the Kirkman’s Schoolgirl
problem. For this problem, our encoding produces a
formula with 3,185 variables and 726,285 clauses, while
Gent and Lynce encoding produces a formula with
only 5,775 variables and 42,555 clauses. However, even
though our encoding produces a larger formula we were
able to solve this problem instance within 12 seconds
while Gent and Lynce took around 220 seconds to solve
this instance.

As we can see in Kirkman’s Schoolgirl problem we
already have a significant amount of clauses. If we tried
to encode problems with a larger group size we would
get formulas that are impractical for current solvers.
For example, if we would tried to encode the Social
Golfer problem instance 5-4-4 we would get a formula
with 14,123,280 clauses.

1Available from http://www.cs.chalmers.se/Cs/

Research/FormalMethods/MiniSat/.

4 Round Robin

In sports scheduling one of the issues is to find a
feasible schedule for a sports league that takes into
consideration constraints on how the competing teams
can be paired, as well as how each game is distributed
in the entire schedule. Here we consider the timetabling
problem for the classic round robin schedule.

The n-team round robin problem, that is the round
robin problem for n teams, is defined as follows:

1. There are n teams, with n even, and every two
teams play each other exactly once.

2. The season lasts n - 1 weeks.

3. Every team plays one match per week.

4. There are n
2 fields and, each week, each field is

schedule for one game.

5. No team plays more than twice in the same field
over the course of the season.

The problem then is to schedule the tournament
with respect to all these constraints. Figure 3 below
shows an example of a valid schedule for 6-team round
robin problem.

Week 1 Week 2 Week 3 Week 4 Week 5

Field 1 1 2 2 3 1 5 4 6 3 5

Field 2 3 4 1 6 3 6 2 5 1 4

Field 3 5 6 4 5 2 4 1 3 2 6

Figure 3: A 6-team Round Robin timetable.

As shown in 3, a configuration may be represented
as a matrix with weeks in columns and fields in rows.
Each column satisfies the cardinality constraint: each
team appears exactly once, that is all the teams are
different. In each row, no team appears more than
twice. There is also a global constraint on the matrix:
each match appears once, that is all matches are
different.

Similiary to the Social Golfer, the Round Robin
problem is also highly symmetric, since players, weeks
and fields are interchangeable.

4.1 Round Robin as a SAT problem

We considered Manyà and Béjar[5] encoding and tried
to improve it by adding additional constraints. We
focus on improving their encoding by breaking week
and field symmetries and by introducing a dummy
column[19].



Week 1 Week 2 Week 3 Week 4 Week 5 Dummy
Field 1 1 2 4 5 3 6 2 3 1 6 4 5
Field 2 3 4 2 6 1 4 1 5 3 5 2 6
Field 3 5 6 1 3 2 5 4 6 2 4 1 3

Figure 4: An example of the dummy column.

To deal with week symmetries we force the matches
of the form (1, n), with n ≥ 2, to occur in the week n−1.
To break field symmetries we impose a fixed first week
where the matches of the form (1, 2) to (n−1, n) occur.
We will denote the encoding that deals with symmetry
breaking by symmetries.

We also introduced a dummy column. The encoding
of this additional column is able to guarantee that each
team, plays exactly twice in each field. An example of
the dummy column can be seen in the figure 4.1.

The encoding that uses the dummy column is called
dummy. The encoding that has both the dummy
column and symmetry breaking is denoted all.

Besides improving this encoding we also produced
a new encoding for this problem that is based on the
encoding for the Social Golfer presented in the previous
section.

We have defined SAT variables based on the possible
matches in each week and field:

• V = {FIELDk(X) ∪ WEEKj(X)}, where X
represents any of the possible matches, with 1 ≤
k ≤ n

2 and 1 ≤ j ≤ n− 1.

FIELDk(X) indicates that the match X occurs in
the field k and WEEKj(X) indicates that the match
X occurs in the week j.

Similarly to what we have done in the previous
section, we encoded the following constraints using the
variables FIELD:

• Each team plays at most twice in each field.

• Each team plays exactly once against each other
team.

Using the variables WEEK we encoded the follow-
ing constraints:

• Each team plays exactly once in each week.

• Each team plays exactly once against each other
team.

Then we need to relate both variables, we did that
by encoding the following constraint:

• If two different matches occur in the same week
then they must occur in different fields. Similarly,
if they both occur in the same field then they must
occur in different weeks.

Field and week symmetries were dealt in the same
way as described in the Manyà and Béjar improved
encoding. This is encoding is called Martins.

4.2 Experimental Results

In this section we compare the encodings presented in
the previous section with the one presented by Manyà
and Béjar. For that, we used an Intel Xeon 5160
(3.0GHz with 4GB of RAM) and the solver. A “-”
on the following results means that the solver reached
the time limit.

n
Encoding 10 12 14

Manyà & Béjar 4.53 25.43 -
symmetries 1.1 4.55 660.31

dummy 2.8 92 -
all 0.76 5 4493.65

Martins 0.22 8.76 4.4

Figure 5: Comparison between the different encodings
with a time limit of 6000 seconds.

As we can see in figure 5, our changes into the
original encoding of Manyà and Béjar produced better
results in comparison with the original encoding. The
symmetries encoding was the most significant improve-
ment. This supports the idea that symmetry breaking
is essential when encoding a problem into SAT. The
dummy encoding while being superior to the original
encoding did not match the remaining encodings.

Moreover, the encoding with the best performance
was the one denoted by Martins.



5 Quasigroup Completation Prob-
lem

Quasigroups have been traditionally presented as a
combinatorial problem for which different encodings
can be presented. Moreover, quasigroups have the
advantage of providing an endless source of problem
instances.

A quasigroup is an ordered pair (Q, ·), where Q is a
set and · is a binary operation on Q such that for each
a and b in Q, there exist unique elements x and y in Q
such that: a · x = b and y · a = b. The order n of the
quasigroup is the cardinality of the set Q [12].

In this paper we will study the quasigroup com-
pletion problem (QCP), which is the NP-complete
problem of filling a partial Latin square [6]: given a
Latin square with some symbols pre-assigned, identify
a complete assignment such that each symbol occurs
exactly once in each row and exactly once in each
column, or prove that such an assignment does not
exist.

Figure 6 shows a QCP of order 5 and a possible
solution.

1 4
5

4 2
4

5 1

1 3 2 5 4
2 5 4 1 3
4 1 3 2 5
5 4 1 3 2
3 2 5 4 1

Figure 6: Example of a QCP of order 5.

5.1 QCP as a SAT problem

Different SAT encodings for QCP have been well stud-
ied in the past and therefore there exist efficient ways
of encoding this problem into SAT [15]. The two most
straightforward ways of encoding this problem are the
minimal encoding and the extended encoding [11]. We
used the extended encoding with additional constraints
that deal with symmetry breaking.

Quasigroups can be represented by a matrix model.
Similarly to all matrix models, we may consider the
usual row and column symmetries, where rows and
columns may be exchanged. Breaking these symme-
tries has the advantage of reducing the search space
without loosing any of the solutions. However, given
that a QCP starts with a subset of cells pre-assigned,
breaking these symmetries has no effect in practice.

Although we cannot study global symmetries in
the context of QCPs, we can study another type of

symmetries. In this section we will identify and encode
local symmetries that occur in QCPs.

Figure 7 shows a type of local symmetry that is
present in QCPs.

j1 j2

i1 a b

i2 b a

j1 j2

i1 b a

i2 a b

Figure 7: Local symmetry lsym22 in QCPs.

Consider a quasigroup Q and two rows (i1, i2),
two columns (j1, j2) and two symbols (a, b), with
1 ≤ i1 < i2 ≤ n, 1 ≤ j1 < j2 ≤ n and a, b ∈ {1, . . . , n}.
Consider thatQ[i1, j1] refers to the content of the cell in
row i1 and column j1 of the quasigroup Q and assume
that symbol a occurs in cells Q[i1, j1] and Q[i2, j2] and
symbol b occurs in cells Q[i1, j2] and Q[i2, j1]. Let
us consider the two quasigroups illustrated in Figure
7. For these two quasigroups, for which a partial
assignment is given, it is straightforward to identify a
function that defines a local symmetry. In what follows
we will refer to this local symmetry as lsym22.

In order to break lsym22 we impose a lexicographical
order in the values of Q[i1, j1] and Q[i2, j1] by extend-
ing our encoding with additional constraints. For each
set of four cells where the pattern shown in Figure 7
may occur for symbols a and b, we add the following
constraints to guarantee that Q[i1, j1] < Q[i2, j1]:

• If a < b : ¬(qi1j1b ∧ qi1j2a ∧ qi2j1a ∧ qi2j2b)

• Else If a > b : ¬(qi1j1a ∧ qi1j2b ∧ qi2j1b ∧ qi2j2a)

This means that only one of the assignments given
in Figure 7 may occur. If a > b then the first partial
assignment given in Figure 7 (left) cannot occur, oth-
erwise if a < b then the other partial assignment given
in Figure 7 (right) cannot occur. Observe that with
these clauses we prevent one of the partial assignments
from occurring, although we may not guarantee that
one of them will occur in the solution found.

This reasoning may be extended to patterns includ-
ing more than four cells. We can use the same idea



present in lsym22 to identify local symmetries with 2
rows and 3 columns and with 3 columns and 2 rows.
These local symmetries will be referred to as lsym23

and lsym32.
Finally, observe that many other local symmetries,

similar to the ones that we have just mentioned, may
arise in QCPs (for example, see Figure 8). Such sym-
metries involve more rows and columns (and eventually
more symbols) and are clearly more complex.

j1 j2 j3

i1 b a

i2 a b

i3 b a

j1 j2 j3 j4

i1 b a

i2 a b

i3 b a

i4 a b

Figure 8: Example of other (more complex) local
symmetries in QCPs.

5.2 Experimental Results

In this section we compare the efficiency of the en-
codings presented in the previous section against the
encoding that does not break symmetries. On a
first approach, we will study the impact of breaking
local symmetries on satisfiable QCP instances and
afterwards we will study the impact of breaking those
symmetries on unsatisfiable QCP instances.

For the experiments reported bellow we have used
the satisfiable QCP problem instances from[2] and have
generated our own unsatisfiable problem instances. All
these instances are located near the phase transition.
The results were obtained on an Intel Xeon 5160
(3.0GHz with 4GB of RAM) using satz2.

2Available from http://www.laria.u-picardie.fr/

˜ cli/EnglishPage.html.

5.2.1 Satisfiable Instances

The local symmetries presented in the previous section
occur very often in QCPs. This fact can be confirmed
comparing the number of solutions for QCP instances
with and without local symmetry breaking clauses.
We have run relsat3 to perform this comparison.
We were able to count all the solutions for 30 in-
stances of order 30. Figure 9 shows the percentage
of solutions eliminated by breaking local symmetries.
Each value represents the average number of solutions
eliminated for the 30 problem instances. Results are
given for each one of the local symmetries broken
(lsym22, lsym23, lsym32) and for the combination of all
of them as well (lsymall).

lsym22 lsym23 lsym32 lsymall

77.191 8.910 10.934 81.668

Figure 9: Reduction of the number of solutions when
using the different encodings.

Clearly, breaking local symmetries of type lsym22

causes a significant reduction in the number of solu-
tions of a given problem instance.

Figure 10 shows the percentage of instances solved
for each configuration, as well as the CPU time (in
seconds) required for finding one solution. The given
CPU time refers to the median value obtained from
running hundred times each subset of 100 problem
instances.

This figure clearly shows that breaking local sym-
metries seems not to help solving these problems
instances. Although a slightly improvement can be ob-
served for n = 45 and lsym22, it is not representative.
For the remaining cases, satz requires in general more
time when symmetry breaking clauses are added.

These results came as a surprise: we were expecting
that symmetry breaking would reduce the CPU time,
given that the number of solutions and the search
space are dramatically reduced. The only possible
explanation for this fact is the branching heuristic.
Clearly, the heuristic is badly affected by the new
clauses. In order to clarify this fact, we have partially
disabled satz’s heuristic. The look-ahead heuristic
implemented in satz chooses the variable that once
assigned will imply the highest number of assignments
due to unit propagation. We now simply choose the
first unassigned variable to branch on. This makes the
heuristic to choose the variables following a fixed order
which is a non-biased approach. This new version of
satz is called blindsatz.

3Available from http://www.bayardo.org/resources.html.



Order w/o lsym lsym22 lsym32 lsym23 w/o lsym lsym22 lsym32 lsym23

35 100 100 100 100 0.66 0.64 0.825 0.635
37 100 100 100 100 3.44 3.37 3.495 4.015
40 100 100 100 100 18.76 18.63 26.645 19.92
43 90 91 90 89 120.66 134.41 156.11 170.655
45 68 69 68 70 665.22 633.55 802.835 740.22

Figure 10: Satisfiable instances using satz with a time limit of 6000s.

w/o lsym lsym22 lsym32 lsym23 lsymall

88.97 81.57 88.87 88.97 81.095

Figure 11: Satisfiable instances using blindsatz with a
time limit of 1000s.

Figure 11 shows the median CPU time required to
find a solution using blindsatz. Results are reported
for only 30 instances with n = 37. (No larger instances
could be tried due to blindsatz being much slower
that satz.) For blindsatz, breaking symmetries of
type lsym22 improves the performance. But breaking
symmetries of types lsym23 and lsym32 has almost
no impact in the CPU time, most probably because
these symmetries rarely occur in practice and there is a
significant overhead on dealing with additional clauses.

5.2.2 Unsatisfiable Instances

w/o lsym lsym22 lsym32 lsym23 lsymall

376.075 360.655 378.52 377.955 358.47

Figure 12: Unsatisfiable instances using blindsatz with
a time limit of 1000s.

We finally evaluate the impact of local symmetry
breaking in unsatisfiable problem instances. The first
step for this evaluation was to build a generator of
unsatisfiable instances. This was done based on [20].
The new generator generated 30 problem instances of
order 35 with 67% pre-assigned values (this value cor-
responds to the phase transition). Again, we observed
that satz is more efficient when no symmetry breaking
clauses are added. For this reason, blindsatz was tried
as an alternative.

Figure 12 shows the median CPU time needed by
blindsatz to prove unsatisfiability. Again, lsym23 and
lsym32 do not improve much the performance of the
basic encoding in terms of efficiency. In addition, we
also observed that breaking symmetries seems to have
more impact on solving harder problem instances.

6 Towers of Hanoi

The Towers of Hanoi are a mathematical puzzle in-
vented by the French mathematician, Edouard Lucas,
in 1883. It consists of three towers, and a number of
disks of different sizes which can slide onto any tower.
The puzzle starts with the disks neatly stacked in order
of size on one tower, the smallest at the top, thus
making a conical shape.

The objective of the puzzle is to move the entire
stack to another tower, obeying the following rules:

• Only one disk may be moved at a time.

• Each move consists of taking the upper disk from
one of the towers and sliding it onto another tower,
on top of the other disks that may already be
present on that tower.

• No disk may be placed on top of a smaller disk.

For an easier understanding we will consider that
the disks are numbered in an increasing order, from the
smallest to the largest. Given n disks there is always a
solution with 2n − 1 steps. For each problem, we also
know which disk will be moved at each step. This is
given by the following recursive function (seq): S1 =
{1}; Sn = {Sn−1, n, Sn−1}.

The Towers of Hanoi have some interesting
properties[22] that will help us to solve this problem
in a more efficient way. On the next section, we will
use the following properties of this problem:

Property 1. Given the first 2n−1 − 1 steps we can
determine the remaining steps by doing the same steps
while considering different initial and final towers.

Property 2. While moving disks, we can never have
disks of the same parity in direct contact.

Property 3. At the top of all towers we can have at
most one even disk.

Property 4. If we consider one additional fixed disk
on the bottom of each tower, respectly numbered with
n + 1, n + 2 and n + 3, we can guarantee that there is
always one even disk at the top of all towers.



n Selman Prestwich (seq) (pp1) (pp2) (pp3) (pp4)
4 0.16 0.01 0.01 0.01 0.01 0.02 0.02
5 8.31 0.14 0.01 0.01 0.08 0.10 0.15
6 54.70 1.07 0.05 0.13 1.10 1.94 1.36
7 5252.27 10.97 0.32 0.99 14.38 19.44 12.15
8 - 332.32 1.44 16.08 154.45 187.28 220.30
9 - - 3.47 391.12 2616.45 - 3003.58
10 - - 71.66 - - - -
11 - - 1345.33 - - - -
12 - - 6950.09 - - - -

Figure 13: Comparison between the different encodings.

6.1 Towers of Hanoi as a SAT problem

We took the well known encoding of Prestwich[17], that
is based on the STRIPS[8] language, and improved it
by encoding the properties described in the previous
section.

Prestwich encoding is based on the following set of
variables:

• obj(dj , i), with 1 ≤ j ≤ n and 1 ≤ i ≤ 2n − 1;

• origin(tj , i), with 1 ≤ j ≤ 3 and 1 ≤ i ≤ 2n − 1;

• dest(tj , i), with 1 ≤ j ≤ 3 and 1 ≤ i ≤ 2n − 1;

• on(dj , tk, i), with 1 ≤ j ≤ n, 1 ≤ k ≤ 3 and
1 ≤ i ≤ 2n;

The variable obj describes which disk is moved
in each step; the variable origin/dest describes the
initial/final tower of each step and the variable on
describes which tower each disk is on.

We encode property 1 (pp1) by reducing our search
space to the first 2n−1 − 1 steps and by changing the
goal state so that we have the larger disk on the first
tower and the remaining disks on the second tower.

Property 2 (pp2) is encoded in a straightforward
way.

To encode property 3 (pp3) we used an auxiliary
variable denoted by top(dj , tk, i), with 1 ≤ j ≤ n, 1 ≤
k ≤ 3 e 1 ≤ i ≤ 2n. This variable describes which disk
is on top of each tower.

To encode the additional fixed disks in property 4
(pp4) we increased the number of disks in the problem
but imposed that those disks should never move their
places. To guarantee that there is always one even disk
at the top of all towers we used the variable top defined
in the previous property.

6.2 Experimental Results

In this section we will compare our encoding with
Selman and Kautz[16, 14] encoding and Prestwich
encoding. For that, we used an AMD Sempron 2400+
(1666 Mhz with 1 GB of RAM) and the solver PicoSAT4

with a time limit of 10,000 seconds.
In figure 13 we can see that Prestwich encoding

is more efficient than Selman and Kautz encoding,
being able to solve instances of size n = 8. However,
the encodings produced by us showed a better perfor-
mance than Prestwich encoding. (seq) is able to solve
instances until 12 disks, which is significantly better
than both encodings presented by Selman and Kautz
(7 disks), and Prestwich (8 disks).

n # vars #claus {(seq),(pp1)}
4 166 1,106 0.01
5 405 3,140 0.02
6 948 8,319 0.07
7 2,163 21,091 0.15
8 4,850 51,872 0.39
9 10,737 124,758 0.85
10 23,536 294,917 2.32
11 51,183 687,533 5.04
12 110,574 1,584,462 12.37

Figure 14: Combined encoding of (seq) with (pp1).

Due to our good results we tried to combine several
properties with the goal of producing a better encoding.
Combining (seq) with (pp1) we produced an encoding
that can be solved without search. Figure 14 shows
that with this encoding we can solve 12 disks in just
a few seconds. We can also solve larger problem
instances, however the size of the formula grows ex-
ponencially. Taking this in mind we developed a new

4Available from http://fmv.jku.at/picosat/.



encoding that can be solved without search and that
is smaller than (seq) combined with (pp1). This new
encoding will be presented in the next section.

6.3 A Simplified Encoding

If we consider properties (seq), (pp1), (pp2) and (pp3)
we are able to produce an encoding based only on the
on variables. By doing this we are drastacly reducing
the size of our encoding while mantaining the ability
to solve this encoding without search. This encoding
is called (simp).

n Encoding #vars #claus

10 {(seq),(pp1)} 23,536 294,917
(simp) 15,330 67,846

11 {(seq),(pp1)} 51,183 687,533
(simp) 33,759 158,427

12 {(seq),(pp1)} 110,574 1,584,462
(simp) 73,692 362,160

Figure 15: Comparation between the simplified encod-
ing (simp) and {(seq),(pp1)}.

As we can see in figure 15 our simplified encoding
is much smaller than the previous encoding. With the
simplified encoding we were able to solve instances with
18 disks, which is significantly better than the previous
encodings.

7 Conclusions and Future Work

Taking into account the experimental results for the
problems described above, we can conclude that, even
though an efficient SAT solver is needed, SAT mod-
elling is also very important in order to efficiently solve
benchmarks problems.

In the Social Golfer problem we showed that with a
simple change of variables we can produce an encoding
that has better performance on a subset of problem
instances. We then applied this encoding to the Round
Robin problem where we also achieved good results.

In the Quasigroup Completation problem we have
identified and break different types of local symmetries.
However, the addition of new clauses for breaking
symmetries has a negative impact on the performance
of the SAT solver. This is due not only to the overhead
of dealing with additional clauses but also to the heuris-
tics being used by SAT solvers. These heuristics have
been designed not having these clauses into account.
As future work we envision developing new heuristics
for coping with symmetry breaking clauses.

In the Tower of Hanoi problem we have presented a
new encoding that is based on additional properties of
this problem. With this encoding we were able to solve
instances with 18 disks. This is significantly better
than any of the current encodings for this problem.

SAT modelling can be done in several different ways
and it is currently a field that needs deeper research.
New techniques of modelling should be exploited in
order to take full advantage of the SAT solver.
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