
Preprocessing in Pseudo-Boolean Optimization:
An Experimental Evaluation

Ruben Martins, Inês Lynce, and Vasco Manquinho

IST/INESC-ID, Technical University of Lisbon, Portugal
{ruben,ines,vmm}@sat.inesc-id.pt

Abstract. Preprocessing in Boolean Satisfiability (SAT) is commonly
used since it can substantially decrease the run time of SAT solvers. On
the other hand, preprocessing is almost non existent in Pseudo-Boolean
Optimization (PBO). PBO is closely related to SAT and therefore can
benefit from the advances in SAT preprocessing. In this paper, we study
the impact of SAT preprocessors, namely HyPre and extHyPre, in PBO
formulas. We explain how these preprocessors can be adapted to be used
in PBO instances. Experimental results show that, even though the pre-
processing in PBO is not as effective as in SAT, it can lead to improve-
ments.

1 Introduction

Nowadays, it is acknowledged by the Boolean Satisfiability (SAT) community
that using preprocessors prior to solving can substantially decrease the run time
of SAT solvers. This is due to the development of several preprocessors for which
empirical evidence shows its importance in SAT solving.

HyPre [3] was one of the first efficient preprocessors. It uses hyper-binary
resolution to deduce new binary clauses. Moreover, HyPre is able to detect and
substitute equivalent literals incrementally. A weaker schema has been adopted
by NiVER [11], which eliminates variables by resolution as long as this computa-
tion does not increase the number of literals in the CNF formula. NiVER has been
improved later by a substitution rule, together with the use of clause signatures
and touched lists to define the recent SatELite [5] preprocessor. More recently,
ReVivAl [8] was proposed, being based on strengthening, or vivifying, the re-
dundant clauses from the original formulas. Also recently, extHyPre [1] has been
proposed to extend the hyper-resolution used in HyPre, so that it can deduce
clauses of a bounded length instead of only binary clauses. ExtHyPre applies
this inference rule to an extension of the graph representation of binary CNF
formulas to the general case. It then adds the deduced clauses to the original
formula. This preprocessor, however, does not perform equivalent reduction as
in HyPre.

Pseudo-Boolean (PB) constraints offer a more expressive and natural way
to express constrains than clauses and yet, this formalism remains close enough
to the SAT problem to benefit from the recent advances in SAT. Indeed, PBO
solvers have been the subject of recent research [7, 10, 6], namely in applying
techniques already successful in SAT. However, to the best of our knowledge

no preprocessor has been developed in the past to simplify Pseudo-Boolean Op-
timization (PBO) problem instances. Moreover, the inclusion of preprocessing
techniques in PBO solvers is almost non existent.

In this paper, we propose to benefit from the advances made in SAT prepro-
cessing and to study the impact of SAT preprocessors in PBO formulas. For that
we have selected HyPre and extHyPre, since the inference rules used in both are
valid even when applied to a subset of a PB formula. In contrast, the inference
rules present in SatELite, (such as variable subsumption) cannot be consis-
tently applied to a subset of constraints in a PB formula. This paper presents
two preprocessors: one based in HyPre, where the SAT preprocessor is used as a
black-box to preprocess a PBO formula, and the other one, based in extHyPre,
where the extended hyper-resolution is applied to a graph representation with
restricted information about the PBO formula.

The paper is organized as follows. In the next section basic notations and
definitions about PBO are provided. In section 3, the SAT preprocessor HyPre
is described. We will then show how we can use HyPre as a black-box to pre-
process a PBO formula. Next, the preprocessor extHyPre and the extended
hyper-resolution inference rule are presented, followed by an explanation on how
to produce a restricted graph representation of a PBO formula, in order to apply
the preprocessor extHyPre. Experimental results will then show that preprocess-
ing can have a positive impact in PBO. Finally, the paper concludes and suggests
future work.

2 Pseudo-Boolean Optimization

A pseudo-Boolean (PB) constraint is defined over a set of n Boolean variables, x1,
x2, . . . , xn, which can be assigned truth values 0 (false) or 1 (true). A literal li is
either a variable xi (i.e., a positive literal) or its complement xi (i.e., a negative
literal). A positive literal, xi, evaluates to 1 if and only if the corresponding
variable xi is assigned value 1, a negative literal, xi, evaluates to 1 if and only if
the corresponding variable xi is assigned value 0. A PB constraint is defined as
a linear inequality over a set of literals of the following normal form:

n∑
j=1

aj lj ≥ b

such that for each i ∈ {1, . . . , n}, ai, b ∈ Z+. It is well-known that any PB
constraint (with negative coefficients, equalities or other inequalities) can be
converted into the normal form in linear time [4]. In the sequel, it is assumed
that all PB constraints are in normal form.

PB constraints can be divided into three categories: cardinality constraints,
clauses and general PB constraints. If a PB constraint has all ai coefficients
with the same value k, it is called a cardinality constraint, since it requires db/ke
literals to be true for the constraint to be satisfied.

Example 1. An example of a PB cardinality constraint is x1 + x2 + x3 + x4 ≥ 2.
It is satisfied when at least any two literals evaluate to 1, for example when
x1 = 1 and x4 = 0.

If all coefficients ai and the right hand side b are 1, then the PB constraint
is a clause. Notice that a clause is a particular case of a cardinality constraint.
From this point forward, when we refer to cardinality constraints we will only
refer to those which are not clauses.

Example 2. An example of a clause is x1 + x2 + x3 ≥ 1. It is satisfied when at
least one literal evaluates to 1, for example when x2 = 0.

If a PB constraint is neither a cardinality constraint nor a clause, then it falls
into the category of general PB constraint.

Example 3. An example of a general PB constraints is 7x1 + 4x2 + 5x3 ≥ 7. It
is satisfied when x1 = 1 or when x2 = 0 and x3 = 1.

Given a formula ϕ, which is a conjunction of PB constraints 1, and a linear
objective function f , the Pseudo-Boolean Optimization (PBO) problem is de-
fined as the problem of finding an assignment to problem variables such that all
constraints are satisfied and the value of the objective function f is optimized.

Definition 1 (Pseudo-Boolean Optimization (PBO) Problem). A gen-
eral definition of the PBO problem is:

minimize :
∑
j cjxj, ∀j , cj ∈ Z

subject to :
∧
i

∑
j ai,jxj ≥ bi

Example 4. An example of a PBO problem instance is:

minimize : x1 − 2x3 + x4

subject to : x1 + x2 + x3 + x4 ≥ 2
x1 + x2 + x3 ≥ 1
3x1 + 4x2 + 5x3 ≥ 7

It has an optimal solution of -1 when x1 = 1, x2 = 1, x3 = 1 and x4 = 0.

3 Hyper-Binary Resolution

A CNF formula is represented using a finite set of Boolean variables xi. A clause
ω is a disjunction of literals and a CNF formula ϕ is a conjunction of clauses.

Example 5. An example of a CNF formula is ϕ = (ω1 ∧ ω2 ∧ ω3) (equivalent to
ϕ = {ω1, ω2, ω3} using a set notation) where ω1 = (x1 ∨ x2), ω2 = (x2 ∨ x3) and
ω1 = (x2 ∨ x3). It is satisfied when, for example, x1 = 1, x2 = 1 and x3 = 0.

A CNF formula is satisfied if and only if there is an assignment to the vari-
ables such that all of its clauses are satisfied. The SAT problem is to decide
whether there exists a truth assignment to the variables such that the formula
becomes satisfied.
1 The conjunction of cardinality and PB constraints is denoted pseudo-Boolean part,

whereas the conjunction of clauses is denoted clausal part.

Definition 2 (Binary Implication Graph). Given a CNF formula ϕ with
a set of binary clauses γ, a Binary Implication Graph is a directed graph G =
(V,E) such that:

– li, li ∈ V if and only if li is a literal in ϕ,
– e = (li, lj) ∈ E[G] if and only if γ contains a clause (li ∨ lj).

Definition 3 (Unit Propagation (UP)). The unit clause rule applies when-
ever a unit clause ωi = (lj) is identified. In this case, all clauses containing
literal lj are declared satisfied, and the literal lj is removed from all clauses con-
taining it. This simplification may originate new unit clauses in which case the
unit clause rule should be applied again until no unit clauses remain or the empty
clause is derived. The process of iteratively applying the unit clause rule is called
unit propagation (UP).

Unit propagation is widely used in SAT as a simplification rule that can be
performed in polynomial time.

Example 6. Consider two clauses ω1 = (x1 ∨ x2 ∨ x3) and ω2 = (x2 ∨ x4). Given
the partial assignment {x1 = 0, x3 = 0}, literal x2 in ω1 must have value 1 and
therefore we must assign x2 = 0. Consequently, literal x4 in clause ω2 must also
have value 1 and therefore we must assign x4 = 1.

Bacchus and Winter proposed HyPre [3], a preprocessor for CNF formulas
based on hyper-binary resolution and equality reduction. Their experiments show
that in most cases there is a benefit in using this preprocessor prior to invok-
ing a state-of-the-art SAT solver. HyPre preprocesses a CNF instance in three
interconnected ways:

1. Adding binary clauses using hyper binary resolution;
2. Identifying equivalent variables by traversing the binary implication graph

and performing substitutions accordingly;
3. Finding unit clauses and propagating the corresponding unassigned literals.

Definition 4 (Resolution [9]). The resolution rule is defined as follows:

(li1 ∨ . . . ∨ lin ∨ x) (lj1 ∨ . . . ∨ ljn ∨ x)
(li1 ∨ . . . ∨ lin ∨ lj1 ∨ . . . ∨ ljn)

Example 7. Consider the following clauses: ω1 = (x1∨x2∨x5) and ω2 = (x3∨x4∨
x5). Applying resolution to ω1 and ω2 produces the resolvent (x1∨x2∨x3∨x4).

Hyper Binary Resolution was proposed by Bacchus and Winter [2] as a hyper-
resolution step (i.e., a resolution step that involves more than two input clauses)
that attempts to infer new binary clauses.

Definition 5 (Hyper Binary Resolution (HypBinRes)). The HypBinRes
inference rule can be defined as follows:

(l1 ∨ . . . ∨ ln) (l1 ∨ y) . . . (ln−1 ∨ y)
(y ∨ ln)

for n ≥ 2

Input: Formula ϕ
Output: Simplified formula ϕ
while ϕ can be simplified do

ϕ = HypBinRes(ϕ);
ϕ = EqReduce(ϕ);
ϕ = UP(ϕ);

end
Algorithm 1: General idea of the HyPre preprocessor

Example 8. Applying HypBinRes to the clauses (x1 ∨ x2 ∨ x3 ∨ x4), (x1 ∨ x5),
(x2 ∨ x5) and (x3 ∨ x5), produces the new binary clause (x4 ∨ x5).

HypBinRes is used to infer new binary clauses. Once binary clauses are
available, equality reduction can be performed. If the formula ϕ contains two
binary clauses (xi ∨ xj) and (xi ∨ xj) or (xi ∨ xj) and (xi ∨ xj) (i.e., the equiv-
alences xi ⇔ xj or xj ⇔ xi, respectively), then we can generate a new formula
EqReduce(ϕ) by equality reduction.

Definition 6 (Equality Reduction). If two variables are equivalent (i.e.,
xi ⇔ xj) then a new formula EqReduce(ϕ) is obtained by:

– Replacing all occurrences of xj in ϕ by xi or xi;
– Removing all clauses which now contain both xi and xi;
– Removing all duplicate occurrences of xi (or xi) from all clauses.

We should note that equality reduction may generate new binary clauses,
which may lead to identifying additional equivalent variables.

Example 9. Consider the following CNF formula: ϕ = {ω1, ω2, ω3, ω4, ω5} where
ω1 = (x1∨x2), ω2 = (x1∨x2), ω3 = (x1∨x2∨x3), ω4 = (x2∨x4), ω5 = (x1∨x2∨
x4). EqReduce(ϕ) = {(x1 ∨x4), (x1 ∨x4)}, since x1 ⇔ x2. Clearly EqReduce(ϕ)
has a satisfying truth assignment if and only if ϕ does. Furthermore, any truth
assignment for EqReduce(ϕ) can be extended to one for ϕ by assigning x2 the
same value as x1.

Algorithm 1 summarizes the HyPre preprocessor. HyPre applies HypBinRes,
equality reduction and unit propagation to a CNF formula ϕ until no more new
inferences can be made with these rules.

3.1 HyPre in PBO

PBO formulas can be split into a clausal part and a PB part. HyPre can be
applied to the clausal part to produce a simplified clausal part. If there are
equivalent variables and/or unit clauses, we also have to make the corresponding
simplifications in the PB part. The inference rules used by HyPre are sound even
when applied to a subset of the constraints, since the derived implications remain
true for all the constraints.

Figure 1 illustrates how HyPre can be applied to a PBO formula. We start by
splitting the original PBO formula into two parts: the clausal part (1) and the

Initital
Formula

Clausal
Part

PB Part

Clauses

Cardinality + PB
 Constraints

CNF
Formula

Translate to
 CNF

Simplified
CNF

Formula
Hypre

If Eq.
Variables

If fixed
variables

Simplify the PB Part

Add unit clauses
Simplified
Clausal

Part

Translate to
PB

Simplified
Formula

Join Join

(1)

(2)

(3) (4)

(5)

(6)

(7)

(8) (9)

Fig. 1. Applying HyPre to a PBO formula.

PB part (2). Afterwards, the clausal part is transformed into a CNF formula (3).
HyPre is then applied as a black-box to the CNF formula to obtain a simplified
CNF formula (4). If there are any equivalent variables, then the pseudo-Boolean
part is simplified accordingly (5), taking into account the objective function.

Example 10. Suppose that the PB part of the PBO problem is the following:

min : x1 − x2 + x3

x1 + x2 + 2x3 ≥ 4
x1 + x2 + x3 + x4 ≥ 2

and that HyPre is applied to the clausal part, such that x1 ⇔ x2 (i.e., x2 = 1−x1)
is inferred. After simplifying the PB part the preprocessed formula becomes:

min : 2x1 + x3 − 1
2x1 + 2x3 ≥ 4
x3 + x4 ≥ 1

Notice the introduction of a constant term in the objective function that results
from replacing x2 by 1− x1.

If there are any fixed variables, i.e. variables for which a necessary assignment
is identified, then the corresponding unit clauses are added (6). The formula
could alternatively be simplified simply propagating the necessary assignments

but since PBO solvers already do that for unit clauses we opted for just adding
them to the PB part. Meanwhile, the simplified CNF produced by HyPre is
translated to pseudo-Boolean constraints (7). Finally, the simplified clausal part
is joined with the simplified PB part (8,9) and the final simplified PBO formula
is obtained.

4 Extended Hyper-Resolution

Audemard et al. [1] recently proposed a new graph based preprocessing of CNF
formulas. The idea behind their graph representation is to extend the binary im-
plication graph for clauses of any size. For that they propose the use of contexts.

Definition 7 (Context). Given a clause ω with at least two literals, i.e. |ω| ≥
2, a context ηω associated to ω is a conjunction of literals so that ηω ⊂ ω and
|ηω| = |ω| − 2. Clearly, an assignment that satisfies ηω makes the clause w to
become a binary clause.

Example 11. Consider the following clause: w = (x1∨x2∨x3∨x4). One possible
context associated with ω is ηω = (x2 ∧ x3). The clause w can be rewritten as
((x1 ∧ ηω)⇒ x4).

The context associated to a binary clause is empty, whereas for ternary
clauses the context contains only one literal. A unit clause ω = (xi) is rep-
resented by the implication (xi ⇒ xi).

Definition 8 (Graph SAT Representation). Given a CNF formula ϕ, a
graph SAT representation is an edge-labeled directed graph G = (V,E), where
each label corresponds to a context, such that:

– li, li ∈ V if and only if li is a literal in ϕ
– e = (li, lj) ∈ E[G] with label(e) = η if and only if ∃ω ∈ ϕ, ω = (li ∨ η ∨ lj)

where η is a sub-clause of ω. For the sake of simplicity, we will often denote
e as (li, lj , η) or li ⇒η lj.

For a clause of size k there are k(k−1)
2 possible contexts. Assuming that

CNF formulas might be very large, it is necessary to use a restricted graph
representation for having an efficient preprocessing. With this in mind, it was
proposed in [1] a restricted graph representation that imposes an order on the
possible contexts.

Definition 9 (Ordered SAT Graph). Given a CNF formula ϕ, a ordered
SAT graph is an edge-labeled directed graph G = (V,E), where each label corre-
sponds to a context, such that:

– li, li ∈ V if and only if li is a literal in ϕ
– For a given clause ω = (l1∨ l2∨ . . .∨ lk) in ϕ, the set of edges resulting from
ω is e(ω) =

⋃
1≤i≤k ai where ai is defined as follows:

• (1 ≤ i < k) : ai = (li, li+1, η(ai)) and η(ai) = {lj | 1 ≤ j ≤ k and j 6= i
and j 6= i+ 1}

x4

x1

x2

x3

x2

x3

x1

x4

{x3}

{x1}

{x2}

Fig. 2. Ordered SAT graph representation of the CNF formula presented in example 12

• (i = k) : ak = (lk, l1, η(ak)) and η(ak) = {l2, . . . , lk−1}

Example 12. Consider the following CNF formula ϕ = {ω1, ω2, ω3, ω4}, where
ω1 = (x1 ∨ x2 ∨ x3), ω2 = (x1 ∨ x4), ω3 = (x2 ∨ x4) and ω3 = (x3 ∨ x4). The
ordered SAT graph representation of ϕ is presented in figure 2. Note that binary
clauses are represented by two edges in both graphs.

Definition 10 (Path). A path p(x, y) between two vertices x, y in the graph
G = (V,E), is defined as follows: p(x, y) = [l1, l2, . . . , lk] such that l1 = x and
lk = y and (li−1, li) ∈ E[G] for 1 < i ≤ k. We define ηp =

⋃
1<i≤k(li−1, li) as

the context associated to p(x, y) and tr(p(x, y)) = tr(. . . (tr((l1, l2), (l2, l3))
. . . (lk−1, lk)) . . .) as the transitive closure associated to p(x, y).

Definition 11 (Fundamental Path). Let p(x, y) = [x = l1, l2, . . . , lk = y] be
a path between x and y. p(x, y) is called fundamental if it satisfies the following
two conditions:

– ηp does not contain a literal and its complement;
– x /∈ ηp and y /∈ ηp.

The transitive closure on any path in the graph is used to generate new re-
solvents. The aim of the preprocessor is then to generate fundamental resolvents
of bounded length that can be added to the original formula.

Definition 12 (Extended Hyper Resolution (ExtHypRes)). The ExtHypRes
inference rule can be described as follows:

(l1 ∨ l2 ∨ . . . ∨ ln) (l1 ∨ α1), . . . , (ln ∨ αn)
(
⋃

1≤i≤n(αi))

where αi for 1 ≤ i ≤ n are sub-clauses.

Input: ordered G = (V,E) and ω ∈ ϕ
Output: ωres a resolvent clause
contexts = ∅;
nodes = ∅;
foreach li ∈ ω do

if ∃e = (li, lj , η(e)) ∈ E[G] such that lj /∈ contexts and η(e) ∩ nodes = ∅ and

lj /∈ ω and η(e) ∩ ω = ∅ then
contexts = contexts ∪ η(e), nodes = nodes ∪ {lj}

else

if li /∈ contexts and li /∈ nodes then
nodes = nodes ∪ {li}

else
break

end

end

ωres = nodes ∪ {li : li ∈ contexts}
end

Algorithm 2: Extended Hyper-Resolution Preprocessor (extHyPre).

Example 13. Consider the following clause ω = (x1∨x2∨x3) and a set of binary
clauses γ = {(x1 ∨ y), (x2 ∨ y), (x3 ∨ y)}. ExtHypRes(ω, γ) = y. In this case,
the application of the ExtHypRes rule corresponds exactly to the application
of HypBinRes. If we consider the set of clauses ϕ = {(x1 ∨ η1 ∨ y1), (x2 ∨ η2 ∨
y2), (x3∨η3∨y3)}, then ExtHypRes(ω, ϕ) = (η1∨η2∨η3∨y1∨y2∨y3). Clearly, a
step of ExtHypRes can be seen as an extension to the HypBinRes rule presented
in the previous section.

Algorithm 2 is applied to each clause ω in the formula. It is then iterated
using the resolvent generated in the previous step, until either the size of the
resolvent exceeds a given limit size or no fundamental resolvent can be generated.

At each step of the algorithm, a new clause ω of a given formula ϕ is selected
and processed. For each li ∈ ω, an edge e = (li, lj , η(e)) ∈ E[G] is chosen so that
p(li, lj) is fundamental. The new resolvent is generated following the edges in
the ordered SAT representation G = (V,E). Such a resolvent is composed of the
accumulated set of literals (nodes) and contexts. This resolvent is obtained using
an extension of hyper-resolution. If no fundamental resolvent can be generated
the process terminates.

4.1 Extended Hyper-Resolution in PBO

The preprocessor extHyPre is applied to a restricted graph representation of a
SAT formula. To apply the preprocessor to PBO we should build a restricted
graph representation of a PBO formula. As mentioned before, a PBO formula can
have three types of constraints: clauses, cardinality and general PB constraints.
The representation of clauses is straightforward. Cardinality constraints are en-
coded using the following graph representation:

Definition 13 (Graph Representation of Cardinality Constraints). Gi-
ven a cardinality constraint ω = l1 + . . .+ ln ≥ k, its corresponding graph repre-

sentation is an edge-labeled directed graph G = (V,E) with a context associated
to each edge such that:

– li, li ∈ V if and only if li is a literal in ω.
– e = (li, lj , η) ∈ E[G] if and only if li ∈ ω and |ω| − k − 1 ≥ 0 and η =⋃

k{lk} with (i+ 1 mod |ω|) ≤ k ≤ (|ω| − k − 1 mod |ω|) for each j such as
(i+ j + |ω| − k − 1 mod |ω|) ≤ j ≤ i.

Example 14. Consider the following cardinality constraint x1 +x2 +x3 +x4 ≥ 2.
Using the graph representation of a cardinality constraint implies adding the
following implications to the PBO graph representation:

x1 ⇒{x2} x3 ∧ x1 ⇒{x2} x4

x2 ⇒{x3} x4 ∧ x2 ⇒{x3} x1

x3 ⇒{x4} x1 ∧ x3 ⇒{x4} x2

x4 ⇒{x1} x2 ∧ x4 ⇒{x1} x3

For the general PB constraints something similar to the graph representation
of the cardinality constraint could be done but that would lead to an exponential
computation. Therefore we propose to do a probing on each variable of the
general PB constraints and add to the graph the binary implications found.
Note that these implications have empty contexts. Although this captures less
information than the other approach, it can be done in an efficient way.

Definition 14 (Graph Representation of General PB Constraints). Gi-
ven a general PB constraint ω = a1l1 + . . . anln ≥ k and m =

∑n
i=1 ai, its

corresponding graph representation is an edge-labeled directed G = (V,E) such
that:

– li, li ∈ V if and only if li is a literal in ω.
– e = (li, lj , {}) if and only if li ∈ ω and one of the following two cases occurs:

1. if m− ai = k then there is an edge for each j with j 6= i; else
2. if ∃jm− ai − aj < k then there is an edge between li and lj.

Example 15. Consider the following PB constraints: ω1 = 2x1 +x2 +x3 ≥ 2 and
ω2 = 2x1 +2x2 +x3 ≥ 2. If we apply the graph representation to ω1 the implica-
tions {(x1 ⇒ x2), (x1 ⇒ x3)} will be added to the PBO graph representation. If
it is applied to ω2, then the implications {(x1 ⇒ x2), (x2 ⇒ x1)} will be added
to the PBO graph representation.

Based on these types of constraints we formulate the following restricted
PBO graph:

Definition 15 (Restricted PBO Graph). Given a PBO formula ϕ, a re-
stricted PBO graph is an edge-labeled directed graph G = (V,E) with a context
associated to each edge such that:

– li, li ∈ V if and only if li is a literal in ϕ
– For each constraint β the set of edges formed by this constraint are defined

according to the type of constraint. For that we use the respective graph
representation for clauses, cardinality and general PB constraints described
previously.

ExtHyPre is applied to the restricted PBO graph. With this graph represen-
tation of the PBO formula we are able to capture information about the whole
formula, and therefore the preprocessor will be acting over an enriched graph
which is more powerful than if we would just consider the clausal part.

4.2 Clause Selection Heuristics

ExtHyPre uses two fixed parameters: the maximum size of the resolvent and
the percentage of clauses to be considered. The authors proposed the maximum
size of the generated resolvent to be 75 and considered only 10% of the clauses
for preprocessing, which are selected using a random heuristic. In what follows,
this approach will be denoted by extHyPre(75,10,r). Note that the 10% are
relative to the whole formula and not just the PB constraints corresponding to
clauses.

We have performed a study which suggests that the clause selection heuristic
can have a relevant impact in the effectiveness of the preprocessor. Therefore,
two additional clause selection heuristics are proposed: the clause heuristic and
the degree heuristic.

The clause heuristic selects the clauses with larger size to be preprocessed.
This approach is denoted by extHyPre(75,10,c). The degree heuristic analyzes
the graph representation and for each literal and each edge starting at the lit-
eral’s node, the literal weight is incremented by one plus the number of literals
in the edge label. It then runs through the clauses and sums the weight of
each of its literals, so that each clause has an associated weight. Afterwards it
preprocesses the clauses with the larger weights. This approach is denoted by
extHyPre(75,10,r).

Example 16. Consider the graph showed in figure 2. Each literal has the fol-
lowing weights: x1 = 1, x1 = 2, x2 = 1, x2 = 2, x3 = 1, x3 = 2, x4 = 0, x4 = 3.
Therefore the clauses ω1 = (x1 ∨ x2 ∨ x3), ω2 = (x1 ∨ x4), ω3 = (x2 ∨ x4),
ω4 = (x3∨x4) have the following weight (degree): d(ω1) = 3, d(ω2) = 2, d(ω3) = 2
and d(ω4) = 2.

5 Experimental Results

This section evaluates the impact of the two preprocessors proposed in the pre-
vious sections. For the experiments reported we used 807 instances from the PB
competition of 2007 (available from http://www.cril.univ-artois.fr/PB07/)
from the category optimization using small integers with linear constraints. The
impact of the preprocessors was studied over three state-of-the-art PB solvers:
bsolo 3.1 [7], Pueblo 1.5 [10] and minisat+ 1.14 [6]. The results were ob-
tained on an Intel Xeon 5160 server (3.0 GHz with 4GB of RAM) running Red
Hat Enterprise Linux WS 4 with a timeout of 1,800 seconds.

5.1 HyPre based preprocessing

This section only considers the benchmarks that HyPre was able to simplify, i.e.,
for which some preprocessing occurred. This selection has reduced the initial set

Table 1. Average size of the 309 instances to be preprocessed by HyPre.

Benchmark # Vars Cons
Constraints
Cls Card PB

aksoy 79 15,259.90 53,156.70 53,156.57 0.13 0.00
logic-synthesis 74 1,767.91 1,605.35 1,605.35 0.00 0.00
primes-dimacs-cnf 130 1,688.45 11,537.59 11,537.59 0.00 0.00
routing 10 679.20 2,047.00 2,023.00 24.00 0.00
synthesis-ptl-cmos 8 375.75 879.26 879.26 0.00 0.00
haplotype 8 19,926.75 1,189,801.75 1,186,541.00 3,260.75 0.00

Table 2. Average reduction in the clausal part and average time HyPre preprocessing.

Benchmark #
HyPre

Original Preprocessed
Vars Cls Bin Cls Vars Cls Bin Cls time

aksoy 79 15,259.90 17,635.05 35,521.52 14,754.35 17,380.80 34,126.67 0.21
logic-synthesis 74 1,767.91 1,400.97 204.38 1,760.27 1,396.66 81.26 0.01
primes-dimacs-cnf 130 1,688.45 1,420.28 10,117.31 1,063.58 1,051.60 9,333.98 0.04
routing 10 679.20 1,623.80 399.20 566.00 1,623.80 176.20 0.01
synthesis-ptl-cmos 8 375.75 629.38 249.88 364.50 620.00 170.25 0.01
haplotype 8 19926.75 1,185,738.00 803.00 19,450.00 1,178,724.25 0.25 1.30

of 807 instances to 309 instances. For the remaining instances, the solving time
would be almost the same, since when the preprocessor is unable to simplify the
formula it runs in negligible time. Table 1 presents the 309 selected instances,
giving the average number of variables (Vars) and constraints (Cons), as well
as the number of clauses (Cls), cardinality constraints (Card) and general PB
constraints (PB). Observe that the formulas are dominated by their clausal part.
In fact, the set of benchmarks logic-synthesis, primes-dimacs-cnf and synthesis-
ptl-cmos are composed solely by clauses.

Table 2 presents the average time required by HyPre to preprocess each in-
stance for each benchmark as well as the size of the clausal part before and
after preprocessing. The table contains the original number of variables, n-ary
clauses and binary clauses before and after preprocessing. Clearly, the impact
of preprocessing in the clausal part of the PBO formula can be significant. For
example, in benchmark primes-dimacs-cnf there is a reduction on the number
of variables (from 1,688.45 to 1,063.58) and the number of n-ary clauses (from
1,420.28 to 1,051.60). Although in a smaller scale, there is also a reduction on
the number of binary clauses (from 10,117.31 to 9,333.98). Finally, observe that
the preprocessing time rather small. Even though HyPre can be too time con-
suming when applied to certain instances, it was not the case with the tested
benchmarks.

Table 3 presents results for the impact of HyPre on the three selected PBO
solvers. For each solver we present the number of instances where optimality was
proved with and without the used of HyPre at preprocessing. The improvements
achieved by our approach on the number of optimal solutions found is highlighted
in bold, whereas a downgrade in performance is in italic font.

Preprocessing had a positive impact on Pueblo and minisat+. In the case of
Pueblo, 4 more instances have been solved. Pueblo has gains on logic-synthesis
and primes-dimacs-cnf benchmarks while only losing 1 instance on the routing

Table 3. Impact of HyPre preprocessing on bsolo, Pueblo and minisat+.

Benchmark #
bsolo Pueblo minisat+

w/o pre HyPre w/o pre HyPre w/o pre HyPre

aksoy 79 26 24 15 15 24 24
logic-synthesis 74 51 50 31 32 31 31
primes-dimacs-cnf 130 69 69 75 79 79 83
routing 10 9 8 10 9 10 10
synthesis-ptl-cmos 8 6 7 1 1 1 1
haplotype 8 0 0 0 0 8 8

Total 309 161 158 132 136 153 157

Table 4. Average size of the 327 instances to be preprocessed by extHyPre.

Benchmark # Vars Cons
Constraints

Cls Card PB

aksoy 79 15,259.90 53,156.70 53,156.57 0.13 0.00
logic-synthesis 74 1,767.91 1,605.35 1,605.35 0.00 0.00
primes-dimacs-cnf 130 1,688.45 11,537.59 11,537.59 0.00 0.00
radar 12 4,188.25 4,741.58 3,981.75 759.83 0.00
routing 10 679.20 2,047.00 2,023.00 24.00 0.00
synthesis-ptl-cmos 8 375.75 879.26 879.26 0.00 0.00
testset 6 139.50 163.00 147.33 15.67 0.00
ttp 8 1,182.00 16,209.00 8,091.00 414.00 7,704.00

benchmark. Preprocessing was most effective on minisat+, solving more 4 in-
stances of the primes-dimacs-cnf benchmark while solving the same number of
instances as before of the remaining benchmarks.

5.2 extHyPre based preprocessing

This section evaluates the benchmarks for which extHyPre was able to produce
fundamental resolvents with a timeout of 180 seconds and a memory limit of
4GB. For some instances this did not happen due to one of the following reasons:
(1) nonexistence of clauses in the formula, (2) no fundamental resolvents could
be generated although there are clauses in the formula, (3) the preprocessor
times out before fundamental resolvents have been generated. For the instances
not considered due to reasons (1) or (2), the required time for preprocessing is
usually less than one second. We ended up with 327 instances from the initial
set of 807 instances.

Table 4 gives details for the 327 instances to be preprocessed by extHyPre.
There is a wide variety of benchmarks to be tested. Although most benchmarks
have only clauses, there are some benchmarks that have cardinality constraints
as well, like for example radar and ttp, whereas ttp is the only benchmark that
has general PB constraints. The benchmark aksoy is the most challenging for our
preprocessor since the size of some instances forces the preprocessor to terminate
due to time or memory exhaustion.

Table 5 presents the average time needed to preprocess each instance of
each benchmark set using the different clause selection heuristics described in
section 4.2. In general, the preprocessing time is very low. The only exception
is for the benchmark aksoy, which is larger than the remaining ones. Also, note
that the degree heuristic is a bit slower than the other ones due to its overhead.

Table 5. Average time in seconds of extHyPre preprocessing using the different clause
selection heuristics.

Benchmark #
extHyPre extHyPre extHyPre
(75,10,c) (75,10,d) (75,10,r)

aksoy 79 78.51 95.83 80.61
logic-synthesis 74 3.48 3.51 3.43
primes-dimacs-cnf 130 0.34 0.39 0.62
radar 12 0.12 0.18 0.12
routing 10 0.13 0.13 0.11
synthesis-ptl-cmos 8 0.04 0.05 0.04
testset 6 0.01 0.01 0.01
ttp 8 4.54 3.08 3.99

Table 6. Impact of extHyPre preprocessing on bsolo and Pueblo.

Benchmark #
bsolo Pueblo

w/o pre
extHypre extHypre extHypre

w/o pre
extHypre extHypre extHypre

(75,10,c) (75,10,d) (75,10,r) (75,10,c) (75,10,d) (75,10,r)

aksoy 79 26 26 25 23 15 15 15 15
logic-synthesis 74 51 51 51 51 31 32 32 31
primes-dimacs-cnf 130 69 71 70 70 75 78 77 78
radar 12 6 6 6 6 0 0 0 0
routing 10 9 8 10 9 10 10 10 10
synthesis-ptl-cmos 8 6 6 6 6 1 1 1 1
testset 6 6 6 6 6 6 6 6 6
ttp 8 2 2 2 2 2 2 2 2

Total 327 175 176 176 173 140 144 143 143

Tables 6 and 7 show the impact of extHyPre preprocessing on bsolo, Pueblo
and minisat+, respectively. For each variant of the preprocessor and each bench-
mark set is given the number of instances for which optimality was proved. bsolo
was able to solve more 1 instance overall using the clause and degree heuristics.
With the random heuristic less 2 instances were solved. Overall, preprocessing
with extHyPre has a minor impact on bsolo. On the other hand, preprocess-
ing seems to have a significant effect on Pueblo since it is able to solve more
4 instances with the clause heuristic and 3 more instances using the other two
heuristics. Apart from that, average solving times are more or less the same.
Finally for minisat+, preprocessing seems to have better results with the degree
heuristic, solving 3 more instances than before. Notice that the impact of the
preprocessor was particularly effective for the aksoy benchmark, which shows
that the same preprocessing techniques may have a different impact on different
solvers.

6 Conclusions and Future Work

Preprocessing in SAT is currently acknowledged as an important step in SAT
solving. On the other hand, in PBO there is a lack of preprocessing tools. Due to
the close relation between both fields, we have studied two ways of preprocessing
PBO formulas that are based on two SAT preprocessors.

Even though preprocessing in PBO is not as effective as in SAT, it can still
have a positive impact and lead to better results. Note that proving that a

Table 7. Impact of extHyPre preprocessing on minisat+.

Benchmark #
minisat+

w/o pre
extHypre extHypre extHypre
(75,10,c) (75,10,d) (75,10,r)

aksoy 79 24 24 27 27
logic-synthesis 74 31 30 30 30
primes-dimacs-cnf 130 79 80 80 79
radar 12 0 0 0 0
routing 10 10 10 10 10
synthesis-ptl-cmos 8 1 1 1 1
testset 6 4 4 4 4
ttp 8 2 2 2 2

Total 327 151 151 154 153

problem has an optimal solution is harder than proving that a problem has a
solution, which may explain why preprocessing is not as beneficial to PBO as it
is to SAT. However, our results show that preprocessing in PBO can lead to a
few improvements, and therefore should be the target of further research work.
From our side, we plan to improve the efficiency of our PBO version of extHyPre
and study different heuristics for clause selection.

Acknowledgments This work is partially supported by Fundação para a Ciência
e Tecnologia under research project PTDC/EIA/76572/2006.

References

1. G. Audemard, S. Jabbour, and L. Sais. SAT graph-based representation: A new
perspective. Journal of Algorithms, 63(1-3):17–33, 2008.

2. F. Bacchus and J. Winter. Enhancing Davis Putnam with extended binary clause
reasoning. In AAAI’02, pages 613–619, 2002.

3. F. Bacchus and J. Winter. Effective Preprocessing with Hyper-Resolution and
Equality Reduction. In SAT’03, pages 341–355, 2003.

4. P. Barth. Logic-Based 0-1 Constraint Programming. Kluwer Academic Publishers,
1996.

5. N. Eén and A. Biere. Effective Preprocessing in SAT Through Variable and Clause
Elimination. In SAT’05, pages 61–75, 2005.

6. N. Eén and N. Sörensson. Translating Pseudo-Boolean Constraints into SAT.
JSAT, 2(1-4):1–26, 2006.

7. V. M. Manquinho and J. Marques-Silva. Effective Lower Bounding Techniques for
Pseudo-Boolean Optimization. In DATE’05, pages 660–665, 2005.

8. C. Piette, Y. Hamadi, and S. Lakhdar. Vivifying Propositional Clausal Formulae.
In ECAI’08, pages 525–529, 2008.

9. J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.
Journal of ACM, 12(1):23–41, 1965.

10. H. M. Sheini and K. A. Sakallah. Pueblo: A Hybrid Pseudo-Boolean SAT Solver.
JSAT, 2(1-4):165–189, 2006.

11. S. Subbarayan and D. K. Pradhan. NiVER: Non Increasing Variable Elimination
Resolution for Preprocessing SAT instances. In SAT’04, pages 276–291, 2004.

