Effective CNF Encodings for the Towers of Hanoi

Ruben Martins and Inés Lynce
IST/INESC-ID, Technical University of Lisbon, Portugal
{ruben,ines} @sat.inesc-id.pt

Abstract

One of the most well-known CNF benchmark encodes the problem of the Towers of Hanoi. This
benchmark is available from SATIib and has been part of the set of problem instances used in more
than one edition of the SAT competition. The existing CNF instances build upon an encoding using
the STRIPS language. Although the available instances (ranging from 4 to 6 disks) are hard to solve
for most of the solvers, we introduce improvements over the existing encodings and present a new
CNF encoding that makes these problem instances trivial to solve using only unit propagation. This
new encoding is also based on the STRIPS language and makes it possible to solve the problem of
18 disks in a reasonable amount of time.

1 Introduction

Propositional satisfiability (SAT) solvers are currently known for being very efficient for solving differ-
ent problems. Also, its use is quite simple as the conjunctive normal form (CNF) is traditionally and
commonly accepted by SAT solvers. This contrasts with other technologies where different formats are
accepted as each format carries its own advantages. Maybe for being restricted to the CNF format, not
much importance has been given to modelling techniques in SAT.

The Towers of Hanoi (ToH) [4]] have been been encoded in the past based on the STRIPS language [[1]]
since it is easily translated into SAT (e.g. [3]). This paper introduces improvements over the existing
encodings and presents a new effective CNF encoding for ToH that is also based on the STRIPS language.
(An extended version of this work is available as a technical report [5].) Although SAT technology has
never advocated being the best approach for solving the ToH, it is also true that the existing CNF problem
instances of the ToH are very hard to solve. This comes somehow as a surprise: a problem with 4 disks
may be easily solved by hand but looks intractable to SAT solvers.

The new CNF encoding builds on existing encodings [3, 7] and further incorporates a key number of
properties of the ToH [8]] which seem to be essential when solving the problem automatically. Although
the use of these properties makes the ToH much easier to solve, we argue that such kind of properties
should be used when modelling a problem to be solved using SAT or any other technology. It makes non
sense to produce hard CNF encodings from problem instances that are known to be trivial to solve.

The produced CNF instances can now be solved using only unit propagation, but at the cost of
requiring a significant number of variables and clauses for larger instances. Even though this represents
a drawback, we are now able to generate and solve the problem of 18 disks in a reasonable amount of
time.

2 Towers of Hanoi (ToH)

The Towers of Hanoi are a mathematical puzzle formalized by the French mathematician Edouard Lucas
in 1883 [4]. Each problem consists of three towers (77,77, 73), and n disks of different sizes which can
slide onto any tower. At the initial state the disks are stacked in order of size on one tower (77), the
smallest being at the top. The problem is solved by moving the entire initial stack to another tower (73),
obeying to the following rules: (1) only one disk may be moved at a time, (2) no disk may be placed on
the top of a smaller disk and (3) each move consists in taking the upper disk from one of the towers and
sliding it onto the top of another tower. A solution is therefore a sequence of disk movements from the

G. Suitcliffe, A. Voronkov (eds.): easychair 1.0, 2008, volume 1, issue: 1, pp. 1

Effective CNF Encodings for the Towers of Hanoi R. Martins and I. Lynce

initial state where all disks are stacked in order of size on 77 to the final state where all disks are stacked
in the same order on 75.

The simplest solution to the ToH is based on a divide-and-conquer strategy: a solution to the problem
of n disks is expressed in terms of a solution to the ToH with n — 1 disks. The ToH has several key
properties [8]] that are essential for an effective solving. Next we present those key properties which will
be encoded in sectiond]in order to improve the existing encodings.

Property 1. Given a ToH of size n, one may easily find a solution taking into account the solution for a
ToH of size n— 1. The solution is built by first moving the smallest n — 1 disks to Ty, then moving the n'"
disk to T3 and finally moving the smallest n — 1 disks from T, to Ts. The sequence of disks to be moved
when considering only the smallest n — 1 disks may be obtained from the solution for a ToH of size n — 1.
More generally, the sequence of moves for a ToH of size n (S(n)) is recursively defined as follows:

S(1)={1};8S(n) ={S(n—1),n,S(n—1)}

Notice that the order of the disks to be moved after moving the largest disk is exactly the same
as before moving it. Moreover, there is a relation between the towers involved in the same movement
before and after the largest disk is moved. It consists in simply shifting the towers from/to where the
disks have to be moved (71 — 1,7, — T3,T3 — Tp). For example, an initial move from 77 to 73 should
later correspond to a move from 75 to 7;.

Property 2. Assuming that n — 1 disks are moved using the minimum number of moves, then the recur-
sive algorithm makes no more than the minimum number of moves. From property I} we may infer by
mathematical induction that for n disks the number of required moves (M (n)) is the following:

M) =1Mn)=2-Mn—1)+1=2"—1

Ifwe also consider the relationship between the movement of the disks before/after moving the largest
disk we only need to determine the first 2"~1 — 1 steps (M(n-1)) since the remaining moves may be trivially
obtained from those.

Property 3. When moving disks, if we consider the disks numbered by their size, no two disks of the
same parity can be in direct contact. In other words, no two odd/even disks can be moved next to each
other.

Property 4. All disks cycle in a given order between the towers [2l]. If n is even then the odd disks will
cycle clockwise (T) — T, — Tz — Ty) while the even disks will cycle counterclockwise (T — Tz — T, —
T1). Otherwise, if n is odd then the odd disks will cycle counterclockwise while the even disks will cycle
clockwise.

3 Existing CNF Encodings for ToH

The first CNF STRIPS-based encoding [3] uses the set of variables {on(d,dt,t),clear(dt,t),
move(d,dt,dr’ 1)}, where the additional argument ¢ represents a time step with 0 <7 < 2" — 1. In order
to reduce the number of required variables, the variable move(d,dt,dt’,t) is replaced by conjunction
(obj(d,t) A from(dt,t) Nto(dt',r)). The clauses encode the following constraints: (1) exactly one disk is
moved at each time step, (2) there is exactly one movement at each time step (which implies that there
is exactly one pair from/to), (3) there are no movements moving a disk from/to exactly the same position
(which would not imply a movement in practice), (4) for a movement to be performed the preconditions
must be satisfied, (5) after performing a movement the postconditions are implied and (6) no disks can be
moved to the top of smaller disks. In addition, the initial state holds at time step 0 and the goal state holds
at time step 2" — 1. Finally, extra clauses are required for preserving what is unaffected by movements.

Effective CNF Encodings for the Towers of Hanoi R. Martins and I. Lynce

3.1 Animproved CNF STRIPS-based encoding

A recent encoding proposed by Prestwich [7]] produces a more compact formula as a result of using the
structure of the ToH. ToH have originally been modeled similarly to the Blocks World problem and it
has been observed that for that reason the encoding is significantly larger.

The action move(d,tw,tw’,t) where tw/tw' correspond to towers, now only considers movements
of disks between towers and not between disks or towers like the previous encoding. With this change
the variables move and on are kept but the variable clear can be eliminated. The preconditions are
(on(d,tw,t) N—on(1,tw,t) A... A—on(d — 1,tw,t) N—on(1,tw',t) A... AN—on(d — 1,tw',t)) and the post-
conditions are (on(d,tw',t+ 1) A—on(d,tw,t +1)). The initial state is represented by clause (on(1,T;,0)
A...Non(n,Ty,0)) and the goal state is represented by clause (on(1,73,2" — 1) A... Aon(n,T3,2" — 1)).

This encoding uses the set of variables {obj(d,t), from(tw,t), to(tw,t), on(d,tw,t)}. Variables from
and fo on the first argument and variables on on the second argument only refer to towers where in the
previous encoding they would also refer to disks. Therefore the number of variables is reduced and those
have a major impact on the size of the formula since we will require significant less clauses to encode the
constraints presented in the previous encoding. For example, for 5 towers the previous encoding requires
1,931 variables and 14,468 clauses, whereas this new encoding requires 821 variables and 6,457 clauses.

3.2 Other encodings

The two editions of the CSP competition (2005 and 2006) have included a set of problem instances
of the ToH. These instances range from 3 to 7 disks. Detailed results show that a translation from
CSP to SAT using the support encoding (rather than the direct encoding) which is performed by solver
sat4jcsp (available from http://www.sat4j.org) produces CNF formulas that can be solved using only
unit propagation. The CSP description for ToH includes properties [1| and [2| described earlier. However,
the produced CNF instances are much larger than the ones produced by our encoding.

In addition, independent work [6] also reports a CNF encoding that produces formulas that contain
only Horn clauses. This encoding uses predicate p(td,,...,td,) to encode each state. Each variable ¢d;
has domain values {0, 1,2} and denotes the tower on which disk i is placed. Nonetheless, this encoding
requires a significant number of variables and clauses in such a way that more time is required to generate
the formula rather than to solve it.

4 Effective CNF Encodings for ToH

We took the encoding of Prestwich [7]] and improved it by encoding the properties described previously.
The Disk Parity encoding

Property [2| is incorporated in the encoding by reducing the search space to the first 2"~ — 1 steps and
by modifying the goal state so that we have the larger disk on 77 and the remaining disks on 7;. The
goal state is now (on(n,T1,2" ' — 1) Aon(1,1,2" ' = 1) A... Aon(n—1,T5,2"~1 —1)). The remaining
moves may be trivially obtained as explained earlier. Property [3|is encoded through additional clauses.

The Disk Cycle encoding
The Disk Parity encoding can be further improved by additionally incorporating property
The Disk Sequence encoding

Property [I] recursively determines the disks to be moved at each step. We first generate the sequence of
disks to be moved and then add unit clauses (0bj(D,t)) where D corresponds to the disk to be moved

Effective CNF Encodings for the Towers of Hanoi

R. Martins and I. Lynce

Table 1: Results for the encodings with a time limit of 10,000 seconds.

’ Size ‘ Prestwich | Disk Parity | Disk Cycle | Disk Sequence

4 0.01 0 0 0
5 0.08 0.01 0.02 0
6 0.47 0.03 0.05 0
7 3.65 0.70 0.20 0.01
8 109.7 5.19 5.18 0.03
9 7126.57 79.11 7.65 0.09
10 - 1997.19 973.95 0.23
11 - - 1206.37 0.56
12 - - - 1.32

at time step ¢t. The introduction of additional clauses for encoding properties (1| together with [2| suffice
to generate a formula that requires only unit propagation to be solved. However, we may further reduce
the size of the encoding. Taking into consideration property |1| we can keep only the variables on and
drop all the other variables. The resulting variables are therefore on(d,tw,r) with 1 <d <n, 1 <tw <3
and 0 <7 < 2" 1. On the other hand, after the elimination of all variables but variable on, the formula
is no longer solved using only unit propagation. Extra clauses encoding property [3| had to be added to
guarantee the resulting formula to be solved with unit propagation. The clauses encode the following
constraints: (1) at each time step each disk is placed exactly on one tower, (2) at time step ¢ disk D is
moved to another tower where no disks smaller than D may exist, (3) disks not moved at time step ¢ will
remain on the same tower at step ¢ + 1 and (4) odd/even disks will never be in touch with other odd/even
disks. In addition, the initial state holds at time step 0 and the goal state holds at time step 2! — 1.

5 Experimental Results

We have first generated problem instances ranging from 4 to 12 disks using Prestwich encoding [7]] and
the improved encodings presented in section [

The results of the different encodings are given in table|l| and were obtained on a Intel Xeon 5160
server (3.0GHz, 1333Mhz, 4MB) running Red Hat Enterprise Linux WS 4. For each instance is given
the CPU time (s) for solving the instance using picosat-535 (available from http://fmv.jku.at/picosat/)
with a time limit of 10,000 seconds (‘- denotes that the given instance was not solved within the time
limit).

Table (1| shows that even the Disk Parity encoding is substantially more effective than Prestwich
encoding since we can now solve up to 10 disks in the given time limit. With the Disk Cycle encoding
we are able to solve the problem instance with 11 disks and the smaller instances much faster.

These improvements can be first explained by the compactness of the encodings. The number of
variables and clauses are reduced to about one half. Moreover, the additional properties help in solving
the problem in a more efficient way. However, if we look at the results for the Disk Sequence encoding
we can see that we are able to easily solve all instances. This is due to no search being required for
solving any of the instances.

In table[2]we present more detailed results for problem instances ranging from 13 to 18 disks using the
Disk Sequence encoding. Larger instances could possibly have been generated but would have required
a prohibitively amount of memory. For each instance is given the number of variables and clauses of
the CNF formula, the memory (MB) required for representing each instance and the CPU time (s) for

4

Effective CNF Encodings for the Towers of Hanoi R. Martins and I. Lynce

Table 2: Results for the Disk Sequence encoding for the ToH.

’ Size ‘ #Vars #Cls Mem | GenTime | SolveTime
13 159,705 827,007 20.9 0.74 3.14
14 344,022 | 1,859,150 50.9 1.73 7.33
15 737,235 | 4,177,431 121.6 4.07 17.16
16 | 1,572,816 | 9,272,800 294.1 9.44 38.94
17 | 3,342,285 | 20,577,699 708.6 12.31 90.15
18 | 7,077,834 | 45,219,174 | 1,637.4 50.48 203.05

generating (GenTime) and solving (SolveTime) the instance using picosat-535.

The results reported represent a significant speedup with respect to previous encodings. Even our
improvements over Prestwich encoding are not enough to compete with the Disk Sequence encoding.
The improvements presented by this new encoding can be first explained by the use of properties[I|and [}
the encoding of both properties allows to solve a problem instance using only unit propagation but none
of the properties by itself would allow to. Moreover, restricting variables to on allows to significantly
reduce the size of the CNF formula. Other existing encodings have clear limitations: the CNF formula
produced by sat4jcsp has 271,192 variables and 176,639 clauses for 7 disks and the encoding described
in [6] requires 40 minutes for generating the problem of 14 disks and more than two hours for 15 disks.

6 Conclusions

This paper introduces improvements on the Prestwich encoding for the ToH [7]]. Similarly to well-known
existing encodings, our new encodings are based on the STRIPS language. Making use of the properties
of the ToH we were able to improve the original encoding since we can significantly reduce the size of
the CNF formula. Taking advantage of those properties we were also able to produce a new encoding
that is more compact and can solve ToH by only using unit propagation.

References

[1] R. Fikes and N. J. Nilsson. STRIPS: A New Approach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence, 2(3/4):189-208, 1971.

[2] M. M. Fokkinga. On the Iterative Solution of the Towers of Hanoi Problem. Unregistered Technical Note.
University of Twente, Enschede, Netherlands, 2000.

[3] H. A. Kautz and B. Selman. Planning as Satisfiability. In Tenth European Conference on Artificial Intelligence
(ECAI’'92), pages 359-363, 1992.

[4] E. Lucas. La Tour d’Hanot (Véritable casse-téte annamite). Original printed by Paul Bousrez, Tours, 1883.
Published under the acronym N. Claus. Available from http://www.cs.wm.edu/~pkstoc/page_1{.html.

[5] R. Martins and I. Lynce. Effective CNF Encodings of the Towers of Hanoi. Technical Report 47, INESC-ID,
September 2008. Available from http://www.inesc-id.pt/ficheiros/publicacoes/4919.pdf.

[6] J. A. Navarro-Pérez. Encoding and Solving Problems in Effectively Propositional Logic. PhD thesis, University
of Manchester, November 2000.

[7] S.D. Prestwich. Variable Dependency in Local Search: Prevention Is Better Than Cure. In Tenth International
Conference on Theory and Applications of Satisfiability Testing (SAT’07), pages 107-120, 2007.

[8] D. Wood. The Towers of Brahma and Hanoi Revisited. Journal of Recreational Mathematics, 14(1):17-24,
1981-1982.

	Introduction
	Towers of Hanoi (ToH)
	Existing CNF Encodings for ToH
	An improved CNF STRIPS-based encoding
	Other encodings

	Effective CNF Encodings for ToH
	Experimental Results
	Conclusions

