Clause Sharing in Parallel MaxSAT

Ruben Martins, Vasco Manquinho, andfLynce

IST/INESC-ID, Technical University of Lisbon, Portugal

{ruben,vmm, ines}@sat.inesc-id.pt

Abstract. In parallel MaxSAT solving, sharing learned clauses is expected to
help to further prune the search space and boost the performarceastllel
solver. However, not all learned clauses should be shared sinaddtlead to an
exponential blow up in memory and to sharing many irrelevant clausesimigin
question is which learned clauses should be shared among the ditfenmreads.
This paper reviews the existing heuristics for sharing learned clauaesly
static and dynamic heuristics. Moreover, a new heuristic for clausenghiar
presented based dreezingshared clauses. Shared clauses are only incorporated
into the solver when they are expected to be useful in the near futureriihgn-

tal results show the importance of clause sharing and that the freezinigthe
outperforms other clause sharing heuristics.

1 Introduction

Nowadays multicore processors are becoming the dominatfoph. As a result, par-
allel Maximum Satisfiability (MaxSAT) solvers have beenaetly presented to exploit
this new architecture [10, 9]. These parallel solvers siamdously search on the lower
and upper bound values of the optimal solution. Searchitogpih directions and shar-
ing learned clauses between these two orthogonal approachkes the search more
efficient. However, it is not clear which clauses should bareti among the different
threads. The problem of determining if a shared clause wiligeful in the future re-
mains challenging, and in practice heuristics are usedléztsehich learned clauses
should be shared. This paper sheds some light on the impédifarent clause sharing
heuristics in parallel MaxSAT solving. The main contriloutiof this paper is twofold:
(1) a new heuristic for clause sharing that freezes shaeeset until they are expected
to be useful and (2) an empirical evaluation of static, dyicaand freezing heuristics
for clause sharing.

The paper is organized as follows. In the next section theSAdxproblem is de-
fined and MaxSAT solvers are briefly referred. Section 3 dessrdifferent clause
sharing heuristics that will be analyzed in the paper. Afteds, section 4 presents
an experimental evaluation of the different clause shdnmgyistics. Finally, the paper
concludes and suggests future work.

2 Preliminaries

A Boolean formula in conjunctive normal form (CNF) is a camjtion of clauses,
where a clause is a disjunction of literals and a literal iso@IBan variabler or its

negation—x. A Boolean variable may be assigned truth values true oe félpositive
(negative) literak: (—z) is said to be satisfied if the respective variable is assigatie
true (false). A positive (negative) literal(—z) is said to be unsatisfied if the respective
variable is assigned value false (true). A variable (andeetive literals) not assigned is
said to be unassigned. A clause is said to be satisfied ifsttdee of its literals is satis-
fied. A clause is said to be unsatisfied if all of its literale ansatisfied. A clause is said
to be unit if all literals but one are unsatisfied and the rexingi literal is unassigned.
Otherwise, a clause is said to be unresolved. A formula isfeat is all of its clauses
are satisfied. The Boolean satisfiability (SAT) problem ideégide whether there exists
an assignment that makes the formula satisfied. Such assigrigrcalled a solution.

Maximum Satisfiability (MaxSAT) is an optimization versiof Boolean Satisfia-
bility (SAT) which consists in finding an assignment that imiizes (maximizes) the
number of unsatisfied (satisfied) clauses. MaxSAT has devatiants such as partial
MaxSAT, weighted MaxSAT and weighted partial MaxSAT. In thartial MaxSAT
problem, some clauses are declared as hard, while the eesteafared as soft. The
objective in partial MaxSAT is to find an assignment to prabheariables such that all
hard clauses are satisfied, while minimizing the number shtisfied soft clauses. Fi-
nally, in the weighted versions of MaxSAT, soft clauses cavehweights greater than
1 and the objective is to satisfy all hard clauses while migiing the total weight of
unsatisfied soft clauses.

The parallel MaxSAT solverwB0[9] used in this paper is based on having several
threads running a portfolio of two orthogonal algorithm$:ah unsatisfiability-based
algorithm that searches on the lower bound of the optimatswi [8] and (ii) a classical
linear search algorithm that searches on the upper boundliffice thatPwBo is not
limited to the best performing algorithm in the portfolionse threads can cooperate
by exchanging information on the lower and upper boundsdaluring the search, as
well as exchanging learned clauses that can prune the smathh other threads. In this
paper we focus on strategies for the sharing of learned etaustween threads that can
be used for improving parallel MaxSAT solvers. It is assuried the reader is familiar
with algorithms for MaxSAT, and we refer to the literature 748, 1, 9] for details.

3 Clause Sharing Heuristics

Clause sharing heuristics can be divided into three caiegqfl) static, (2) dynamic
and (3) freezing. The static heuristics share clauses mwithgiven cutoff, whereas
the dynamic heuristics adjust this cutoff during the seafdternatively, the freezing
heuristics temporarily freeze shared clauses until theyeapected to be useful.

3.1 Static

The static heuristics are the most used for clause sharmiog siiey are simple but still
efficient in practice. The following measures are used isd¢heeuristics:

— Size the clause size is given by the number of literals. Smalis#a are expected
to be more useful than larger clauses.

— Literal Block DistancéLBD) [3]: the literal block distance corresponds to the Aum
ber of different decision levels involved in a clause. Theisien level of a literal
denotes the depth of the decision tree at which the correlipgwariable was as-
signed a value. Clauses with small LBD are considered as retaeant.

— Randomrandomly decide whether to share each learned clause witiea prob-
ability. This heuristic was designed to evaluate the otlerristics which are ex-
pected to be more effective than a random one.

3.2 Dynamic

The size of learned clauses tends to increase over time eGoeatly, in parallel solv-
ing, any static limit may lead to halting the clause sharimacpss. Therefore, to con-
tinue sharing learned clauses it is necessary to dynawiicediease the limit during
search. Hamadi et al. [6] proposed the following dynamiaiséia. At everyk conflicts
(corresponding to a period) the throughput of shared clauses is evaluated between
each pair of threadg; — ¢;) according to the following heuristic:

ti—t;

limit) . . - . I)
limity _,, — (1 —quality;,_,,) x a x limit{_,, if sharing is large

B {Iimitg_nj +qualityy, . X e if sharing is small
ti—t;

wherea andb are positive constants and the value of quﬁiliggj corresponds to the
quality of shared clauses that were send figto ¢ ;.

A shared clause is said to hageality [6] if at least half of its literals are active. A
literal is activeif its VSIDS heuristic [11] score is high, i.e. itis likely tee chosen as a
decision variable in the near future. Hence, qugliggj gives the ratio between quality
shared clauses and the total number of shared clauses iretivel p. If the quality
is high then the increase (decrease) in the size limit ofezhalauses will be larger
(smaller). The reasoning behind this heuristic is that tfiermation recently received
from a thread; is qualitatively linked to the information which could becedved from
the same thread; in the near future. In our experimental setting, we havecsete
a = 0.125,b = 8 anda = 3000 conflicts. The throughput at each period is set to
750, i.e. if a thread; receives less than 750 shared learned clauses in the period
it increases the limit of the size of shared clauses. Ottservthis limit is decreased.
These parameters are similar to the ones used by Hamad{&} al.

3.3 Freezing

Shared learned clauses may not be useful when they are mdport can actually devi-
ate the search from the correct path. Our motivation for theZing heuristic is to only
import shared clauses when they are expected to be useh# imear future. Figure 1
illustrates the freezing procedure. Each shared clatiseevaluated to determine if it
will be frozen or imported. Ifv is frozen then it will be reevaluated later. Howeveryif

is assigned the frozen state more thaimes it is permanently deleted. When evaluat-
ing w, our goal is to import clauses that are unsatisfied or thatoeidome unit clauses
in the near future. Next, the freezing heuristic is presstnéecording to thestatusof

w (satisfied, unsatisfied, unit or unresolved), whethshould be frozen is decided:

Fig. 1. Freezing procedure for sharing learned clauses

l /\Cleaning

Shared Frozen
<—— Reevaluate Clauses—
Clauses Clauses

For each clause

Yes

Freezeg)? No Importw

— w is satisfied Let level denote the current decision levédyvel,(w) the highest
decision level of the satisfied literals in unassignedLitgs) the number of unas-
signed literals inv andactiveLit§w) the number of active literals ia. If (level —
level,(w) < a) and(unassignedLitgv) — activeLit§w) < b) thenw is imported,
otherwise it is frozen. A satisfied clause is expected to le¢ulitn the near future
if it is not necessary to backtrack significantly to make thause unit. It is also
important that the number of unassigned literals is smattlse the clause may
not become unit in the near future. Active literals are agd@h into consideration
since they will be assigned in the near future.

— w is unsatisfiedr unit: w is always imported;

— w is unresolvedif (unassignedLitgs) — activeLit§w) < b) then the clause is
imported. Otherwise, it is frozen. Similarly to the satidfiease, if the number of
unassigned literals is small thenis likely to be unit in the near future.

In our experimental setting, we have selected 31,b = 5 andk = 7. In addition,
the frozen clauses are reevaluated every 300 conflicts. eTp@ameters were experi-
mentally tuned. Freezing learned clauses has been regenfipsed in the context of
deletion strategies for learned clauses in SAT solving fRjwever, to the best of our
knowledge, freezing shared clauses in a parallel solvimgeon is a novel approach.

4 Experimental Results and Discussion

All experiments were run on the partial MaxSAT instancegftbe industrial category
of the MaxSAT Evaluation 201%1. Instances that are easily solved will have similar
solving times with and without sharing learned clauses.ddeifi an instance takes less
than 60 seconds to be solved it is not considered. The ei@uags performed on

Yhttp://www.maxsat.udl.cat/11/

Table 1. Comparison of the different heuristics for sharing learned clauses

[Heuristic _ [[#Solved[Avg. #ClausepAvg. Size Time[Speedup
No sharing 137 — —| 32,188.57 1.00
o Random 30 134 10,140.22 128.21 27,394.46 1.18
= LBD 5 137 8,947.36 9.94 25,346.69 1.27
& |Size 8 137 7,529.18 530 25,098.85 1.28
Size 32 138 18,027.48 11.7 25,174.29 1.28
Dynamic 138 13,296.28 7.33 24,218.84 1.33
Freezing 140 16,228,583 11.01 21,611.21 1.49

two AMD Opteron 6172 processors (2.1 GHz with 64 GB of RAM) ming Fedora
Core 13 with a timeout of 1,800 seconds (wall clock time). @lierent clause sharing
heuristics were implemented on top of the portfolio versdrwgeo [9] and were run
with 4 threads. To have a better understanding of the imdazch heuristic, we have
built a deterministic version ofwBoO that is based on exchanging only information
between the different threads at synchronization poirite@ry 100 conflicts). This is
similar to what has been done in the deterministic versiod afy SAT [5].

Table 1 compares the different heuristics regarding thebmurof solved instances,
average number of imported clauses by each thread, avaragef $mported clauses,
solving time and speedup. Despite the number of solvedrinetanot changing signif-
icantly, randomly sharing clauses can deteriorate theopmeince of the solver. Note
that the solving time presented in table 1 only considertain®s that were solved
by all heuristics. LBD and size heuristics have similar sjpgs. Other sizes were also
evaluated. It was observed that if the limit is too small tHenspeedup is reduced since
not many clauses are shared. On the other hand, if the litaibikarge then the speedup
is also reduced since many irrelevant clauses are sharedrtNeless, a size limit of
32 is comparable to a limit of 8 since there are some instawtese learning larger
clauses can be more useful than just learning smaller dad$e dynamic heuristic
outperforms the static heuristics but is outperformed Ieyfteezing heuristic.

To summarize, although sharing learned clauses does nobweaphe number of
solved instances significantly, it does reduce the solving tonsiderably. The freezing
heuristic clearly outperforms all other heuristics in teraf solving time and number
of instances solved and provides a strong stimulus for éuntbsearch.

5 Conclusions

Recently, new parallel algorithms have been proposed far &Awell as for MaxSAT.
One of the main goals of parallel algorithms is to be able k& tadvantage of new
multicore computer architectures by running several tfsed the same time. One way
to speedup these algorithms is to be able to share learnesesldetween the different
threads, thus allowing the pruning of the search spaced®Ireplored in other threads.
In this paper different sharing heuristic procedures alygaroposed for SAT are
described and used in a MaxSAT parallel solver. Moreovegw neuristic based on

the notion of freezing is proposed. This heuristic delagsitiport of shared clauses by
a given thread until it is considered relevant in the contéxits own search.

Experimental results show that sharing learned clausepantfolio-based parallel
MaxSAT solver does not increase significantly the numberbfesl instances. How-
ever, it does allow a considerable reduction of the solvimgt Finally, our proposed
freezing heuristic outperforms all other heuristics betlsdlving time and number of
solved instances.

As future work one might consider the aggregation of sevezatistic criteria. Vari-
ations of the freezing heuristic can also be devised thatitstk consideration other in-
formation from the context of the search space being exgloréhe importing thread.

Acknowledgements

This work was partially supported by FCT under researchgatoExplain (PTDC/EIA-
CCO0/102077/2008), and INESC-ID multiannual funding tlglothe PIDDAC program
funds.

References

1. C. Andtegui, M. Bonet, and J. Levy. Solving (Weighted) Partial MaxSAT thtoGgtis-
fiability Testing. InInternational Conference on Theory and Applications of Satisfiability
Testing pages 427—-440, 2009.

2. G. Audemard, J.-M. Lagniez, B. Mazure, and L. Sais. On Frgezil Reactivating Learnt
Clauses. Innternational Conference on Theory and Applications of Satisfiability Tgstin
pages 188-200, 2011.

3. G. Audemard and L. Simon. Predicting Learnt Clauses Quality in Mo8@&T Solvers. In
International Joint Conferences on Artificial Intelligengmges 399-404, 2009.

4. Z.Fuand S. Malik. On solving the partial MAX-SAT problem.liriernational Conference
on Theory and Applications of Satisfiability Testipgges 252—-265, 2006.

5. Y. Hamadi, S. Jabbour, C. Piette, and L. Sais. Deterministic Paralldl T8ystem Descrip-
tion. In Pragmatics of SAT Workshpp011.

6. Y. Hamadi, S. Jabbour, and L. Sais. Control-Based Clause Sharfagallel SAT Solving.
In International Joint Conferences on Artificial Intelligengages 499-504, 2009.

7. C. M. Liand F. Mang. MaxSAT, Hard and Soft Constraints. Handbook of Satisfiability
pages 613-631. I0S Press, 2009.

8. V. Manquinho, J. Marques-Silva, and J. Planes. Algorithms for kite@yBoolean Optimiza-
tion. InInternational Conference on Theory and Applications of Satisfiability Tggteges
495-508, 2009.

9. R. Martins, V. Manquinho, and I. Lynce. Exploiting Cardinality Encayitn Parallel Max-
imum Satisfiability. Ininternational Conference on Tools with Artificial Intelligengages
313-320, 2011.

10. R. Martins, V. Manquinho, and I. Lynce. Parallel Search forlBao Optimization. IIRCRA
International Workshop on Experimental Evaluation of Algorithms forieglproblems with
combinatorial explosion2011.

11. L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Effici€anflict Driven Learning
in Boolean Satisfiability Solver. linternational Conference on Computer-Aided Design
pages 279-285, 2001.

