Exploiting Cardinality Encodings in Parallel Maximum Satisfiability

Ruben Martins Vasco Manquinho Inês Lynce

IST/INESC-ID, Technical University of Lisbon, Portugal

November 7, 2011

What is Maximum Satisfiability?

CNF Formula:

$$x_6 \lor x_2$$
 $\neg x_6 \lor x_2$ $\neg x_2 \lor x_1$ $\neg x_1$
 $\neg x_6 \lor x_8$ $x_6 \lor \neg x_8$ $x_2 \lor x_4$ $\neg x_4 \lor x_5$
 $x_7 \lor x_5$ $\neg x_7 \lor x_5$ $\neg x_5 \lor x_3$ $\neg x_3$

What is Maximum Satisfiability?

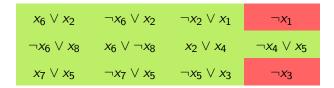
CNF Formula:

$$x_6 \lor x_2$$
 $\neg x_6 \lor x_2$ $\neg x_2 \lor x_1$ $\neg x_1$ $\neg x_6 \lor x_8$ $x_6 \lor \neg x_8$ $x_2 \lor x_4$ $\neg x_4 \lor x_5$ $x_7 \lor x_5$ $\neg x_7 \lor x_5$ $\neg x_5 \lor x_3$ $\neg x_3$

• Formula is unsatisfiable

What is Maximum Satisfiability?

CNF Formula:



- Formula is unsatisfiable
- Maximum Satisfiability (MaxSAT):
 - Find an assignment that maximizes (minimizes) number of satisfied (unsatisfied) clauses.

Motivation

- MaxSAT has several applications:
 - Software package upgradability;
 - Bug localization in C code;
 - Design debugging;
 - o ...
- Improving MaxSAT solvers will have a practical impact;
- Multicore processors are now predominant;
- Parallel solving is known to boost the performance of the solver;

Motivation

- MaxSAT has several applications:
 - Software package upgradability;
 - Bug localization in C code;
 - Design debugging;
 - o ...
- Improving MaxSAT solvers will have a practical impact;
- Multicore processors are now predominant;
- Parallel solving is known to boost the performance of the solver;
- Goal: develop a new parallel MaxSAT solver;
- How: using a portfolio of algorithms.

Unsatisfiability-based algorithms:

$$x_6 \lor x_2$$
 $\neg x_6 \lor x_2$ $\neg x_2 \lor x_1$ $\neg x_1$
 $\neg x_6 \lor x_8$ $x_6 \lor \neg x_8$ $x_2 \lor x_4$ $\neg x_4 \lor x_5$
 $x_7 \lor x_5$ $\neg x_7 \lor x_5$ $\neg x_5 \lor x_3$ $\neg x_3$

Unsatisfiability-based algorithms:

$$x_6 \lor x_2$$
 $\neg x_6 \lor x_2$ $\neg x_2 \lor x_1$ $\neg x_1$ $\neg x_6 \lor x_8$ $x_6 \lor \neg x_8$ $x_2 \lor x_4$ $\neg x_4 \lor x_5$ $x_7 \lor x_5$ $\neg x_7 \lor x_5$ $\neg x_5 \lor x_3$ $\neg x_3$

Formula is UNSAT; Get unsatisfiable sub-formula; Lower bound value: 1

Unsatisfiability-based algorithms:

Add relaxation variables and at-most-one constraint

Unsatisfiability-based algorithms:

$$x_6 \lor x_2 \qquad \neg x_6 \lor x_2 \qquad \neg x_2 \lor x_1 \lor r_1 \qquad \neg x_1 \lor r_2$$

$$\neg x_6 \lor x_8 \qquad x_6 \lor \neg x_8 \qquad x_2 \lor x_4 \lor r_3 \qquad \neg x_4 \lor x_5 \lor r_4$$

$$x_7 \lor x_5 \qquad \neg x_7 \lor x_5 \qquad \neg x_5 \lor x_3 \lor r_5 \qquad \neg x_3 \lor r_6$$

$$\sum_{i=1}^{6} r_i \le 1$$

Formula is UNSAT; Get unsatisfiable sub-formula;

Lower bound value: 2

Unsatisfiability-based algorithms:

Add relaxation variables and at-most-one constraint

Unsatisfiability-based algorithms:

Formula is now SAT

The minimum number of unsatisfiable clauses is 2

Linear search algorithms on the number of unsatisfiable clauses:

$$x_6 \lor x_2$$
 $\neg x_6 \lor x_2$ $\neg x_2 \lor x_1$ $\neg x_1$
 $\neg x_6 \lor x_8$ $x_6 \lor \neg x_8$ $x_2 \lor x_4$ $\neg x_4 \lor x_5$
 $x_7 \lor x_5$ $\neg x_7 \lor x_5$ $\neg x_5 \lor x_3$ $\neg x_3$

Linear search algorithms on the number of unsatisfiable clauses:

$$x_6 \lor x_2 \qquad \neg x_6 \lor x_2 \qquad \neg x_2 \lor x_1 \qquad \neg x_1$$

$$\neg x_6 \lor x_8 \qquad x_6 \lor \neg x_8 \qquad x_2 \lor x_4 \qquad \neg x_4 \lor x_5$$

$$x_7 \lor x_5 \qquad \neg x_7 \lor x_5 \qquad \neg x_5 \lor x_3 \qquad \neg x_3$$

Formula is UNSAT

Linear search algorithms on the number of unsatisfiable clauses:

$$x_{6} \lor x_{2} \lor r_{1}$$
 $\neg x_{6} \lor x_{2} \lor r_{2}$ $\neg x_{2} \lor x_{1} \lor r_{3}$ $\neg x_{1} \lor r_{4}$ $\neg x_{6} \lor x_{8} \lor r_{5}$ $x_{6} \lor \neg x_{8} \lor r_{6}$ $x_{2} \lor x_{4} \lor r_{7}$ $\neg x_{4} \lor x_{5} \lor r_{8}$ $x_{7} \lor x_{5} \lor r_{9}$ $\neg x_{7} \lor x_{5} \lor r_{10}$ $\neg x_{5} \lor x_{3} \lor r_{11}$ $\neg x_{3} \lor r_{12}$ $\sum_{i=1}^{12} r_{i} \le 12$

Add relaxation variables and at-most-k constraint

Linear search algorithms on the number of unsatisfiable clauses:

$$x_6 \lor x_2 \lor r_1 \qquad \neg x_6 \lor x_2 \lor r_2 \qquad \neg x_2 \lor x_1 \lor r_3 \qquad \neg x_1 \lor r_4$$

$$\neg x_6 \lor x_8 \lor r_5 \qquad x_6 \lor \neg x_8 \lor r_6 \qquad x_2 \lor x_4 \lor r_7 \qquad \neg x_4 \lor x_5 \lor r_8$$

$$x_7 \lor x_5 \lor r_9 \qquad \neg x_7 \lor x_5 \lor r_{10} \qquad \neg x_5 \lor x_3 \lor r_{11} \qquad \neg x_3 \lor r_{12}$$

$$\sum_{i=1}^{12} r_i \le 12$$

Formula is SAT; solution found has $\sum_{i=1}^{12} r_i = 9$; Upper bound value: 9

Linear search algorithms on the number of unsatisfiable clauses:

Update at-most-k constraint

Linear search algorithms on the number of unsatisfiable clauses:

$$x_{6} \lor x_{2} \lor r_{1} \qquad \neg x_{6} \lor x_{2} \lor r_{2} \qquad \neg x_{2} \lor x_{1} \lor r_{3} \qquad \neg x_{1} \lor r_{4}$$

$$\neg x_{6} \lor x_{8} \lor r_{5} \qquad x_{6} \lor \neg x_{8} \lor r_{6} \qquad x_{2} \lor x_{4} \lor r_{7} \qquad \neg x_{4} \lor x_{5} \lor r_{8}$$

$$x_{7} \lor x_{5} \lor r_{9} \qquad \neg x_{7} \lor x_{5} \lor r_{10} \qquad \neg x_{5} \lor x_{3} \lor r_{11} \qquad \neg x_{3} \lor r_{12}$$

$$\sum_{i=1}^{12} r_{i} \le 8$$

Formula is SAT; solution found has $\sum_{i=1}^{12} r_i = 2$; Upper bound value: 2

Linear search algorithms on the number of unsatisfiable clauses:

Update at-most-k constraint

Linear search algorithms on the number of unsatisfiable clauses:

$$x_{6} \lor x_{2} \lor r_{1} \qquad \neg x_{6} \lor x_{2} \lor r_{2} \qquad \neg x_{2} \lor x_{1} \lor r_{3} \qquad \neg x_{1} \lor r_{4}$$

$$\neg x_{6} \lor x_{8} \lor r_{5} \qquad x_{6} \lor \neg x_{8} \lor r_{6} \qquad x_{2} \lor x_{4} \lor r_{7} \qquad \neg x_{4} \lor x_{5} \lor r_{8}$$

$$x_{7} \lor x_{5} \lor r_{9} \qquad \neg x_{7} \lor x_{5} \lor r_{10} \qquad \neg x_{5} \lor x_{3} \lor r_{11} \qquad \neg x_{3} \lor r_{12}$$

$$\sum_{i=1}^{12} r_{i} \le 1$$

Formula is UNSAT:

The minimum number of unsatisfiable clauses is 2

Cardinality constraints in MaxSAT solving

- MaxSAT algorithms use cardinality constraints:
 - o at-most-one;
 - o at-most-k.
- Cardinality constraints:
 - $\circ \sum_{i=1}^n I_i \leq k$, where $I_i \in \{x_i, \neg x_i\}$
- Handling cardinality constraints:
 - Encode cardinality constraints into clauses;
 - Use a native representation of cardinality constraints.

- Cardinality constraints:
 - At-most-one
 - o At-most-k

- Cardinality constraints:
 - At-most-one
 - At-most-k
- Naive (pairwise) encoding for at-most-one constraints:
 - Cardinality constraint: $x_1 + x_2 + x_3 + x_4 < 1$
 - Clauses:

$$\begin{array}{c} (x_1 \Rightarrow \neg x_2) \\ (x_1 \Rightarrow \neg x_3) \\ (x_1 \Rightarrow \neg x_4) \\ & \cdots \end{array} \right\} \begin{array}{c} \neg x_1 \lor \neg x_2 \\ \neg x_1 \lor \neg x_3 \\ \neg x_1 \lor \neg x_4 \\ & \cdots \end{array}$$

• Complexity: $\mathcal{O}(n^2)$ clauses

- Cardinality constraints:
 - At-most-one
 - At-most-k
- Naive encoding for at-most-k constraints:
 - Cardinality constraint: $x_1 + x_2 + x_3 + x_4 < 2$
 - Clauses:

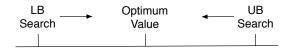
$$\begin{array}{c} (x_1 \wedge x_2 \Rightarrow \neg x_3) \\ (x_1 \wedge x_2 \Rightarrow \neg x_4) \\ (x_2 \wedge x_3 \Rightarrow \neg x_4) \\ & \cdots \end{array} \right\} \begin{array}{c} (\neg x_1 \vee \neg x_2 \vee \neg x_3) \\ (\neg x_1 \vee \neg x_2 \vee \neg x_4) \\ (\neg x_2 \vee \neg x_3 \vee \neg x_4) \\ & \cdots \end{array}$$

• Complexity: $\mathcal{O}(n^k)$ clauses

Encoding	Clauses	Variables	Туре
Pairwise	$\mathcal{O}(n^2)$	0	at-most-one
Ladder	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one
Bitwise	$\mathcal{O}(n \log_2 n)$	$\mathcal{O}(\log_2 n)$	at-most-one
Commander	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one
Product	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one
Sequential	$\mathcal{O}(nk)$	$\mathcal{O}(nk)$	at-most-k
Totalizer	$\mathcal{O}(nk)$	$\mathcal{O}(n \log_2 n)$	at-most-k
Sorters	$\mathcal{O}(n \log_2^2 n)$	$\mathcal{O}(n \log_2^2 n)$	at-most-k

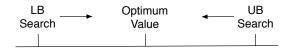
- Cardinality constraints:
 - At-most-one;
 - At-most-k.
- Many encodings for cardinality constraints are available;
- Different encodings can perform better over different problems;
- Exploit the diversification of cardinality encodings.

Search in the lower and upper bound values of the optimal solution:



- The optimum value is found when:
 - LB or UB search terminates with a solution;
 - or when LB value = UB value.

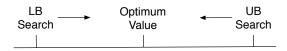
Search in the lower and upper bound values of the optimal solution:



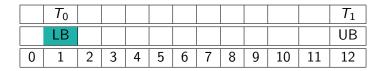
- The optimum value is found when:
 - LB or UB search terminates with a solution;
 - \circ or when LB value = UB value.

T_0													T_1
LB													UB
0	Ī	1	2	3	4	5	6	7	8	9	10	11	12

Search in the lower and upper bound values of the optimal solution:

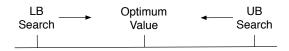


- The optimum value is found when:
 - LB or UB search terminates with a solution;
 - o or when LB value = UB value.



 T_0 returns UNSAT; update lower bound value

Search in the lower and upper bound values of the optimal solution:

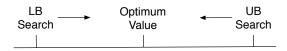


- The optimum value is found when:
 - LB or UB search terminates with a solution;
 - \circ or when LB value = UB value.

	T_0								T_1			
	LB								UB			
0	1	2	3	4	5	6	7	8	9	10	11	12

 T_1 returns SAT; update upper bound value

Search in the lower and upper bound values of the optimal solution:

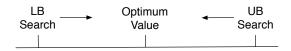


- The optimum value is found when:
 - LB or UB search terminates with a solution;
 - \circ or when LB value = UB value.

		T_0							T_1			
		LB							UB			
0	1	2	3	4	5	6	7	8	9	10	11	12

 T_0 returns UNSAT; update lower bound value

Search in the lower and upper bound values of the optimal solution:

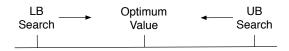


- The optimum value is found when:
 - LB or UB search terminates with a solution;
 - \circ or when LB value = UB value.

		T_0 ; T_1										
		LB; UB										
0	1	2	3	4	5	6	7	8	9	10	11	12

 T_1 returns SAT; update upper bound value

Search in the lower and upper bound values of the optimal solution:

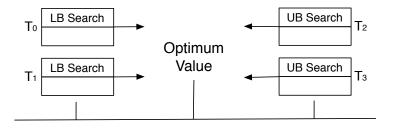


- The optimum value is found when:
 - LB or UB search terminates with a solution;
 - \circ or when LB value = UB value.

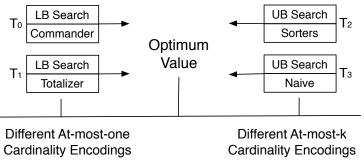
		T_0 ; T_1										
		LB; UB										
0	1	2	3	4	5	6	7	8	9	10	11	12

LB value = UB value, optimal value has been found

Search in the lower and upper bound values of the optimal solution:

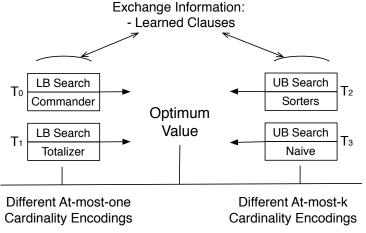


Search in the lower and upper bound values of the optimal solution:



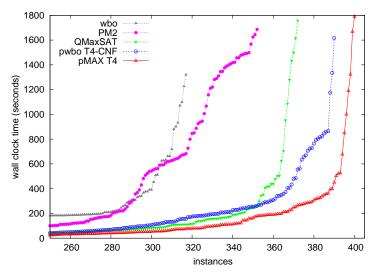
11 / 17

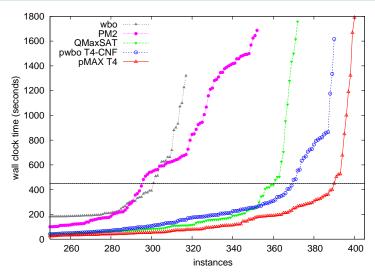
Search in the lower and upper bound values of the optimal solution:



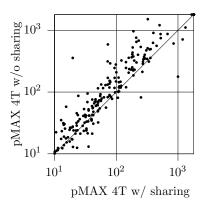
- Sequential Solvers:
 - QMaxSAT:
 - Upper bound search solver;
 - Uses cardinality encodings.
 - PM2:
 - · Lower bound search solver;
 - · Uses cardinality encodings.
 - o wbo:
 - Upper bound search during 10% of the time limit;
 - Lower bound search on remaining time;
 - Does not use cardinality encodings.

- Parallel Solvers:
 - o pwbo-CNF:
 - Searches on the lower and upper bound values of the optimal solution;
 - Splits the search on different upper bound values;
 - Only one thread uses cardinality encodings.
 - o pMAX:
 - The solver proposed in this talk;
 - Searches on the lower and upper bound values of the optimal solution;
 - Uses a different cardinality encoding in each thread.

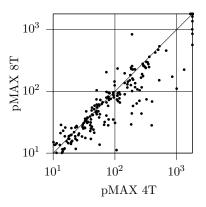




• Impact of sharing learned clauses (seconds):



• Scalability of pMAX (seconds):



• Speedup on instances solved by all our solvers:

Solver	Time (s)	Speedup
wbo	67,947.41	1.00
pwbo 4T-CNF	18,015.69	3.77
pMAX 4T	11,382.91	5.97
pMAX 8T	7,990.10	8.50

Conclusions

- Diversification of cardinality encodings can be used in parallel MaxSAT;
- pMAX outperforms state-of-the-art MaxSAT solvers:
 - Even when considering CPU time.
- Sharing learned clauses has a strong impact on the solving speed;
- pMAX shows scalability:
 - \circ pMAX 8T is 1.4 \times faster than pMAX 4T.