
Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Improving Search Space Splitting
for Parallel SAT Solving

Ruben Martins Vasco Manquinho Inês Lynce

INESC-ID/IST, Technical University of Lisbon, Portugal

28 October 2010

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Outline

1 Sequential SAT Solving

2 Parallel SAT Solving: Portfolio vs Search Space Splitting

3 Improving Search Space Splitting

4 Experimental Results

5 Conclusions

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Preliminaries

• Propositional Satisfiability (SAT):

• A literal li is either a Boolean variable xi or x i ;
• A clause ω =

W
i li :

e.g. ω1 = (x1 ∨ x2);ω2 = (x2 ∨ x3);ω3 = (x2 ∨ x3).
• CNF formula ϕ =

V
j ωj :

e.g. ϕ = (ω1 ∧ω2 ∧ω3).
• SAT problem is to decide if ϕ is satisfiable:

e.g. ϕ is satisfied when x1 = 1, x2 = 1 and x3 = 0.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Preliminaries

• Since the mid 90s SAT solvers have shown remarkable improvements;
• Due to these improvements SAT solvers have been successfully applied

to many practical applications:
• Hardware and Software model checking;
• Planning;
• Cryptanalysis;
• Computational Biology;
• etc.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Sequential SAT Solving
INPUT: CNF formula ϕ;
OUTPUT: SAT if an assignment is found; UNSAT otherwise.

X5 Assign Branching Variable

0

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Sequential SAT Solving
INPUT: CNF formula ϕ;
OUTPUT: SAT if an assignment is found; UNSAT otherwise.

X5 Assign Branching Variable

0

• VSIDS (Variable State Independent Decaying Sum) heuristic:
• Each literal has an activity counter;
• Each literal that occurs in a no-good has its activity increased;
• At each call, the highest-value unassigned literal is chosen.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Sequential SAT Solving
INPUT: CNF formula ϕ;
OUTPUT: SAT if an assignment is found; UNSAT otherwise.

X5 Assign Branching Variable

0Unit Propagation

• Unit Clause Rule:
• Given a unit clause, its only unassigned literal must be assigned value 1

for the clause to be satisfied.

• Unit Propagation:
• Iterated application of the unit clause rule;
• If an unsatisfied clause is identified it returns “Conflict”.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Sequential SAT Solving
INPUT: CNF formula ϕ;
OUTPUT: SAT if an assignment is found; UNSAT otherwise.

X5

X2

0

X3

X1

0

1

Conflict

0

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Sequential SAT Solving
INPUT: CNF formula ϕ;
OUTPUT: SAT if an assignment is found; UNSAT otherwise.

X5

X2

0

X3

X1

0

1

Conflict Analysis

Conflict

0

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Sequential SAT Solving
INPUT: CNF formula ϕ;
OUTPUT: SAT if an assignment is found; UNSAT otherwise.

X5

X2

0

X3

X1

0

1

Conflict Analysis

Conflict

0

Backtrack

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Sequential SAT Solving
INPUT: CNF formula ϕ;
OUTPUT: SAT if an assignment is found; UNSAT otherwise.

X5

X2

0

Solution

1

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Parallel SAT Solving: Portfolio vs Search Space Splitting

 φ

Search
Space

T1, T2, T3, T4

Different Heuristics
Same Search Space

 φ

S1

T1

S2 S3 S4

T2 T3 T4

Same Heuristics
Different Search Spaces

Portfolio Search Space Splitting

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Search Space Splitting

X1

X2 X2

S1 S2 S3 S4

10

10 10

T1 T2 Work Pool Work Pool

• The guiding paths describe the
current state of the search
process;

• The unused guiding paths are
stored in the work queue;

• If a thread proves that its current
subspace is unsatisfiable, it gets
a new subspace from the work
queue and continues searching;

• A dynamic work stealing
procedure guarantees that work
is available for all threads.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Search Space Splitting

X1

X2 X2

S1 S2 S3 S4

10

10 10

T1 T2 Work Pool Work Pool
UNSAT

• The guiding paths describe the
current state of the search
process;

• The unused guiding paths are
stored in the work queue;

• If a thread proves that its current
subspace is unsatisfiable, it gets
a new subspace from the work
queue and continues searching;

• A dynamic work stealing
procedure guarantees that work
is available for all threads.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Search Space Splitting

X1

X2 X2

S1 S2 S3 S4

10

10 10

T2 Work PoolUNSAT T1

• The guiding paths describe the
current state of the search
process;

• The unused guiding paths are
stored in the work queue;

• If a thread proves that its current
subspace is unsatisfiable, it gets
a new subspace from the work
queue and continues searching;

• A dynamic work stealing
procedure guarantees that work
is available for all threads.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Search Space Splitting

X1

X2 X2

S1 S3 S4

10

0 10

T2

Work PoolUNSAT T1

X3

1

0

S5 S6

1

Work Pool

• The guiding paths describe the
current state of the search
process;

• The unused guiding paths are
stored in the work queue;

• If a thread proves that its current
subspace is unsatisfiable, it gets
a new subspace from the work
queue and continues searching;

• A dynamic work stealing
procedure guarantees that work
is available for all threads.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Overview: Portfolio vs Search Space Splitting

Portfolio:
• Different strategies for each SAT solver cooperate when solving the

same search space:
• Covers the space of search strategies;
• Each solver has a complete view of the formula;
• For a large number of cores it can be hard to find diverse viewpoints that

provide orthogonal performance;
• State-of-the-art multicore SAT solvers use this approach.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Overview: Portfolio vs Search Space Splitting

Search Space Splitting:
• Each SAT solver solves a different search subspace until no more

subspaces exist or satisfiability has been proved:
• Each solver has only a partial view of the formula;
• It is not clear how to effectively choose the partition variables;
• Load balancing requires an overhead on the dynamic work stealing

procedure;

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Improving Search Space Splitting

Choosing the Partition Variables:

1 Collecting VSIDS information:

• Each thread runs a sequential SAT algorithm until k conflicts are reached;
• After k conflicts the VSIDS heuristic of each thread can be analyzed in

order to determine the partition variables;

• Weak Portfolio:
• The VSIDS information is increased by running each thread with a different

initial order of the VSIDS heuristic.

• Advantages of the weak portfolio:

• Some instances can be solved during this stage;
• More information is collected about the variables.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Improving Search Space Splitting

Choosing the Partition Variables:

2 Using the VSIDS information for choosing the partition variables:

VSIDS(T1): x1 x3 x2 x5 x4

VSIDS(T2): x3 x2 x1 x5 x4

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Improving Search Space Splitting

Choosing the Partition Variables:

2 Using the VSIDS information for choosing the partition variables:

VSIDS(T1): x1 x3 x2 x5 x4

Score: 1 2 3 4 5

VSIDS(T2): x3 x2 x1 x5 x4

Score: 1 2 3 4 5

• For each variable is given a score from 1 to n according to its position;

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Improving Search Space Splitting

Choosing the Partition Variables:

2 Using the VSIDS information for choosing the partition variables:

VSIDS(T1): x1 x3 x2 x5 x4

Score: 1 2 3 4 5

VSIDS(T2): x3 x2 x1 x5 x4

Score: 1 2 3 4 5

VSIDS(T1 + T2): x3 x1 x2 x5 x4

Total Score: 3 4 5 8 10

• The final score of each variable is the sum of its score in each thread;
• The first n variables with lowest score are chosen as partition variables

and are used to create the initial 2n guiding paths.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Improving Search Space Splitting

Hybrid Heuristic:

1 Preventing load balance issues:
a) If a thread t is searching for more than k conflicts;
b) And at least half of the work pool has guiding paths that were created by t ;

• Then this means that the subspace of the thread t is dominating the
search and can cause load balance issues.

2 Increase diversification of the search:
a) If a thread is searching for more than z conflicts (z >> k);

• Then this means that the search is going on for some time, and at this
point a diversification of the search tends to lead to better results.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

SAT4J//

• SAT4J is implemented in Java:
• Even though SAT4J is not as efficient as other SAT solvers it is one of the

most popular SAT solvers;
• A parallel version of SAT4J can therefore be useful for many users.

• SAT4J// is a parallelization of SAT4J 2.1(sequential version):
• Each thread maintains its own local clause database;
• Clauses are not shared between threads.

• Although clause sharing increases the performance of a solver, without
it we can have a better understanding of the impact of our heuristics.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

SAT4J//

Four versions of SAT4J// were implemented:

• no-Info:
• Search space splitting approach based on guiding paths;
• Dynamic work stealing with a central queue of work which is topped up by

the longer running thread;
• The partition variables are chosen randomly.

• Info:
• Uses a short initial stage of weak portfolio;
• After this stage, the partition variables are chosen using the VSIDS

information of all threads.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

SAT4J//

Four versions of SAT4J// were implemented:

• Pfolio:
• Uses a portfolio of SAT algorithms;
• Each thread has a different combination of the following strategies:

(1) restart, (2) polarity and (3) learning simplification.

• Hybrid:
• Starts by using the search space splitting approach present in Info;
• The hybrid heuristics switches from Info into Pfolio;
• When switching to a portfolio mode:

• All guiding paths are merged into a unique guiding path that has the literals
that were common to all guiding paths;

• The learnt clauses are kept from the search space splitting stage.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Experimental Results

• Benchmarks: 82 instances from the applications category of the SAT
competition 2009 such that:

• SAT4J 2.1 was able to solve in more than 180 seconds;
• SAT4J 2.1 was unable to solve but MiniSAT 2.1 was able to solve within

1,200 seconds.

• The set of benchmarks is challenging for SAT4J and interesting for
parallel testing;

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Experimental Results

• Intel Core i7 CPU 930 (2.80 Ghz, 6GB) running Ubuntu 10.04 LTS;

• Timeout: 3,600 seconds (wall clock time);
• All versions of SAT4J// were run with 4 threads:

• Each version of SAT4J// was run 3 times on each instance;
• The runtimes shown in this section are the median of the successful runs

for each instance;
• An instance was considered solved if it could be solved in at least one run.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Experimental Results

• Number of instances solved by each approach:

Inst Seq no-Info Info Pfolio Hybrid

SAT 25 16 17 19 19 20
UNSAT 57 43 42 42 45 45
Total 82 59 59 61 64 65

• Info can solve more 2 instances than no-Info, showing the importance of
the partition variables;

• Hybrid can solve more 1 instance than Pfolio, suggesting that a hybrid
approach can outperform a pure portfolio approach.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Experimental Results

• Runtimes for no-Info and Info:

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Experimental Results

• Runtimes for Pfolio and Hybrid:

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

Sequential SAT Solving Portfolio vs Search Space Splitting Improving Search Space Splitting SAT4J// Experimental Results Conclusions

Conclusions

• Portfolio approaches currently dominate multicore SAT solvers;
• Experimental results show that:

• Heuristically choosing the partition variables leads to clear improvements
in search space splitting;

• A hybrid approach between search space splitting and portfolio can lead to
better results than a pure portfolio approach.

• This provides a strong stimulus for further exploration of hybrid solutions.
• As future work, we propose to:

• Extend the use of the VSIDS heuristic of all threads to guide the search
during runtime;

• Improve the hybrid heuristic.

Improving Search Space Splitting for Parallel SAT Solving R. Martins, V. Manquinho, I. Lynce

	Sequential SAT Solving
	Parallel SAT Solving: Portfolio vs Search Space Splitting
	Improving Search Space Splitting
	SAT4J//
	Experimental Results
	Conclusions

