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Preliminaries

• Propositional Satisfiability (SAT):

• A literal li is either a Boolean variable xi or x i ;
• A clause ω =

W
i li :

e.g. ω1 = (x1 ∨ x2);ω2 = (x2 ∨ x3);ω3 = (x2 ∨ x3).
• CNF formula ϕ =

V
j ωj :

e.g. ϕ = (ω1 ∧ω2 ∧ω3).
• SAT problem is to decide if ϕ is satisfiable:

e.g. ϕ is satisfied when x1 = 1, x2 = 1 and x3 = 0.
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Preliminaries

• Since the mid 90s SAT solvers have shown remarkable improvements;
• Due to these improvements SAT solvers have been successfully applied

to many practical applications:
• Hardware and Software model checking;
• Planning;
• Cryptanalysis;
• Computational Biology;
• etc.
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Sequential SAT Solving
INPUT: CNF formula ϕ;
OUTPUT: SAT if an assignment is found; UNSAT otherwise.

X5 Assign Branching Variable

0
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Sequential SAT Solving
INPUT: CNF formula ϕ;
OUTPUT: SAT if an assignment is found; UNSAT otherwise.

X5 Assign Branching Variable

0

• VSIDS (Variable State Independent Decaying Sum) heuristic:
• Each literal has an activity counter;
• Each literal that occurs in a no-good has its activity increased;
• At each call, the highest-value unassigned literal is chosen.
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Sequential SAT Solving
INPUT: CNF formula ϕ;
OUTPUT: SAT if an assignment is found; UNSAT otherwise.

X5 Assign Branching Variable

0Unit Propagation

• Unit Clause Rule:
• Given a unit clause, its only unassigned literal must be assigned value 1

for the clause to be satisfied.

• Unit Propagation:
• Iterated application of the unit clause rule;
• If an unsatisfied clause is identified it returns “Conflict”.
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Sequential SAT Solving
INPUT: CNF formula ϕ;
OUTPUT: SAT if an assignment is found; UNSAT otherwise.
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Sequential SAT Solving
INPUT: CNF formula ϕ;
OUTPUT: SAT if an assignment is found; UNSAT otherwise.
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Sequential SAT Solving
INPUT: CNF formula ϕ;
OUTPUT: SAT if an assignment is found; UNSAT otherwise.
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Sequential SAT Solving
INPUT: CNF formula ϕ;
OUTPUT: SAT if an assignment is found; UNSAT otherwise.
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Parallel SAT Solving: Portfolio vs Search Space Splitting

 φ

Search 
Space

T1, T2, T3, T4

Different Heuristics
Same Search Space
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T1
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Same Heuristics
Different Search Spaces

Portfolio Search Space Splitting
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Search Space Splitting

X1

X2 X2

S1 S2 S3 S4
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T1 T2 Work Pool Work Pool

• The guiding paths describe the
current state of the search
process;

• The unused guiding paths are
stored in the work queue;

• If a thread proves that its current
subspace is unsatisfiable, it gets
a new subspace from the work
queue and continues searching;

• A dynamic work stealing
procedure guarantees that work
is available for all threads.
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Search Space Splitting
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• The guiding paths describe the
current state of the search
process;

• The unused guiding paths are
stored in the work queue;

• If a thread proves that its current
subspace is unsatisfiable, it gets
a new subspace from the work
queue and continues searching;

• A dynamic work stealing
procedure guarantees that work
is available for all threads.
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Search Space Splitting
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Search Space Splitting
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• The guiding paths describe the
current state of the search
process;

• The unused guiding paths are
stored in the work queue;

• If a thread proves that its current
subspace is unsatisfiable, it gets
a new subspace from the work
queue and continues searching;

• A dynamic work stealing
procedure guarantees that work
is available for all threads.
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Overview: Portfolio vs Search Space Splitting

Portfolio:
• Different strategies for each SAT solver cooperate when solving the

same search space:
• Covers the space of search strategies;
• Each solver has a complete view of the formula;
• For a large number of cores it can be hard to find diverse viewpoints that

provide orthogonal performance;
• State-of-the-art multicore SAT solvers use this approach.
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Overview: Portfolio vs Search Space Splitting

Search Space Splitting:
• Each SAT solver solves a different search subspace until no more

subspaces exist or satisfiability has been proved:
• Each solver has only a partial view of the formula;
• It is not clear how to effectively choose the partition variables;
• Load balancing requires an overhead on the dynamic work stealing

procedure;
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Improving Search Space Splitting

Choosing the Partition Variables:

1 Collecting VSIDS information:

• Each thread runs a sequential SAT algorithm until k conflicts are reached;
• After k conflicts the VSIDS heuristic of each thread can be analyzed in

order to determine the partition variables;

• Weak Portfolio:
• The VSIDS information is increased by running each thread with a different

initial order of the VSIDS heuristic.

• Advantages of the weak portfolio:

• Some instances can be solved during this stage;
• More information is collected about the variables.
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Improving Search Space Splitting

Choosing the Partition Variables:

2 Using the VSIDS information for choosing the partition variables:

VSIDS(T1): x1 x3 x2 x5 x4

VSIDS(T2): x3 x2 x1 x5 x4
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Improving Search Space Splitting

Choosing the Partition Variables:

2 Using the VSIDS information for choosing the partition variables:

VSIDS(T1): x1 x3 x2 x5 x4

Score: 1 2 3 4 5

VSIDS(T2): x3 x2 x1 x5 x4

Score: 1 2 3 4 5

• For each variable is given a score from 1 to n according to its position;
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Improving Search Space Splitting

Choosing the Partition Variables:

2 Using the VSIDS information for choosing the partition variables:

VSIDS(T1): x1 x3 x2 x5 x4

Score: 1 2 3 4 5

VSIDS(T2): x3 x2 x1 x5 x4

Score: 1 2 3 4 5

VSIDS(T1 + T2): x3 x1 x2 x5 x4

Total Score: 3 4 5 8 10

• The final score of each variable is the sum of its score in each thread;
• The first n variables with lowest score are chosen as partition variables

and are used to create the initial 2n guiding paths.
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Improving Search Space Splitting

Hybrid Heuristic:

1 Preventing load balance issues:
a) If a thread t is searching for more than k conflicts;
b) And at least half of the work pool has guiding paths that were created by t ;

• Then this means that the subspace of the thread t is dominating the
search and can cause load balance issues.

2 Increase diversification of the search:
a) If a thread is searching for more than z conflicts (z >> k );

• Then this means that the search is going on for some time, and at this
point a diversification of the search tends to lead to better results.
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SAT4J//

• SAT4J is implemented in Java:
• Even though SAT4J is not as efficient as other SAT solvers it is one of the

most popular SAT solvers;
• A parallel version of SAT4J can therefore be useful for many users.

• SAT4J// is a parallelization of SAT4J 2.1(sequential version):
• Each thread maintains its own local clause database;
• Clauses are not shared between threads.

• Although clause sharing increases the performance of a solver, without
it we can have a better understanding of the impact of our heuristics.
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SAT4J//

Four versions of SAT4J// were implemented:

• no-Info:
• Search space splitting approach based on guiding paths;
• Dynamic work stealing with a central queue of work which is topped up by

the longer running thread;
• The partition variables are chosen randomly.

• Info:
• Uses a short initial stage of weak portfolio;
• After this stage, the partition variables are chosen using the VSIDS

information of all threads.
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SAT4J//

Four versions of SAT4J// were implemented:

• Pfolio:
• Uses a portfolio of SAT algorithms;
• Each thread has a different combination of the following strategies:

(1) restart, (2) polarity and (3) learning simplification.

• Hybrid:
• Starts by using the search space splitting approach present in Info;
• The hybrid heuristics switches from Info into Pfolio;
• When switching to a portfolio mode:

• All guiding paths are merged into a unique guiding path that has the literals
that were common to all guiding paths;

• The learnt clauses are kept from the search space splitting stage.
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Experimental Results

• Benchmarks: 82 instances from the applications category of the SAT
competition 2009 such that:

• SAT4J 2.1 was able to solve in more than 180 seconds;
• SAT4J 2.1 was unable to solve but MiniSAT 2.1 was able to solve within

1,200 seconds.

• The set of benchmarks is challenging for SAT4J and interesting for
parallel testing;
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Experimental Results

• Intel Core i7 CPU 930 (2.80 Ghz, 6GB) running Ubuntu 10.04 LTS;

• Timeout: 3,600 seconds (wall clock time);
• All versions of SAT4J// were run with 4 threads:

• Each version of SAT4J// was run 3 times on each instance;
• The runtimes shown in this section are the median of the successful runs

for each instance;
• An instance was considered solved if it could be solved in at least one run.
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Experimental Results

• Number of instances solved by each approach:

# Inst Seq no-Info Info Pfolio Hybrid

SAT 25 16 17 19 19 20
UNSAT 57 43 42 42 45 45
Total 82 59 59 61 64 65

• Info can solve more 2 instances than no-Info, showing the importance of
the partition variables;

• Hybrid can solve more 1 instance than Pfolio, suggesting that a hybrid
approach can outperform a pure portfolio approach.
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Experimental Results

• Runtimes for no-Info and Info:
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Experimental Results

• Runtimes for Pfolio and Hybrid:
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Conclusions

• Portfolio approaches currently dominate multicore SAT solvers;
• Experimental results show that:

• Heuristically choosing the partition variables leads to clear improvements
in search space splitting;

• A hybrid approach between search space splitting and portfolio can lead to
better results than a pure portfolio approach.

• This provides a strong stimulus for further exploration of hybrid solutions.
• As future work, we propose to:

• Extend the use of the VSIDS heuristic of all threads to guide the search
during runtime;

• Improve the hybrid heuristic.
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