
On Partitioning for Maximum Satisfiability
Ruben Martins1 and Vasco Manquinho1 and Inês Lynce 1

Abstract. Partitioning formulas is motivated by the expectation
to identify easy to solve subformulas, even though at the cost of
having more formulas to solve. In this paper we suggest to apply
partitioning to Maximum Satisfiability (MaxSAT), the optimization
version of the well-known Satisfiability (SAT) problem. The use of
partitions can be naturally combined with unsatisfiability-based al-
gorithms for MaxSAT that are built upon successive calls to a SAT
solver, where each call identifies an unsatisfiable subformula. One of
the drawbacks of these algorithms results from the SAT solver return-
ing large unsatisfiable subformulas. However, when using partitions,
the solver is more likely to identify smaller unsatisfiable subformu-
las. Experimental results show that the use of partitions in MaxSAT
significantly improves the performance of unsatisfiability-based al-
gorithms.

1 Maximum Satisfiability

Maximum Satisfiability (MaxSAT) can be seen as an optimization
version of Boolean Satisfiability (SAT) which consists in finding an
assignment to the variables such that it minimizes (maximizes) the
number of unsatisfied (satisfied) clauses. MaxSAT has several vari-
ants and can be generalized to the weighted partial MaxSAT prob-
lem. In this problem, some clauses are declared as hard, while the
rest are declared as soft. The objective is to find an assignment to
the variables such that all hard clauses are satisfied, while minimiz-
ing the total weight of unsatisfied soft clauses. For a more detailed
introduction to MaxSAT we point the reader to the literature [5].

Unsatisfiability-based algorithms for weighted partial MaxSAT [6,
1, 2, 3] iteratively identify and relax unsatisfiable subformulas. In this
paper we propose to improve these algorithms by using a new tech-
nique based on partitioning soft clauses. Instead of using the initial
weighted partial MaxSAT formula to search for unsatisfiable subfor-
mulas, this paper proposes to start with a smaller formula that only
contains a partition of the soft clauses. At each iteration, the formula
is constrained by adding one more partition of soft clauses. This pro-
cedure is repeated until all partitions are added to the formula. The
motivation for this technique is twofold. First, at each iteration we
are solving formulas that are less constrained than the initial formula.
Although the number of iterations may be larger than when not us-
ing partitions, each iteration is expected to require less time. As a
result, more iterations may not imply using more computational time
at the end. Second, by splitting soft clauses into partitions, the search
is focused on a given subset of soft clauses. This can lead to finding
smaller unsatisfiable subformulas that are less likely to be found if
we consider the whole set of soft clauses.

1 INESC-ID/IST, TU Lisbon, Portugal, {ruben, vmm, ines}@sat.inesc-
id.pt. This work was partially supported by FCT under research projects
PTDC/EIACCO/102077/2008 and PTDC/EIA-CCO/110921/2009, and
INESC-ID multiannual funding through the PIDDAC program funds.

Algorithm 1: Unsatisfiability-based algorithm for weighted par-
tial MaxSAT enhanced with partitioning of soft clauses

Input: ϕ = ϕh ∪ ϕs

Output: satisfiable assignment to ϕ or UNSAT
1 γ ← 〈γ1, . . . , γn〉 ← partitionSoft(ϕs)

2 ϕW ← ϕh

3 while true do
4 ϕW ← ϕW ∪ first(γ)

5 γ ← γ \ first(γ)
6 (st, ϕC)← SAT(ϕW )
7 if st = UNSAT then
8 minc ← min{weight (ω) | ω ∈ ϕC ∧ soft(ω)}
9 VR ← ∅

10 foreach ω ∈ ϕC ∧ soft(ω) do
11 VR ← VR ∪ {r} // r is a new variable
12 ωR ← ω ∪ {r} // relax soft
13 weight(ωR)← minc
14 if weight(ω) > minc then
15 ϕW ← ϕW ∪ {ωR} // duplicate soft
16 weight(ω)← weight(ω)−minc
17 else ϕW ← ϕW \ {ω} ∪ {ωR}
18 if VR = ∅ then return UNSAT
19 else ϕW ← ϕW ∪ {CNF(

∑
r∈VR

r = 1)}
20 else
21 if γ = ∅ then return satisfiable assignment to ϕW

2 Partitioning Soft Clauses

Algorithm 1 illustrates an unsatisfiability-based algorithm for
weighted partial MaxSAT [6, 1] enhanced with partitioning of
soft clauses. The differences between algorithm 1 and the original
unsatisfiability-based algorithm for weighted partial MaxSAT are
highlighted. The algorithm takes as input a weighted partial MaxSAT
formula ϕ that is composed by a set of hard clauses ϕh and a set of
soft clauses ϕs. It begins by partitioning the soft clauses and placing
them in an ordered list γ. At each iteration, a SAT solver is applied to
the working formula ϕW . Initially, ϕW corresponds to ϕh. At each
iteration, ϕW is augmented with the first partition from list γ (line 4).
Next, the added partition is removed from γ (line 5). A SAT solver
is then applied to ϕW returning a pair (st, ϕC) where st denotes the
outcome of the solver: SAT or UNSAT. If the outcome is UNSAT,
then ϕC contains the unsatisfiable subformula identified by the SAT
solver. In this latter case, the unsatisfiable subformula is relaxed as
in the original algorithm [6, 1]. On the other hand, if the solver out-
come is SAT and there are no more partitions of soft clauses in γ, then
the solver found an optimal solution to the original weighted partial
MaxSAT formula. However, if γ is not empty, then ϕW is extended



with a new partition from γ (line 4) and the algorithm proceeds.
Weight-based Partitioning. The most natural form of partitioning
soft clauses is to use their weight. With this technique, soft clauses
with the same weight belong to the same partition. These soft clauses
are more likely to be related to each other than to the remaining ones.
Note that if we sort the partitions of soft clauses from the largest to
the smallest weight, then we can improve algorithm 1. Consider a
weighted partial MaxSAT formula with only 2 weights associated
with the soft clauses, 1 and 100. Moreover, consider also that a soft
clause ω with weight 100 must be relaxed in the optimal solution.
In the first iteration the unsatisfiable subformula given by the SAT
solver contains clause ω and soft clauses with weight 1. Therefore,
the weight of ω is decreased by 1 and a relaxed copy of ω is cre-
ated. In the worst case, this procedure can be repeated up to 100
times in order to completely relax ω. Now, consider the scenario
where the soft clauses have been partitioned by weight. If an un-
satisfiable subformula with ω is found, then only one iteration is re-
quired to relax ω since all soft clauses that belong to the unsatisfiable
subformula have weight 100. An important optimization when using
weight-based partitioning is to dynamically put the soft clauses that
are duplicated into the partition having soft clauses with the same
weight. This procedure may dynamically create new partitions. (For
the sake of simplicity, this optimization is not shown in algorithm 1.)

Even though the proposed approach is novel, there has been some
related work on using weights to guide the search. MSUncore with
lexicographical optimization [7] is dedicated to solving problem in-
stances where the optimality criterion is lexicographic. Soft clauses
are grouped by their weight to iteratively find an optimal solution
to each criterion. The version of WPM1 [1] from the MaxSAT 2011
evaluation considers the weights of soft clauses to find unsatisfiable
subformulas with larger weights first 2.
Graph-based Partitioning. For some problem instances, the
weights of the soft clauses may not form natural partitions. For exam-
ple, if a formula has all soft clauses with different weights, then each
partition has one soft clause. Therefore, for these cases the formula
should be partitioned using other techniques. A possible alternative
is graph-based partitioning, namely hypergraph partitioning. A hy-
pergraph is a generalization of a graph where an edge can connect
any number of vertices. To build a hypergraph from a weighted par-
tial MaxSAT formula, the soft and hard clauses of the formula are
considered as the vertices of the hypergraph. Each edge of the hyper-
graph represents a variable of the formula and connects all clauses
(vertices) which contain that variable. This representation resembles
the hypergraph obtained from a SAT formula [8]. In our experimental
evaluation, graph-based partitioning is used instead of weight-based
partitioning when the number of partitions is large (> 300) and the
average number of soft clauses in each partition is small (< 3). The
tool hmetis [4] was used to partition the hypergraph into 16 parti-
tions. For each partition, only the soft clauses are considered.

3 Experimental Results and Discussion
All experiments were run on the weighted partial MaxSAT instances
from the crafted and industrial categories of the MaxSAT evalua-
tion of 2011.The evaluation was performed on two AMD Opteron
6172 processors with a timeout of 1,200 seconds. Our new solver
based on partitioning soft clauses (PAR) was built on top of WBO [6].
The performance of PAR has been compared against the following
unsatisfiability-based algorithms: MSUncore [7] using lexicograph-
ical optimization (MSU bmo), MSUncore [3] using core-guided
2 Personal communication from the author.

Table 1. Number of instances solved by each solver.

Benchmark #I MSU MSU WPM1 WPM2 WBO PARbmo bin-cd
paths 86 0 0 33 0 0 7
scheduling 84 0 66 81 3 0 78
planning 56 26 53 54 39 31 50
warehouses 18 2 3 1 1 4 14
miplib 12 1 2 3 2 0 2
net 74 18 0 0 0 53 41
dir 21 5 13 5 9 5 7
log 21 5 11 6 8 6 6
pedigrees 100 86 26 87 44 73 80
timetabling 26 5 6 8 9 5 5
upgrade 100 100 98 100 98 100 100
Total 598 248 278 378 213 277 390

binary search with disjoint cores (MSU bin-cd), WPM1 3 [1],
WPM2 3 [2], and WBO [6].

Table 1 shows the number of instances solved by each solver. PAR
clearly outperforms WBO showing that partitioning soft clauses can
significantly improve the performance of unsatisfiability-based algo-
rithms. PAR is more efficient than WBO since it is able to find the
optimal solution while making less calls to the SAT solver. On av-
erage, WBO performs 664 iterations, whereas PAR only needs 329.
Moreover, PAR is also able to find smaller unsatisfiable subformulas
than WBO. On average, PAR finds unsatisfiable subformulas with 57
soft clauses, whereas unsatisfiable subformulas in WBO have 72 soft
clauses. The benchmarks warehouses and net were solved used
graph-based partitioning. For these benchmarks, the use of weights
for partitioning would create over 1,000 partitions, each of them
containing on average slightly less than 2 soft clauses. The use of
graph-based partitioning has mixed results. It improves the perfor-
mance of the solver on the warehouses instances but it deterio-
rates the performance of the solver on the net instances. For the
remaining benchmarks, weight-based partitioning was used. As a re-
sult, the solver’s performance improved on several benchmarks, be-
ing most effective on the scheduling and planning instances.
When compared to the remaining solvers, PAR is the most robust
solver as it solves the largest number of instances.

As future work one may consider additional forms of graph par-
titioning. Moreover, graph partitioning can also be used to partition
soft clauses in unweighted MaxSAT formulas.

REFERENCES
[1] C. Ansótegui, M. Bonet, and J. Levy, ‘Solving (Weighted) Partial

MaxSAT through Satisfiability Testing’, in International Conference on
Theory and Applications of Satisfiability Testing, (2009).

[2] C. Ansótegui, M. Bonet, and J. Levy, ‘A New Algorithm for Weighted
Partial MaxSAT’, in AAAI Conference on Artificial Intelligence, (2010).

[3] F. Heras, A. Morgado, and J. Marques-Silva, ‘Core-Guided Binary
Search Algorithms for Maximum Satisfiability’, in AAAI Conference on
Artificial Intelligence, (2011).

[4] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, ‘Multilevel hyper-
graph partitioning: Application in VLSI domain’, in IEEE Transactions
on VLSI Systems, volume 7, (1999).

[5] C. M. Li and F. Manyà, ‘MaxSAT, Hard and Soft Constraints’, in Hand-
book of Satisfiability, IOS Press, (2009).

[6] V. Manquinho, J. Marques-Silva, and J. Planes, ‘Algorithms for
Weighted Boolean Optimization’, in International Conference on The-
ory and Applications of Satisfiability Testing, (2009).

[7] J. Marques-Silva, J. Argelich, A. Graça, and I. Lynce, ‘Boolean Lexi-
cographic Optimization: Algorithms & Applications’, Annals of Mathe-
matics and Artificial Intelligence, 62(3-4), (2011).

[8] T. J. Park and A. V. Gelder, ‘Partitioning Methods for Satisfiability Test-
ing on Large Formulas’, Inf. and Computation, 162(1-2), (2000).

3 Version from the MaxSAT 2011 evaluation.


