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Software Package Upgradeability Problem

Package Dependencies Conflicts

p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

• Set of packages we want to install: {p1, p2, p3, p4}
• Each package pi has a set of dependencies:
◦ Packages that must be installed for pi to be installed

• Each package pi has a set of conflicts:
◦ Packages that cannot be installed for pi to be installed
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Solving the Software Package Upgradeability Problem

Package Dependencies Conflicts

p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

Encode the problem to Propositional Satisfiability
• A literal li is either a Boolean variable xi or ¬xi :
• A clause ω =

∨
i li :

◦ ω1 = (x1);ω2 = (¬x1 ∨ x2 ∨ x3);ω3 = (¬x2 ∨ ¬x3)

• CNF formula ϕ =
∧

j ωj :

◦ ϕ = (ω1 ∧ ω2 ∧ ω3)
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Solving the Software Package Upgradeability Problem

Package Dependencies Conflicts

p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

Encode the problem to Propositional Satisfiability

• Encoding dependencies:
◦ p1 ⇒ (p2 ∨ p3) ≡ (¬p1 ∨ p2 ∨ p3)
◦ p2 ⇒ p3 ≡ (¬p2 ∨ p3)
◦ p3 ⇒ p2 ≡ (¬p3 ∨ p2)
◦ p4 ⇒ (p2 ∧ p3) ≡ (¬p4 ∨ p2) ∧ (¬p4 ∨ p3)
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Solving the Software Package Upgradeability Problem

Package Dependencies Conflicts

p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

Encode the problem to Propositional Satisfiability

• Encoding conflicts:
◦ p1 ⇒ ¬p4 ≡ (¬p1 ∨ ¬p4)
◦ p3 ⇒ ¬p4 ≡ (¬p3 ∨ ¬p4)
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Solving the Software Package Upgradeability Problem

Package Dependencies Conflicts

p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

Encode the problem to Propositional Satisfiability

• Encoding installing all packages:
◦ (p1) ∧ (p2) ∧ (p3) ∧ (p4)
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Solving the Software Package Upgradeability Problem

CNF Formula:

¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

p1 p2 p3 p4

• Propositional Satisfiability (SAT):
◦ Decide if the formula is satisfiable or unsatisfiable
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Solving the Software Package Upgradeability Problem

CNF Formula:

¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

p1 p2 p3 p4

• Formula is unsatisfiable
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Solving the Software Package Upgradeability Problem

CNF Formula:

¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

p1 p2 p3 p4

• Formula is unsatisfiable

• We cannot install all packages

• How many packages can we install?
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What is Maximum Satisfiability?

• Maximum Satisfiability (MaxSAT):
◦ Optimized version of SAT
◦ All clauses in the formula are soft
◦ Minimize number of unsatisfied soft clauses

• Partial MaxSAT:
◦ Clauses in the formula are soft or hard
◦ Hard clauses must be satisfied
◦ Minimize number of unsatisfied soft clauses

• Weighted Partial MaxSAT:
◦ Clauses in the formula are soft or hard
◦ Weights associated with soft clauses
◦ Minimize sum of weights of unsatisfied soft clauses
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What is Maximum Satisfiability?

• Maximum Satisfiability (MaxSAT):
◦ Optimized version of SAT
◦ All clauses in the formula are soft
◦ Minimize number of unsatisfied soft clauses

• Partial MaxSAT:
◦ Clauses in the formula are soft or hard
◦ Hard clauses must be satisfied
◦ Minimize number of unsatisfied soft clauses

• Weighted Partial MaxSAT:
◦ Clauses in the formula are soft or hard
◦ Weights associated with soft clauses
◦ Minimize sum of weights of unsatisfied soft clauses
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Software Package Upgradeability Problem as MaxSAT

Partial MaxSAT Formula:

ϕh (Hard): ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

ϕs (Soft): p1 p2 p3 p4

• Dependencies and conflicts are encoded as hard clauses

• Installation of packages are encoded as soft clauses

• Goal: maximize the number of installed packages

6



Software Package Upgradeability Problem as MaxSAT

Partial MaxSAT Formula:

ϕh (Hard): ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

ϕs (Soft): p1 p2 p3 p4

• Dependencies and conflicts are encoded as hard clauses

• Installation of packages are encoded as soft clauses

• Optimal solution (3 out 4 packages are installed):
◦ µ = {p1 = 1, p2 = 1, p3 = 1, p4 = 0}
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Why is MaxSAT Important?

• Many real-world applications can be encoded to MaxSAT:

◦ Software package upgradeability:

• Eclipse platform uses MaxSAT for managing the plugins dependencies

◦ Error localization in C code
◦ Debugging of hardware designs
◦ Haplotyping with pedigrees
◦ Reasoning over Biological Networks
◦ Course timetabling
◦ Combinatorial auctions
◦ . . .

• MaxSAT algorithms are effective for solving real-word problems
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The MaxSAT (r)evolution – plain industrial instances
The MaxSAT (r)evolution – plain industrial instances
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The MaxSAT (r)evolution – partial
The MaxSAT (r)evolution – partial
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The MaxSAT (r)evolution – partial
The MaxSAT (r)evolution – partial
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The MaxSAT (r)evolution – weighted partial
The MaxSAT (r)evolution – weighted partial
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The MaxSAT (r)evolution – weighted partial
The MaxSAT (r)evolution – weighted partial
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Outline

• MaxSAT Algorithms:
◦ Linear search algorithms
◦ Unsatisfiability-based algorithms

• Incremental solving in MaxSAT:
◦ Keep the state of the SAT solver between MaxSAT calls

• Partitioning in MaxSAT:
◦ Use the structure of the problem to guide the search
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MaxSAT algorithms

SAT-UNSAT Linear Search algorithm:

UB

OPT

• Optimum solution (OPT):
◦ Assignment with minimum cost

• Upper Bound (UB) value:
◦ Cost greater than or equal to OPT

• SAT-UNSAT Linear search algorithms:
◦ Iterative calls to a SAT solver
◦ Refine UB value until OPT is found
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MaxSAT algorithms

SAT-UNSAT Linear Search algorithm:

UB

OPT

• Optimum solution (OPT):
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◦ Iterative calls to a SAT solver
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MaxSAT algorithms

SAT-UNSAT Linear Search algorithm:

• Algorithm is incremental
◦ Only one SAT solver must be created
◦ New variables and constraints are added between SAT solver calls
◦ SAT solver calls are performed on refinements of the previous formula

• In incremental algorithms:
◦ No need to rebuild the SAT solver between iterations
◦ Keep all learned clauses
◦ Keep internal state of the SAT solver between calls
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MaxSAT algorithms

Unsatisfiability-based algorithms:

LB

OPT

• Lower Bound (LB) value:
◦ Cost smaller than or equal to OPT

• Unsatisfiability-based algorithms:
◦ Iteratively increase the LB until a satisfiable call is performed
◦ Use unsatisfiable subformulas to refine LB value until OPT is found

• These algorithms are not incremental
◦ SAT solver is rebuilt at each iteration
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MaxSAT Algorithms

• MaxSAT algorithms build on SAT solver technology:
◦ Unsatisfiable subformulas (or cores)

• MaxSAT algorithms use constraints not defined in causal form:

◦ AtMost1 constraints,
∑n

j=1
xj ≤ 1

◦ General cardinality constraints,
∑n

j=1
xj ≤ k

◦ Pseudo-Boolean constraints,
∑n

j=1
ajxj ≤ k

• Efficient encodings to CNF
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CNF Encodings

Naive encoding for AtMost1 Constraints:

• x1 + x2 + x3 ≤ 1:
◦ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3)

• For a general AtMost1 constraint r1 + r2 + . . .+ rn ≤ 1:
◦ For each pair (ri , rj) add the clause (¬ri ∨ ¬rj)

• Complexity: O(n2) clauses

• More efficient encodings can be used! (PBLib’15)
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CNF Encodings

Sequential counters (Sinz [CP’05])

• AtMost1 constraints:
◦ Clauses/Variables: O(n)

• General cardinality constraints:
◦ Clauses/Variables: O(n k)

Sequential weighted counters (Hölldobler et al. [KI’12])

• Pseudo-Boolean constraints:
◦ Clauses/Variables: O(n k)
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Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

ϕh (Hard): x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs (Soft): x1 x3 x2 ∨ x̄1 x̄3 ∨ x1
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Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

• Relax all soft clauses

• Relaxation variables:
◦ VR = {r1, r2, r3, r4}
◦ If a soft clause ωi is unsatisfied, then ri = 1
◦ If a soft clause ωi is satisfied, then ri = 0
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Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

VR = {r1, r2, r3, r4}

• Formula is satisfiable
◦ ν = {x1 = 1, x2 = 0, x3 = 0, r1 = 0, r2 = 1, r3 = 1, r4 = 0}

• Goal: Minimize the number of relaxation variables assigned to 1
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Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

µ = 2 VR = {r1, r2, r3, r4}

• r2 and r3 were assigned truth value 1:
◦ Current solution unsatisfies 2 soft clauses

• Can less than 2 soft clauses be unsatisfied?
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Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(
∑

ri∈VR
ri ≤ 1)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

µ = 2 VR = {r1, r2, r3, r4}

• Add cardinality constraint that excludes solutions that unsatisfies 2
or more soft clauses:
◦ CNF(r1 + r2 + r3 + r4 ≤ 1)
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Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(
∑

ri∈VR
ri ≤ 1)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

µ = 2 VR = {r1, r2, r3, r4}

• Formula is unsatisfiable:
◦ There are no solutions that unsatisfy 1 or less soft clauses
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Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 x3 x2 ∨ x̄1 x̄3 ∨ x1

µ = 2 VR = {r1, r2, r3, r4}

• Optimal solution: given by the last model and corresponds to
unsatisfying 2 soft clauses:
◦ ν = {x1 = 1, x2 = 0, x3 = 0}

• The same procedure can be generalized to weighted

17



Linear Search Algorithms UNSAT-SAT

Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

• Relax all soft clauses

• Relaxation variables:
◦ VR = {r1, r2, r3, r4}
◦ If a soft clause ωi is unsatisfied, then ri = 1
◦ If a soft clause ωi is satisfied, then ri = 0
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Linear Search Algorithms UNSAT-SAT

Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(
∑

ri∈VR
ri ≤ 0)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

µ = 2 VR = {r1, r2, r3, r4}

• Add cardinality constraint that excludes solutions that unsatisfies 1
or more soft clauses:
◦ CNF(r1 + r2 + r3 + r4 ≤ 0)
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Linear Search Algorithms UNSAT-SAT

Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(
∑

ri∈VR
ri ≤ 0)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

• Formula is unsatisfiable:
◦ There are no solutions that unsatisfy 0 or less soft clauses

• Add cardinality constraint that excludes solutions that unsatisfies 2
or more soft clauses:
◦ CNF(r1 + r2 + r3 + r4 ≤ 1)
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Linear Search Algorithms UNSAT-SAT

Partial MaxSAT Formula:
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∑

ri∈VR
ri ≤ 1)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

• Formula is unsatisfiable:
◦ There are no solutions that unsatisfy 1 or less soft clauses

• Add cardinality constraint that excludes solutions that unsatisfies 3
or more soft clauses:
◦ CNF(r1 + r2 + r3 + r4 ≤ 2)
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Linear Search Algorithms UNSAT-SAT

Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(
∑

ri∈VR
ri ≤ 2)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

• Formula is satisfiable:
◦ µ = {x1 = 1, x2 = 0, x3 = 0, r1 = 0, r2 = 1, r3 = 1, r4 = 0}

• Optimal solution unsatisfies 2 soft clauses

• The same procedure can be generalized to weighted
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Unsatisfiability-based Algorithms (MSU3: Marques-Silva&Planes’07)

Partial MaxSAT Formula:

ϕh (Hard): x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs (Soft): x1 x3 x2 ∨ x̄1 x̄3 ∨ x1
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Unsatisfiability-based Algorithms (MSU3: Marques-Silva&Planes’07)

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 x3 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is unsatisfiable
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Unsatisfiability-based Algorithms (MSU3: Marques-Silva&Planes’07)

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 x3 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is unsatisfiable

• Identify an unsatisfiable core
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Unsatisfiability-based Algorithms (MSU3: Marques-Silva&Planes’07)

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 x̄3 ∨ x1

• Relax non-relaxed soft clauses in unsatisfiable core:
◦ Add cardinality constraint that excludes solutions that unsatisfies 2 or

more soft clauses:

• CNF(r1 + r2 ≤ 1)

◦ Relaxation on demand instead of relaxing all soft clauses eagerly
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Unsatisfiability-based Algorithms (MSU3: Marques-Silva&Planes’07)

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 + r3 + r4 ≤ 2)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

• Relax non-relaxed soft clauses in unsatisfiable core:
◦ Add cardinality constraint that excludes solutions that unsatisfies 3 or

more soft clauses:

• CNF(r1 + r2 + r3 + r4 ≤ 2)

◦ Relaxation on demand instead of relaxing all soft clauses eagerly
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Unsatisfiability-based Algorithms (MSU3: Marques-Silva&Planes’07)

Partial MaxSAT Formula:
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ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 ∨ r3 x̄3 ∨ x1 ∨ r4

• Formula is satisfiable:
◦ µ = {x1 = 1, x2 = 0, x3 = 0, r1 = 0, r2 = 1, r3 = 1, r4 = 0}

• Optimal solution unsatisfies 2 soft clauses

• The same procedure can be generalized to weighted
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Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

ϕh (Hard): x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs (Soft): x1 x3 x2 ∨ x̄1 x̄3 ∨ x1
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Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 x3 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is unsatisfiable
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Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 x̄3 ∨ x1

• Relax unsatisfiable core:
◦ Add relaxation variables
◦ Add AtMost1 constraint
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Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1) CNF(r3 + . . .+ r6 ≤ 1)

ϕs : x1 ∨ r1 ∨ r3 x3 ∨ r2 ∨ r4 x2 ∨ x̄1 ∨ r5 x̄3 ∨ x1 ∨ r6

• Relax unsatisfiable core:
◦ Add relaxation variables
◦ Add AtMost1 constraint

• Soft clauses may be relaxed multiple times
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Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:
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ϕs : x1 ∨ r1 ∨ r3 x3 ∨ r2 ∨ r4 x2 ∨ x̄1 ∨ r5 x̄3 ∨ x1 ∨ r6

• Formula is satisfiable

• An optimal solution would be:
◦ ν = {x1 = 1, x2 = 0, x3 = 0}
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Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 x3 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is satisfiable

• An optimal solution would be:
◦ ν = {x1 = 1, x2 = 0, x3 = 0}

• This assignment unsatisfies 2 soft clauses
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Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 x3 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is satisfiable

• An optimal solution would be:
◦ ν = {x1 = 1, x2 = 0, x3 = 0}

• This assignment unsatisfies 2 soft clauses

• How can this procedure be generalized to weighted?
(Manquinho et al. [SAT’09])
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Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

ϕh (Hard): x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs (Soft): (x1, 2) (x3, 3) (x2 ∨ x̄1, 1) (x̄3 ∨ x1, 1)
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Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

ϕh (Hard): x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs (Soft): (x1, 2) (x3, 3) (x2 ∨ x̄1, 1) (x̄3 ∨ x1, 1)

• Naive approach:
◦ For each soft clause (ω,w) create w copies of weight 1
◦ Problem: Does not scale when the size of the weights increase
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Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

ϕh (Hard): x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs (Soft): (x1, 2) (x3, 3) (x2 ∨ x̄1, 1) (x̄3 ∨ x1, 1)

• Solution:
◦ Create copies only when needed
◦ Use the weight of the unsatisfiable core to split the soft clauses
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Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : (x1, 2) (x3, 3) (x2 ∨ x̄1, 1) (x̄3 ∨ x1, 1)

• Formula is unsatisfiable
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Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : (x1, 2) (x3, 3) (x2 ∨ x̄1, 1) (x̄3 ∨ x1, 1)

• Formula is unsatisfiable

• Identify an unsatisfiable core
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Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : (x1 ∨ r1, 2) (x3, 1) (x2 ∨ x̄1, 1) (x̄3 ∨ x1, 1)

(x3, 2)

• Core weight (cw ): 2 (smallest weight of the soft clauses in the
core)

• Split soft clauses with weight larger than the core weight:
◦ (ω,w) → (ω,w − cw ) ∧ (ω, cw )
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Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1)

ϕs : (x1 ∨ r1, 2) (x3, 1) (x2 ∨ x̄1, 1) (x̄3 ∨ x1, 1)

(x3 ∨ r2, 2)

• Core weight (cw ): 2 (smallest weight soft clauses in the core)

• Split soft clauses with weight larger than the core weight:
◦ (ω,w) → (ω,w − cw ) ∧ (ω, cw )

• Relax soft clauses with weight equal to cw , add AtMost1 constraint
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Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1)

ϕs : (x1 ∨ r1, 2) (x3, 1) (x2 ∨ x̄1, 1) (x̄3 ∨ x1, 1)

(x3 ∨ r2, 2)

• Formula is unsatisfiable
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Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1)

ϕs : (x1 ∨ r1, 2) (x3, 1) (x2 ∨ x̄1, 1) (x̄3 ∨ x1, 1)

(x3 ∨ r2, 2)

• Formula is unsatisfiable

• Identify unsatisfiable core
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Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1) CNF(r3 + r4 ≤ 1)

ϕs : (x1 ∨ r1, 2) (x3 ∨ r3, 1) (x2 ∨ x̄1, 1) (x̄3 ∨ x1 ∨ r4, 1)

(x3 ∨ r2, 2)

• Formula is unsatisfiable

• Identify unsatisfiable core

• Relax unsatisfiable core
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Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

ϕh : x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1) CNF(r3 + r4 ≤ 1)

ϕs : (x1 ∨ r1, 2) (x3 ∨ r3, 1) (x2 ∨ x̄1, 1) (x̄3 ∨ x1 ∨ r4, 1)

(x3 ∨ r2, 2)

• Formula is satisfiable
◦ ν = {x1 = 0, x2 = 1, x3 = 1, r1 = 1, r2 = 0, r3 = 0, r4 = 1}

• Optimal cost: 3

21



Outline

• MaxSAT Algorithms:
◦ Linear search algorithms
◦ Unsatisfiability-based algorithms

• Incremental solving in MaxSAT:
◦ Keep the state of the SAT solver between MaxSAT calls

• Partitioning in MaxSAT:
◦ Use the structure of the problem to guide the search

22



Incremental MaxSAT algorithms Martins et al. [CP’14]

• Non-incremental algorithms
◦ Working formula is rebuilt at each SAT solver call
◦ MaxSAT algorithms need to update constraints between calls to the

SAT solver
◦ For soundness reasons, SAT solvers only allow to add new variables

and new constraints
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Incremental MaxSAT algorithms Martins et al. [CP’14]

• Non-incremental algorithms
◦ Working formula is rebuilt at each SAT solver call
◦ MaxSAT algorithms need to update constraints between calls to the

SAT solver
◦ For soundness reasons, SAT solvers only allow to add new variables

and new constraints

• Goal: Make Unsatisfiability-based algorithms incremental
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Incremental MaxSAT algorithms Martins et al. [CP’14]

• SAT solver calls allow to specify assumptions:
◦ Assumptions are literals that are set to true in the returned model
◦ Assumptions can be changed between calls to the SAT solver
◦ Soundness of the solver is maintained

• Iterative encoding for cardinality constraints:
◦ Grow the encoding as needed
◦ Adds new relaxation variables to encoding only when necessary
◦ Use assumptions to fix the value of k for the current iteration
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Iterative Encoding - Totalizer Encoding Martins et al. [CP’14]

(A : a1, a2, : 2)

(B : b1, b2 : 2) (C : c1, c2 : 2)

(D : l1 : 1) (E : l2 : 1) (G : l3 : 1) (F : f1, f2 : 2)

(H : l4 : 1) (I : l5 : 1)

• Encoding of l1 + l2 + l3 + l4 + l5 ≤ 1
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Iterative Encoding - Totalizer Encoding Martins et al. [CP’14]

(A : a1, a2, : 2)

(B : b1, b2 : 2) (C : c1, c2 : 2)

(D : l1 : 1) (E : l2 : 1) (G : l3 : 1) (F : f1, f2 : 2)

(H : l4 : 1) (I : l5 : 1)

• Encoding of l1 + l2 + l3 + l4 + l5 ≤ 1

• Change it to l1 + l2 + l3 + l4 + l5 + l7 + l8 ≤ 3

◦ Add two more literals (l7 and l8) to the left-hand side
◦ Increase the right-hand side by 2
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Iterative Encoding - Totalizer Encoding Martins et al. [CP’14]

(A : a1, a2, : 2)

(B : b1, b2 : 2) (C : c1, c2 : 2)

(D : l1 : 1) (E : l2 : 1) (G : l3 : 1) (F : f1, f2 : 2)

(H : l4 : 1) (I : l5 : 1)

(J : j1, j2 : 2)

(K : l7 : 1) (L : l8 : 1)

• Encoding of l1 + l2 + l3 + l4 + l5 ≤ 1

• Change it to l1 + l2 + l3 + l4 + l5 + l7 + l8 ≤ 3

◦ Add two more literals (l7 and l8) to the left-hand side
◦ Increase the right-hand side by 2

• Extend the representation
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Iterative Encoding - Totalizer Encoding Martins et al. [CP’14]

(A : a1, a2, a3, a4 : 4 )

(B : b1, b2 : 2) (C : c1, c2, c3 : 3 )

(D : l1 : 1) (E : l2 : 1) (G : l3 : 1) (F : f1, f2 : 2)

(H : l4 : 1) (I : l5 : 1)

(J : j1, j2 : 2)

(K : l7 : 1) (L : l8 : 1)

(O : o1, o2, o3, o4 : 4)

• Encoding of l1 + l2 + l3 + l4 + l5 ≤ 1
• Change it to l1 + l2 + l3 + l4 + l5 + l7 + l8 ≤ 3
◦ Add two more literals (l7 and l8) to the left-hand side
◦ Increase the right-hand side by 2

• Extend the representation
25



Experimental Results

• Open-WBO:
◦ http://sat.inesc-id.pt/open-wbo/
◦ Open-source MaxSAT solver
◦ Non-incremental MSU3 and incremental MSU3

• Benchmarks: unweighted (55) and partial (568) MaxSAT instances
from the industrial category of the MaxSAT Evaluation 2014

• AMD Opteron 6272 processors (2.3 GHz) running Fedora Core 18;

• Timeout: 1,800 seconds

26
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Experimental Results

• Non-incremental vs. Incremental MSU3
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Experimental Results

• Running times of state-of-the-art MaxSAT solvers
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Incremental MaxSAT Solving

• Iterative encoding can be used in other more sophisticated
MaxSAT algorithms

• Experimental results clearly show the effectiveness of using
incrementality

• Due to incrementality, Open-WBO won the best solver award for
unweighted and partial MaxSAT at the MaxSAT Evaluation 2014
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Outline

• MaxSAT Algorithms:
◦ Linear search algorithms
◦ Unsatisfiability-based algorithms

• Incremental solving in MaxSAT:
◦ Keep the state of the SAT solver between MaxSAT calls

• Partitioning in MaxSAT:
◦ Use the structure of the problem to guide the search
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Partitioning in MaxSAT

• Unsatisfiability-based algorithms are very effective on industrial
benchmarks

• However, performance is related with the unsatisfiable cores given
by the SAT solver:
◦ Some unsatisfiable cores may be unnecessarily large
◦ Solution: Partition the soft clauses
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Partitioning in MaxSAT Martins et al. [ECAI’12]

(1) Partition the soft clauses
γ1 γ2 γ3
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(1) Partition the soft clauses

(2) Add a new partition to the formula
γ1 γ2 γ3
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(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
◦ Relax unsatisfiable core

γ1 γ2 γ3

32



Partitioning in MaxSAT Martins et al. [ECAI’12]

(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
◦ Relax unsatisfiable core

(4) The formula is satisfiable:
◦ If there are no more partitions:
. Optimum found

◦ Otherwise, go back to 2

γ1 γ2 γ3
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(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
◦ Relax unsatisfiable core

(4) The formula is satisfiable:
◦ If there are no more partitions:
. Optimum found

◦ Otherwise, go back to 2

γ1 γ2 γ3

γ1 ∪ γ2
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Partitioning in MaxSAT Martins et al. [ECAI’12]

(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
◦ Relax unsatisfiable core

(4) The formula is satisfiable:
◦ If there are no more partitions:
. Optimum found

◦ Otherwise, go back to 2

γ1 γ2 γ3

γ1 ∪ γ2

γ1 ∪ γ2 ∪ γ3
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Partitioning in MaxSAT Martins et al. [ECAI’12]

(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
◦ Relax unsatisfiable core

(4) The formula is satisfiable:
◦ If there are no more partitions:
. Optimum found

◦ Otherwise, go back to 2

γ1 γ2 γ3

γ1 ∪ γ2

γ1 ∪ γ2 ∪ γ3
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Partitioning in MaxSAT Martins et al. [ECAI’12]

(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
◦ Relax unsatisfiable core

(4) The formula is satisfiable:
◦ If there are no more partitions:
. Optimum found

◦ Otherwise, go back to 2

γ1 γ2 γ3

γ1 ∪ γ2

γ1 ∪ γ2 ∪ γ3
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How to partition the soft clauses?

Use the structure of the problem to guide the search:

• Weighted partial MaxSAT: Martins et al. [ECAI’12]

◦ Weight-based partitioning

• Partial MaxSAT: Martins et al. [SAT’13]

◦ All soft clauses have weight 1
◦ Graph-based partitioning:

• Hypergraph
• Variable Incidence Graph
• Clause-Variable Incidence Graph
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Exploiting the community structure!

SATGraf — https://bitbucket.org/znewsham/satgraf

(normalized-f20c10b 001 area delay.wcnf)
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Experimental Results (Partial MaxSAT)

• Benchmarks:
◦ 504 industrial partial MaxSAT instances

• Solvers:
◦ WBO

◦ rdm (Random partitioning − 16 partitions)

◦ hyp (Hypergraph partitioning − 16 partitions)

◦ VIG (Community partitioning − Variable Incidence Graph)

◦ CVIG (Community partitioning − Clause-Variable Incidence Graph)

◦ VBS (Virtual Best Solver)
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Experimental Results (Partial MaxSAT)

• Running times of solvers for industrial partial MaxSAT instances
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Experimental Results (Weighted Partial MaxSAT)

• Benchmarks:
◦ 598 weighted partial MaxSAT instances

• Solvers:
◦ wbo

◦ weight (Weight-based partitioning)

◦ rdm (Random partitioning − 16 partitions)

◦ hyp (Hypergraph partitioning − 16 partitions)

◦ vig (Community partitioning − Variable Incidence Graph)

◦ cvig (Community partitioning − Clause-Variable Incidence Graph)

◦ vbs (Virtual Best Solver)
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Experimental Results (Weighted Partial MaxSAT)

• Running times of solvers for weighted partial MaxSAT instances
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Partitioning in MaxSAT

• Partitioning approaches outperform WBO on most instances:
◦ Finds smaller unsatisfiable cores

• Weight-based partitioning is the best for weighted partial MaxSAT

• All algorithms contribute to the VBS:
◦ Different graph-based partition methods solve different instances

◦ Using the structure of the formula improves the partitioning

• Partitioning idea may be applied to other algorithms and fields!
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Want to try MaxSAT solving?

Try out Open-WBO!

webpage:
http://sat.inesc-id.pt/open-wbo/

contact:
open-wbo@sat.inesc-id.pt

Comments and suggestions are
welcome and will help to improve
Open-WBO!

38
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