The (r)evolution of MaxSAT solving

Ruben Martins

University of Oxford

April 2, 2015
Software Package Upgradeability Problem

<table>
<thead>
<tr>
<th>Package</th>
<th>Dependencies</th>
<th>Conflicts</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>${ p_2 \lor p_3 }$</td>
<td>${ p_4 }$</td>
</tr>
<tr>
<td>p_2</td>
<td>${ p_3 }$</td>
<td>${ }$</td>
</tr>
<tr>
<td>p_3</td>
<td>${ p_2 }$</td>
<td>${ p_4 }$</td>
</tr>
<tr>
<td>p_4</td>
<td>${ p_2 \land p_3 }$</td>
<td>${ }$</td>
</tr>
</tbody>
</table>

- Set of packages we want to install: $\{ p_1, p_2, p_3, p_4 \}$
- Each package p_i has a set of dependencies:
 - Packages that **must be** installed for p_i to be installed
- Each package p_i has a set of conflicts:
 - Packages that **cannot** be installed for p_i to be installed
Solving the Software Package Upgradeability Problem

<table>
<thead>
<tr>
<th>Package</th>
<th>Dependencies</th>
<th>Conflicts</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>${p_2 \lor p_3}$</td>
<td>${p_4}$</td>
</tr>
<tr>
<td>p_2</td>
<td>${p_3}$</td>
<td>${}$</td>
</tr>
<tr>
<td>p_3</td>
<td>${p_2}$</td>
<td>${p_4}$</td>
</tr>
<tr>
<td>p_4</td>
<td>${p_2 \land p_3}$</td>
<td>${}$</td>
</tr>
</tbody>
</table>

Encode the problem to Propositional Satisfiability

- A literal l_i is either a Boolean variable x_i or $\neg x_i$:
- A clause $\omega = \lor_i l_i$:
 - $\omega_1 = (x_1); \omega_2 = (\neg x_1 \lor x_2 \lor x_3); \omega_3 = (\neg x_2 \lor \neg x_3)$
- CNF formula $\varphi = \land_j \omega_j$:
 - $\varphi = (\omega_1 \land \omega_2 \land \omega_3)$
Solving the Software Package Upgradeability Problem

<table>
<thead>
<tr>
<th>Package</th>
<th>Dependencies</th>
<th>Conflicts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1)</td>
<td>({ p_2 \lor p_3 })</td>
<td>({ p_4 })</td>
</tr>
<tr>
<td>(p_2)</td>
<td>({ p_3 })</td>
<td>({ })</td>
</tr>
<tr>
<td>(p_3)</td>
<td>({ p_2 })</td>
<td>({ p_4 })</td>
</tr>
<tr>
<td>(p_4)</td>
<td>({ p_2 \land p_3 })</td>
<td>({ })</td>
</tr>
</tbody>
</table>

Encode the problem to Propositional Satisfiability

- **Encoding dependencies:**
 - \(p_1 \Rightarrow (p_2 \lor p_3) \equiv (\neg p_1 \lor p_2 \lor p_3) \)
 - \(p_2 \Rightarrow p_3 \equiv (\neg p_2 \lor p_3) \)
 - \(p_3 \Rightarrow p_2 \equiv (\neg p_3 \lor p_2) \)
 - \(p_4 \Rightarrow (p_2 \land p_3) \equiv (\neg p_4 \lor p_2) \land (\neg p_4 \lor p_3) \)
Solving the Software Package Upgradeability Problem

<table>
<thead>
<tr>
<th>Package</th>
<th>Dependencies</th>
<th>Conflicts</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>${p_2 \lor p_3}$</td>
<td>${p_4}$</td>
</tr>
<tr>
<td>p_2</td>
<td>${p_3}$</td>
<td>${}$</td>
</tr>
<tr>
<td>p_3</td>
<td>${p_2}$</td>
<td>${p_4}$</td>
</tr>
<tr>
<td>p_4</td>
<td>${p_2 \land p_3}$</td>
<td>${}$</td>
</tr>
</tbody>
</table>

Encode the problem to Propositional Satisfiability

- Encoding conflicts:
 - $p_1 \Rightarrow \neg p_4 \equiv (\neg p_1 \lor \neg p_4)$
 - $p_3 \Rightarrow \neg p_4 \equiv (\neg p_3 \lor \neg p_4)$
Solving the Software Package Upgradeability Problem

<table>
<thead>
<tr>
<th>Package</th>
<th>Dependencies</th>
<th>Conflicts</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>${ p_2 \lor p_3 }$</td>
<td>${ p_4 }$</td>
</tr>
<tr>
<td>p_2</td>
<td>${ p_3 }$</td>
<td>${}$</td>
</tr>
<tr>
<td>p_3</td>
<td>${ p_2 }$</td>
<td>${ p_4 }$</td>
</tr>
<tr>
<td>p_4</td>
<td>${ p_2 \land p_3 }$</td>
<td>${}$</td>
</tr>
</tbody>
</table>

Encode the problem to Propositional Satisfiability

- Encoding installing all packages:
 - $(p_1) \land (p_2) \land (p_3) \land (p_4)$
Solving the Software Package Upgradeability Problem

CNF Formula:

\[\neg p_1 \lor p_2 \lor p_3 \quad \neg p_2 \lor p_3 \quad \neg p_3 \lor p_2\]

\[\neg p_4 \lor p_2 \quad \neg p_4 \lor p_3 \quad \neg p_1 \lor \neg p_4 \quad \neg p_3 \lor \neg p_4\]

\[p_1 \quad p_2 \quad p_3 \quad p_4\]

- Propositional Satisfiability (SAT):
 - Decide if the formula is satisfiable or unsatisfiable
Solving the Software Package Upgradeability Problem

CNF Formula:

\[\neg p_1 \lor p_2 \lor p_3 \lor \neg p_2 \lor p_3 \lor \neg p_3 \lor p_2 \lor \neg p_4 \lor p_2 \lor \neg p_4 \lor p_3 \lor \neg p_4 \lor \neg p_1 \lor \neg p_4 \lor \neg p_3 \lor \neg p_4 \]

- Formula is unsatisfiable
Solving the Software Package Upgradeability Problem

CNF Formula:

\[\neg p_1 \lor p_2 \lor p_3 \lor \neg p_2 \lor p_3 \lor \neg p_3 \lor p_2 \lor \neg p_4 \lor p_2 \lor \neg p_4 \lor p_3 \lor \neg p_4 \lor \neg p_1 \lor \neg p_4 \lor \neg p_3 \lor \neg p_4 \]

- Formula is unsatisfiable
- We cannot install all packages
- How many packages can we install?
What is Maximum Satisfiability?

- **Maximum Satisfiability (MaxSAT):**
 - Optimized version of SAT
 - All clauses in the formula are soft
 - Minimize number of unsatisfied soft clauses
What is Maximum Satisfiability?

• Maximum Satisfiability (MaxSAT):
 ○ Optimized version of SAT
 ○ All clauses in the formula are soft
 ○ Minimize number of unsatisfied soft clauses

• Partial MaxSAT:
 ○ Clauses in the formula are soft or hard
 ○ Hard clauses must be satisfied
 ○ Minimize number of unsatisfied soft clauses

• Weighted Partial MaxSAT:
 ○ Clauses in the formula are soft or hard
 ○ Weights associated with soft clauses
 ○ Minimize sum of weights of unsatisfied soft clauses
Software Package Upgradeability Problem as MaxSAT

Partial MaxSAT Formula:

\(\varphi_h \) (Hard):
\[\neg p_1 \lor p_2 \lor p_3 \quad \neg p_2 \lor p_3 \quad \neg p_3 \lor p_2 \]
\[\neg p_4 \lor p_2 \quad \neg p_4 \lor p_3 \quad \neg p_1 \lor \neg p_4 \quad \neg p_3 \lor \neg p_4 \]

\(\varphi_s \) (Soft):
\[p_1 \quad p_2 \quad p_3 \quad p_4 \]

- Dependencies and conflicts are encoded as hard clauses
- Installation of packages are encoded as soft clauses
- **Goal**: maximize the number of installed packages
Software Package Upgradeability Problem as MaxSAT

Partial MaxSAT Formula:

\(\varphi_h \) (Hard):
- \(\neg p_1 \lor p_2 \lor p_3 \)
- \(\neg p_2 \lor p_3 \)
- \(\neg p_3 \lor p_2 \)
- \(\neg p_4 \lor p_2 \)
- \(\neg p_4 \lor p_3 \)
- \(\neg p_1 \lor \neg p_4 \)
- \(\neg p_3 \lor \neg p_4 \)

\(\varphi_s \) (Soft):
- \(p_1 \)
- \(p_2 \)
- \(p_3 \)
- \(p_4 \)

- Dependencies and conflicts are encoded as hard clauses
- Installation of packages are encoded as soft clauses
- **Optimal solution** (3 out 4 packages are installed):
 - \(\mu = \{ p_1 = 1, p_2 = 1, p_3 = 1, p_4 = 0 \} \)
Why is MaxSAT Important?

- Many real-world applications can be encoded to MaxSAT:
 - Software package upgradeability:
 - Eclipse platform uses MaxSAT for managing the plugins dependencies
 - Error localization in C code
 - Debugging of hardware designs
 - Haplotyping with pedigrees
 - Reasoning over Biological Networks
 - Course timetabling
 - Combinatorial auctions
 - ...

- MaxSAT algorithms are effective for solving real-word problems
The MaxSAT (r)evolution – plain industrial instances

Number x of instances solved in y seconds

CPU time in seconds

Number of instances

Source: [MaxSAT 2014 organizers]
The MaxSAT (r)evolution – plain industrial instances

Number x of instances solved in y seconds

- Open-WBO-In
- pmifumax-13
- WPM1-11
- wbo-1.4a-10
- wbo1.6-cnf-12

CPU time in seconds

Number of instances

Source: [MaxSAT 2014 organizers]

48.1% more instances solved!
The MaxSAT (r)evolution – partial

Number x of instances solved in y seconds

CPU time in seconds

Number of instances

Open-WBO-In
QMaxSAT2-mt-13
QMaxSat-g2-12
QMaxSat0.4-11
QMaxSat-10

Source: [MaxSAT 2014 organizers]
The MaxSAT (r)evolution – partial

Number x of instances solved in y seconds

CPU time in seconds

Number of instances

Open-WBO-In
QMaxSAT2-mt-13
QMaxSat-g2-12
QMaxSat0.4-11
QMaxSat-10

Source: [MaxSAT 2014 organizers]

71.5% more instances solved!
The MaxSAT (r)evolution – weighted partial

Number x of instances solved in y seconds

Eva500a
WPM1-2013
WPM1-11
pwbo2.1-12
wbo-1.4a-wcnf-10

Source: [MaxSAT 2014 organizers]

CPU time in seconds

Number of instances

51.5% more instances solved!
The MaxSAT (r)evolution – weighted partial

Number x of instances solved in y seconds

Source: [MaxSAT 2014 organizers]
Outline

- **MaxSAT Algorithms:**
 - Linear search algorithms
 - Unsatisfiability-based algorithms

- Incremental solving in MaxSAT:
 - Keep the state of the SAT solver between MaxSAT calls

- Partitioning in MaxSAT:
 - Use the structure of the problem to guide the search
Outline

• **MaxSAT Algorithms:**
 ○ Linear search algorithms
 ○ Unsatisfiability-based algorithms

• Incremental solving in MaxSAT:
 ○ Keep the state of the SAT solver between MaxSAT calls

• Partitioning in MaxSAT:
 ○ Use the structure of the problem to guide the search
MaxSAT algorithms

SAT-UNSAT Linear Search algorithm:

- Optimum solution (OPT):
 - Assignment with minimum cost
- Upper Bound (UB) value:
 - Cost greater than or equal to OPT

- SAT-UNSAT Linear search algorithms:
 - Iterative calls to a SAT solver
 - Refine UB value until OPT is found
MaxSAT algorithms

SAT-UNSAT Linear Search algorithm:

- Optimum solution (OPT):
 - Assignment with **minimum** cost

- Upper Bound (UB) value:
 - Cost **greater than or equal** to OPT

- SAT-UNSAT Linear search algorithms:
 - Iterative calls to a SAT solver
 - Refine UB value until OPT is found
MaxSAT algorithms

SAT-UNSAT Linear Search algorithm:

- Optimum solution (OPT):
 - Assignment with *minimum* cost

- Upper Bound (UB) value:
 - Cost *greater than or equal* to OPT

- SAT-UNSAT Linear search algorithms:
 - Iterative calls to a SAT solver
 - Refine UB value until OPT is found
MaxSAT algorithms

SAT-UNSAT Linear Search algorithm:

• Algorithm is **incremental**
 ○ Only **one** SAT solver must be created
 ○ New variables and constraints are added between SAT solver calls
 ○ SAT solver calls are performed on refinements of the previous formula

• In incremental algorithms:
 ○ No need to rebuild the SAT solver between iterations
 ○ Keep all learned clauses
 ○ Keep internal state of the SAT solver between calls
MaxSAT algorithms

Unsatisfiability-based algorithms:

- Lower Bound (LB) value:
 - Cost smaller than or equal to OPT

- Unsatisfiability-based algorithms:
 - Iteratively increase the LB until a satisfiable call is performed
 - Use unsatisfiable subformulas to refine LB value until OPT is found

- These algorithms are not incremental
 - SAT solver is rebuilt at each iteration
MaxSAT algorithms

Unsatisfiability-based algorithms:

- **Lower Bound (LB) value:**
 - Cost *smaller than or equal* to OPT

- **Unsatisfiability-based algorithms:**
 - Iteratively increase the LB until a satisfiable call is performed
 - Use unsatisfiable subformulas to refine LB value until OPT is found

- **These algorithms are not incremental**
 - SAT solver is rebuilt at each iteration
MaxSAT algorithms

Unsatisfiability-based algorithms:

• Lower Bound (LB) value:
 ○ Cost smaller than or equal to OPT

• Unsatisfiability-based algorithms:
 ○ Iteratively increase the LB until a satisfiable call is performed
 ○ Use unsatisfiable subformulas to refine LB value until OPT is found

• These algorithms are not incremental
 ○ SAT solver is rebuilt at each iteration
MaxSAT Algorithms

- MaxSAT algorithms build on SAT solver technology:
 - Unsatisfiable subformulas (or cores)

- MaxSAT algorithms use constraints not defined in causal form:
 - AtMost1 constraints, \(\sum_{j=1}^{n} x_j \leq 1 \)
 - General cardinality constraints, \(\sum_{j=1}^{n} x_j \leq k \)
 - Pseudo-Boolean constraints, \(\sum_{j=1}^{n} a_j x_j \leq k \)

- Efficient encodings to CNF
CNF Encodings

Naive encoding for AtMost1 Constraints:

- $x_1 + x_2 + x_3 \leq 1$:
 - $(\neg x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3)$

- For a general AtMost1 constraint $r_1 + r_2 + \ldots + r_n \leq 1$:
 - For each pair (r_i, r_j) add the clause $(\neg r_i \lor \neg r_j)$

- Complexity: $O(n^2)$ clauses

- More efficient encodings can be used! (PBLib’15)
CNF Encodings

Sequential counters

• AtMost1 constraints:
 ◦ Clauses/Variables: $\mathcal{O}(n)$

• General cardinality constraints:
 ◦ Clauses/Variables: $\mathcal{O}(n^k)$

Sequential weighted counters

• Pseudo-Boolean constraints:
 ◦ Clauses/Variables: $\mathcal{O}(n^k)$
Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

\[\varphi_h \text{ (Hard): } \bar{x}_2 \lor \bar{x}_1 \lor x_2 \lor \bar{x}_3 \]

\[\varphi_s \text{ (Soft): } x_1 \lor x_3 \lor x_2 \lor \bar{x}_1 \lor \bar{x}_3 \lor x_1 \]
Partial MaxSAT Formula:

\(\varphi_h : \bar{x}_2 \lor \bar{x}_1 \lor x_2 \lor \bar{x}_3 \)

\(\varphi_s : \quad x_1 \lor r_1 \lor x_3 \lor r_2 \lor x_2 \lor \bar{x}_1 \lor r_3 \lor \bar{x}_3 \lor x_1 \lor r_4 \)

- Relax all soft clauses
- Relaxation variables:
 - \(V_R = \{ r_1, r_2, r_3, r_4 \} \)
 - If a soft clause \(\omega_i \) is unsatisfied, then \(r_i = 1 \)
 - If a soft clause \(\omega_i \) is satisfied, then \(r_i = 0 \)
Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

$$\varphi_h : \bar{x}_2 \lor \bar{x}_1 \land x_2 \lor \bar{x}_3$$

$$\varphi_s : x_1 \lor r_1 \land x_3 \lor r_2 \land x_2 \lor \bar{x}_1 \lor r_3 \land \bar{x}_3 \lor x_1 \lor r_4$$

$$V_R = \{r_1, r_2, r_3, r_4\}$$

- Formula is satisfiable
 - $$\nu = \{x_1 = 1, x_2 = 0, x_3 = 0, r_1 = 0, r_2 = 1, r_3 = 1, r_4 = 0\}$$

- **Goal:** Minimize the number of relaxation variables assigned to 1
Partial MaxSAT Formula:

\[
\varphi_h : \quad \overline{x}_2 \lor \overline{x}_1 \quad x_2 \lor \overline{x}_3
\]

\[
\varphi_s : \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \overline{x}_1 \lor r_3 \quad \overline{x}_3 \lor x_1 \lor r_4
\]

\[
\mu = 2 \quad V_R = \{r_1, r_2, r_3, r_4\}
\]

- \(r_2\) and \(r_3\) were assigned truth value 1:
 - Current solution unsatisfies 2 soft clauses

- Can less than 2 soft clauses be unsatisfied?
Partial MaxSAT Formula:

\[\varphi_h : \quad \bar{x}_2 \lor \bar{x}_1 \quad x_2 \lor \bar{x}_3 \quad \text{CNF}\left(\sum_{r_i \in V_R} r_i \leq 1\right) \]

\[\varphi_s : \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \bar{x}_1 \lor r_3 \quad \bar{x}_3 \lor x_1 \lor r_4 \]

\[\mu = 2 \quad V_R = \{r_1, r_2, r_3, r_4\} \]

- Add cardinality constraint that excludes solutions that unsatisfies 2 or more soft clauses:
 - CNF\((r_1 + r_2 + r_3 + r_4 \leq 1)\)
Partial MaxSAT Formula:

\[
\varphi_h : \quad \bar{x}_2 \lor \bar{x}_1 \lor x_2 \lor \bar{x}_3 \lor \text{CNF}(\sum_{r_i \in V_R} r_i \leq 1)
\]

\[
\varphi_s : \quad x_1 \lor r_1 \lor x_3 \lor r_2 \lor x_2 \lor \bar{x}_1 \lor r_3 \lor \bar{x}_3 \lor x_1 \lor r_4
\]

\[\mu = 2 \quad V_R = \{r_1, r_2, r_3, r_4\}\]

- Formula is unsatisfiable:
 - There are no solutions that unsatisfy 1 or less soft clauses
Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

\[\varphi_h: \begin{array}{ccc} x_2 \lor \bar{x}_1 & x_2 \lor \bar{x}_3 \end{array} \]

\[\varphi_s: \begin{array}{ccc} x_1 & x_3 & x_2 \lor \bar{x}_1 & \bar{x}_3 \lor x_1 \end{array} \]

\[\mu = 2 \quad V_R = \{r_1, r_2, r_3, r_4\} \]

- **Optimal solution**: given by the last model and corresponds to unsatisfying 2 soft clauses:
 - \[\nu = \{x_1 = 1, x_2 = 0, x_3 = 0\} \]
- The same procedure can be generalized to weighted
Partial MaxSAT Formula:

\[\varphi_h : \quad \bar{x}_2 \lor \bar{x}_1 \quad x_2 \lor \bar{x}_3 \]

\[\varphi_s : \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \bar{x}_1 \lor r_3 \quad \bar{x}_3 \lor x_1 \lor r_4 \]

- Relax all soft clauses

- Relaxation variables:
 - \(V_R = \{ r_1, r_2, r_3, r_4 \} \)
 - If a soft clause \(\omega_i \) is unsatisfied, then \(r_i = 1 \)
 - If a soft clause \(\omega_i \) is satisfied, then \(r_i = 0 \)
Partial MaxSAT Formula:

\[\varphi_h : \overline{x}_2 \lor \overline{x}_1 \lor x_2 \lor \overline{x}_3 \quad \text{CNF}(\sum_{r_i \in V_R} r_i \leq 0) \]

\[\varphi_s : x_1 \lor r_1 \lor x_3 \lor r_2 \lor x_2 \lor \overline{x}_1 \lor r_3 \lor \overline{x}_3 \lor x_1 \lor r_4 \]

\[\mu = 2 \quad V_R = \{r_1, r_2, r_3, r_4\} \]

- Add cardinality constraint that excludes solutions that unsatisfies 1 or more soft clauses:
 - \[\text{CNF}(r_1 + r_2 + r_3 + r_4 \leq 0) \]
Linear Search Algorithms UNSAT-SAT

Partial MaxSAT Formula:

\[\begin{align*}
\varphi_h : & \quad \bar{x}_2 \lor \bar{x}_1 \quad x_2 \lor \bar{x}_3 \quad \text{CNF}(\sum_{r_i \in V_R} r_i \leq 0) \\
\varphi_s : & \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \bar{x}_1 \lor r_3 \quad \bar{x}_3 \lor x_1 \lor r_4
\end{align*} \]

- Formula is unsatisfiable:
 - There are no solutions that unsatisfy 0 or less soft clauses
- Add cardinality constraint that excludes solutions that unsatisfies 2 or more soft clauses:
 - \[\text{CNF}(r_1 + r_2 + r_3 + r_4 \leq 1) \]
Linear Search Algorithms UNSAT-SAT

Partial MaxSAT Formula:

\[\varphi_h : \overline{x}_2 \lor \overline{x}_1 \quad x_2 \lor \overline{x}_3 \quad \text{CNF}(\sum_{r_i \in V_R} r_i \leq 1) \]

\[\varphi_s : \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \overline{x}_1 \lor r_3 \quad \overline{x}_3 \lor x_1 \lor r_4 \]

- Formula is unsatisfiable:
 - There are no solutions that unsatisfy 1 or less soft clauses

- Add cardinality constraint that excludes solutions that unsatisfies 3 or more soft clauses:
 - \(\text{CNF}(r_1 + r_2 + r_3 + r_4 \leq 2) \)
Linear Search Algorithms UNSAT-SAT

Partial MaxSAT Formula:

\[\varphi_h : \bar{x}_2 \lor \bar{x}_1 \lor x_2 \lor \bar{x}_3 \lor \text{CNF}(\sum_{r_i \in V_R} r_i \leq 2) \]

\[\varphi_s : x_1 \lor r_1 \lor x_3 \lor r_2 \lor x_2 \lor \bar{x}_1 \lor r_3 \lor \bar{x}_3 \lor x_1 \lor r_4 \]

- Formula is satisfiable:
 - \(\mu = \{x_1 = 1, x_2 = 0, x_3 = 0, r_1 = 0, r_2 = 1, r_3 = 1, r_4 = 0\} \)

- Optimal solution unsatisfies 2 soft clauses

- The same procedure can be generalized to weighted
Partial MaxSAT Formula:

\begin{align*}
\varphi_h \ (\text{Hard}) & : \bar{x}_2 \lor \bar{x}_1 \lor x_2 \lor \bar{x}_3 \\
\varphi_s \ (\text{Soft}) & : x_1 \lor x_3 \lor x_2 \lor \bar{x}_1 \lor \bar{x}_3 \lor x_1
\end{align*}
Partial MaxSAT Formula:

- Formula is unsatisfiable
Partial MaxSAT Formula:

\[\varphi_h: \] $x_2 \lor \bar{x}_1 \quad x_2 \lor \bar{x}_3$

\[\varphi_s: \] $x_1 \quad x_3 \quad x_2 \lor \bar{x}_1 \quad \bar{x}_3 \lor x_1$

- Formula is unsatisfiable
- Identify an unsatisfiable core
Unsatisfiability-based Algorithms (MSU3: Marques-Silva&Planes’07)

Partial MaxSAT Formula:

\[\varphi_h : \overline{x}_2 \lor \overline{x}_1 \quad x_2 \lor \overline{x}_3 \quad \text{CNF}(r_1 + r_2 \leq 1) \]

\[\varphi_s : x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \overline{x}_1 \quad \overline{x}_3 \lor x_1 \]

- Relax non-relaxed soft clauses in unsatisfiable core:
 - Add cardinality constraint that excludes solutions that unsatisfies 2 or more soft clauses:
 - CNF\((r_1 + r_2 \leq 1)\)
 - Relaxation on demand instead of relaxing all soft clauses eagerly
Unsatisfiability-based Algorithms (MSU3: Marques-Silva&Planes’07)

Partial MaxSAT Formula:

φ_h: $\overline{x}_2 \lor \overline{x}_1$, $x_2 \lor \overline{x}_3$, $\text{CNF}(r_1 + r_2 \leq 1)$

φ_s: $x_1 \lor r_1$, $x_3 \lor r_2$, $x_2 \lor \overline{x}_1$, $\overline{x}_3 \lor x_1$

- Formula is unsatisfiable
Partial MaxSAT Formula:

- φ_h: $\bar{x}_2 \lor \bar{x}_1 \land x_2 \lor \bar{x}_3 \land \text{CNF}(r_1 + r_2 \leq 1)$
- φ_s: $x_1 \lor r_1 \land x_3 \lor r_2 \land x_2 \lor \bar{x}_1 \land \bar{x}_3 \lor x_1$

- Formula is unsatisfiable
- Identify an unsatisfiable core
Unsatisfiability-based Algorithms (MSU3: Marques-Silva&Planes’07)

Partial MaxSAT Formula:

\[\varphi_h: \quad \overline{x}_2 \lor \overline{x}_1 \quad x_2 \lor \overline{x}_3 \]

\[\varphi_s: \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \overline{x}_1 \lor r_3 \quad \overline{x}_3 \lor x_1 \lor r_4 \]

- Relax non-relaxed soft clauses in unsatisfiable core:
 - Add cardinality constraint that excludes solutions that unsatisfies 3 or more soft clauses:
 - \(\text{CNF}(r_1 + r_2 + r_3 + r_4 \leq 2) \)
 - Relaxation on demand instead of relaxing all soft clauses eagerly
Unsatisfiability-based Algorithms (MSU3: Marques-Silva&Planes’07)

Partial MaxSAT Formula:

\[\varphi_h : \bar{x}_2 \lor \bar{x}_1 \quad x_2 \lor \bar{x}_3 \quad \text{CNF}(r_1 + r_2 + r_3 + r_4 \leq 2) \]

\[\varphi_s : \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \bar{x}_1 \lor r_3 \quad \bar{x}_3 \lor x_1 \lor r_4 \]

- Formula is satisfiable:
 - \(\mu = \{x_1 = 1, x_2 = 0, x_3 = 0, r_1 = 0, r_2 = 1, r_3 = 1, r_4 = 0\} \)

- Optimal solution unsatisfies 2 soft clauses

- The same procedure can be generalized to weighted
Unsatisfiability-based Algorithms (Fu & Malik [SAT’06])

Partial MaxSAT Formula:

\[\varphi_h \text{ (Hard): } \bar{x}_2 \lor \bar{x}_1 \lor x_2 \lor \bar{x}_3 \]

\[\varphi_s \text{ (Soft): } x_1 \lor x_3 \lor x_2 \lor \bar{x}_1 \lor \bar{x}_3 \lor x_1 \]
Unsatisfiability-based Algorithms

Partial MaxSAT Formula:

\[\varphi_h : \bar{x}_2 \lor \bar{x}_1 \land x_2 \lor \bar{x}_3 \]

\[\varphi_s : x_1 \land x_3 \land x_2 \lor \bar{x}_1 \lor \bar{x}_3 \lor x_1 \]

- Formula is unsatisfiable
Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

\[\varphi_h: \overline{x}_2 \lor \overline{x}_1 \quad x_2 \lor \overline{x}_3 \]

\[\varphi_s: \quad x_1 \quad x_3 \quad x_2 \lor \overline{x}_1 \quad \overline{x}_3 \lor x_1 \]

- Formula is unsatisfiable
- Identify an unsatisfiable core
Unsatisfiability-based Algorithms

(Fu & Malik [SAT’06])

Partial MaxSAT Formula:

\(\varphi_h: \bar{x}_2 \lor \bar{x}_1 \lor x_2 \lor \bar{x}_3 \)

\(\varphi_s: x_1 \lor r_1 \lor x_3 \lor r_2 \lor x_2 \lor \bar{x}_1 \lor \bar{x}_3 \lor x_1 \)

- Relax unsatisfiable core:
 - Add relaxation variables
 - Add AtMost1 constraint
Partial MaxSAT Formula:

\[\varphi_h: \quad \bar{x}_2 \lor \bar{x}_1 \quad x_2 \lor \bar{x}_3 \quad \text{CNF}(r_1 + r_2 \leq 1) \]

\[\varphi_s: \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \bar{x}_1 \quad \bar{x}_3 \lor x_1 \]

- Formula is unsatisfiable
Unsatisfiability-based Algorithms (Fu & Malik [SAT’06])

Partial MaxSAT Formula:

\[\varphi_h: \overline{x}_2 \lor \overline{x}_1 \quad \overline{x}_2 \lor \overline{x}_3 \quad \text{CNF}(r_1 + r_2 \leq 1) \]

\[\varphi_s: \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \overline{x}_1 \quad \overline{x}_3 \lor x_1 \]

- Formula is unsatisfiable
- Identify an unsatisfiable core
Unsatisfiability-based Algorithms (Fu & Malik [SAT’06])

Partial MaxSAT Formula:

\[\varphi_h : \bar{x}_2 \lor \bar{x}_1 \quad x_2 \lor \bar{x}_3 \quad \text{CNF}(r_1 + r_2 \leq 1) \quad \text{CNF}(r_3 + \ldots + r_6 \leq 1) \]

\[\varphi_s : x_1 \lor r_1 \lor r_3 \quad x_3 \lor r_2 \lor r_4 \quad x_2 \lor \bar{x}_1 \lor r_5 \quad \bar{x}_3 \lor x_1 \lor r_6 \]

- Relax unsatisfiable core:
 - Add relaxation variables
 - Add AtMost1 constraint

- Soft clauses may be relaxed multiple times
Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

\[
\varphi_h: \quad \overline{x}_2 \lor \overline{x}_1 \quad x_2 \lor \overline{x}_3 \quad \text{CNF}(r_1 + r_2 \leq 1) \quad \text{CNF}(r_3 + \ldots + r_6 \leq 1)
\]

\[
\varphi_s: \quad x_1 \lor r_1 \lor r_3 \quad x_3 \lor r_2 \lor r_4 \quad x_2 \lor \overline{x}_1 \lor r_5 \quad \overline{x}_3 \lor x_1 \lor r_6
\]

- Formula is satisfiable
- An optimal solution would be:
 - \(\nu = \{x_1 = 1, x_2 = 0, x_3 = 0\} \)
Partial MaxSAT Formula:

\[\varphi_h : \bar{x}_2 \lor \bar{x}_1 \lor x_2 \lor \bar{x}_3 \]

\[\varphi_s : x_1 \land x_3 \land x_2 \lor \bar{x}_1 \land \bar{x}_3 \lor x_1 \]

- Formula is satisfiable
- An optimal solution would be:
 - \(\nu = \{x_1 = 1, x_2 = 0, x_3 = 0\} \)
- This assignment unsatisfies 2 soft clauses
Unsatisfiability-based Algorithms \hfill (Fu & Malik [SAT’06])

Partial MaxSAT Formula:

\[\varphi_h : \overline{x}_2 \lor \overline{x}_1 \lor x_2 \lor \overline{x}_3 \]

\[\varphi_s : x_1 \lor x_3 \lor x_2 \lor \overline{x}_1 \lor \overline{x}_3 \lor x_1 \]

- Formula is satisfiable
- An optimal solution would be:
 - \(\nu = \{x_1 = 1, x_2 = 0, x_3 = 0\} \)
- This assignment unsatisfies 2 soft clauses
- How can this procedure be generalized to weighted? \hfill (Manquinho et al. [SAT’09])
Unsatisfiability-based Algorithms
(Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

\[\varphi_h \text{ (Hard): } \overline{x}_2 \lor \overline{x}_1 \lor x_2 \lor \overline{x}_3 \]

\[\varphi_s \text{ (Soft): } (x_1, 2) \lor (x_3, 3) \lor (x_2 \lor \overline{x}_1, 1) \lor (\overline{x}_3 \lor x_1, 1) \]
Unsatisfiability-based Algorithms
(Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

\[\varphi_h \text{ (Hard): } \bar{x}_2 \lor \bar{x}_1 \quad x_2 \lor \bar{x}_3 \]

\[\varphi_s \text{ (Soft): } (x_1, 2) \quad (x_3, 3) \quad (x_2 \lor \bar{x}_1, 1) \quad (\bar{x}_3 \lor x_1, 1) \]

- Naive approach:
 - For each soft clause \((\omega, w)\) create \(w\) copies of weight 1
 - **Problem**: Does not scale when the size of the weights increase
Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

\[\varphi_h \text{ (Hard): } \overline{x_2} \lor \overline{x_1} \quad x_2 \lor \overline{x_3} \]

\[\varphi_s \text{ (Soft): } (x_1, 2) \quad (x_3, 3) \quad (x_2 \lor \overline{x_1}, 1) \quad (\overline{x_3} \lor x_1, 1) \]

- **Solution:**
 - Create copies only when needed
 - Use the weight of the unsatisfiable core to split the soft clauses
Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

\[\varphi_h : \bar{x}_2 \lor \bar{x}_1 \lor x_2 \lor \bar{x}_3 \]
\[\varphi_s : (x_1, 2) \quad (x_3, 3) \quad (x_2 \lor \bar{x}_1, 1) \quad (\bar{x}_3 \lor x_1, 1) \]

- Formula is unsatisfiable
Unsatisfiability-based Algorithms
(Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

\[\phi_h : \quad \overline{x}_2 \lor \overline{x}_1 \quad x_2 \lor \overline{x}_3 \]

\[\phi_s : \quad (x_1, 2) \quad (x_3, 3) \quad (x_2 \lor \overline{x}_1, 1) \quad (\overline{x}_3 \lor x_1, 1) \]

- Formula is unsatisfiable
- Identify an unsatisfiable core
Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

\[\varphi_h : \quad \overline{x}_2 \lor \overline{x}_1 \quad x_2 \lor
\overline{x}_3 \]

\[\varphi_s : \quad (x_1 \lor r_1, 2) \quad (x_3, 1) \quad (x_2 \lor \overline{x}_1, 1) \quad (\overline{x}_3 \lor x_1, 1) \quad (x_3, 2) \]

- Core weight \((c_w)\): 2 (smallest weight of the soft clauses in the core)
- Split soft clauses with weight larger than the core weight:
 - \((\omega, w) \rightarrow (\omega, w - c_w) \land (\omega, c_w)\)
Unsatisfiability-based Algorithms
(Manquinho et al. [SAT'09])

Weighted Partial MaxSAT Formula:

\[\varphi_h : \bar{x}_2 \lor \bar{x}_1 \land x_2 \lor \bar{x}_3 \]

\[\varphi_s : (x_1 \lor r_1, 2) \land (x_3, 1) \land (x_2 \lor \bar{x}_1, 1) \land (\bar{x}_3 \lor x_1, 1) \land \text{CNF} (r_1 + r_2 \leq 1) \]

- Core weight \((c_w)\): 2 (smallest weight soft clauses in the core)
- Split soft clauses with weight larger than the core weight:
 - \((\omega, w) \rightarrow (\omega, w - c_w) \land (\omega, c_w)\)
- Relax soft clauses with weight equal to \(c_w\), add AtMost1 constraint
Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

\[\varphi_h : \bar{x}_2 \lor \bar{x}_1 \quad x_2 \lor \bar{x}_3 \quad \text{CNF}(r_1 + r_2 \leq 1) \]

\[\varphi_s : (x_1 \lor r_1, 2) \quad (x_3, 1) \quad (x_2 \lor \bar{x}_1, 1) \quad (\bar{x}_3 \lor x_1, 1) \]

\[(x_3 \lor r_2, 2) \]

- Formula is unsatisfiable
Unsatisfiability-based Algorithms
(Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

\[\varphi_h : \bar{x}_2 \lor \bar{x}_1 \quad x_2 \lor \bar{x}_3 \]
\[\varphi_s : (x_1 \lor r_1, 2) \quad (x_3, 1) \]
\[(x_3 \lor r_2, 2) \]

CNF\((r_1 + r_2 \leq 1)\)

- Formula is unsatisfiable
- Identify unsatisfiable core
Unsatisfiability-based Algorithms (Manquinho et al. [SAT’09])

Weighted Partial MaxSAT Formula:

\[\varphi_h : \quad \bar{x}_2 \lor \bar{x}_1 \quad x_2 \lor \bar{x}_3 \quad \text{CNF}(r_1 + r_2 \leq 1) \]

\[\varphi_s : \quad (x_1 \lor r_1, 2) \quad (x_3 \lor r_3, 1) \quad (x_2 \lor \bar{x}_1, 1) \quad \text{CNF}(r_3 + r_4 \leq 1) \quad (\bar{x}_3 \lor x_1 \lor r_4, 1) \]

- Formula is unsatisfiable
- Identify unsatisfiable core
- Relax unsatisfiable core
Weighted Partial MaxSAT Formula:

\[
\varphi_h : \quad \bar{x}_2 \lor \bar{x}_1 \quad x_2 \lor \bar{x}_3 \quad \text{CNF}(r_1 + r_2 \leq 1) \quad \text{CNF}(r_3 + r_4 \leq 1)
\]

\[
\varphi_s : \quad (x_1 \lor r_1, 2) \quad (x_3 \lor r_3, 1) \quad (x_2 \lor \bar{x}_1, 1) \quad (\bar{x}_3 \lor x_1 \lor r_4, 1)
\]

\[
(x_3 \lor r_2, 2)
\]

- Formula is satisfiable
 - \(\nu = \{x_1 = 0, x_2 = 1, x_3 = 1, r_1 = 1, r_2 = 0, r_3 = 0, r_4 = 1\} \)
- **Optimal cost**: 3
Outline

- MaxSAT Algorithms:
 - Linear search algorithms
 - Unsatisfiability-based algorithms

- Incremental solving in MaxSAT:
 - Keep the state of the SAT solver between MaxSAT calls

- Partitioning in MaxSAT:
 - Use the structure of the problem to guide the search
Incremental MaxSAT algorithms

- Non-incremental algorithms
 - Working formula is rebuilt at each SAT solver call
 - MaxSAT algorithms need to update constraints between calls to the SAT solver
 - For soundness reasons, SAT solvers only allow to add new variables and new constraints
Incremental MaxSAT algorithms

- Non-incremental algorithms
 - Working formula is rebuilt at each SAT solver call
 - MaxSAT algorithms need to update constraints between calls to the SAT solver
 - For soundness reasons, SAT solvers only allow to add new variables and new constraints

- **Goal:** Make Unsatisfiability-based algorithms incremental
Incremental MaxSAT algorithms

Martins et al. [CP’14]

- SAT solver calls allow to specify **assumptions**:
 - Assumptions are literals that are set to true in the returned model
 - Assumptions can be changed between calls to the SAT solver
 - Soundness of the solver is maintained

- **Iterative encoding** for cardinality constraints:
 - Grow the encoding as needed
 - Adds new relaxation variables to encoding only when necessary
 - Use assumptions to fix the value of k for the current iteration
Iterative Encoding - Totalizer Encoding
Martins et al. [CP’14]

\[
\begin{align*}
(A : a_1, a_2 : 2) & \\
\quad & \leftarrow (B : b_1, b_2 : 2) \quad \leftarrow (C : c_1, c_2 : 2) \\
\quad \leftarrow (D : l_1 : 1) \quad \leftarrow (E : l_2 : 1) \\
\quad \quad \quad \quad & \leftarrow (G : l_3 : 1) \quad \leftarrow (F : f_1, f_2 : 2) \\
\quad \quad \quad \quad \leftarrow (H : l_4 : 1) & \leftarrow (I : l_5 : 1)
\end{align*}
\]

- Encoding of \(l_1 + l_2 + l_3 + l_4 + l_5 \leq 1 \)
Iterative Encoding - Totalizer Encoding

Martins et al. [CP’14]

\[(A : a_1, a_2 : 2)\]

\[(B : b_1, b_2 : 2)\] \hspace{1cm} \[(C : c_1, c_2 : 2)\]

\[(D : l_1 : 1)\] \hspace{1cm} \[(E : l_2 : 1)\] \hspace{1cm} \[(F : f_1, f_2 : 2)\]

\[(G : l_3 : 1)\] \hspace{1cm} \[(H : l_4 : 1)\] \hspace{1cm} \[(I : l_5 : 1)\]

- Encoding of \(l_1 + l_2 + l_3 + l_4 + l_5 \leq 1\)
- Change it to \(l_1 + l_2 + l_3 + l_4 + l_5 + l_7 + l_8 \leq 3\)
 - Add two more literals \((l_7\) and \(l_8))\) to the left-hand side
 - Increase the right-hand side by 2
Iterative Encoding - Totalizer Encoding

Martins et al. [CP’14]

• Encoding of $l_1 + l_2 + l_3 + l_4 + l_5 \leq 1$

• Change it to $l_1 + l_2 + l_3 + l_4 + l_5 + l_7 + l_8 \leq 3$
 ○ Add two more literals (l_7 and l_8) to the left-hand side
 ○ Increase the right-hand side by 2

• Extend the representation
Iterative Encoding - Totalizer Encoding

Martins et al. [CP’14]

- Encoding of \(l_1 + l_2 + l_3 + l_4 + l_5 \leq 1 \)
- Change it to \(l_1 + l_2 + l_3 + l_4 + l_5 + \boxed{l_7 + l_8} \leq 3 \)
 - Add two more literals (\(l_7 \) and \(l_8 \)) to the left-hand side
 - Increase the right-hand side by 2
- Extend the representation
Experimental Results

- **Open-WBO:**
 - http://sat.inesc-id.pt/open-wbo/
 - Open-source MaxSAT solver
 - Non-incremental MSU3 and incremental MSU3

- Benchmarks: unweighted (55) and partial (568) MaxSAT instances from the industrial category of the MaxSAT Evaluation 2014
- AMD Opteron 6272 processors (2.3 GHz) running Fedora Core 18;
- Timeout: 1,800 seconds
Experimental Results

- Non-incremental vs. Incremental MSU3
Experimental Results

- Running times of state-of-the-art MaxSAT solvers
Incremental MaxSAT Solving

- Iterative encoding can be used in other more sophisticated MaxSAT algorithms
- Experimental results clearly show the effectiveness of using incrementality
- Due to incrementality, Open-WBO won the best solver award for unweighted and partial MaxSAT at the MaxSAT Evaluation 2014
Outline

• MaxSAT Algorithms:
 ◦ Linear search algorithms
 ◦ Unsatifiability-based algorithms

• Incremental solving in MaxSAT:
 ◦ Keep the state of the SAT solver between MaxSAT calls

• Partitioning in MaxSAT:
 ◦ Use the structure of the problem to guide the search
Partitioning in MaxSAT

• Unsatisfiability-based algorithms are very effective on industrial benchmarks

• However, performance is related with the unsatisfiable cores given by the SAT solver:
 ○ Some unsatisfiable cores may be unnecessarily large
 ○ **Solution:** Partition the soft clauses
Partitioning in MaxSAT

(1) Partition the soft clauses

\[\gamma_1 \quad \gamma_2 \quad \gamma_3 \]
Partitioning in MaxSAT

(1) Partition the soft clauses

(2) Add a new partition to the formula

\[\gamma_1 \quad \gamma_2 \quad \gamma_3 \]
Partitioning in MaxSAT

1. Partition the soft clauses
2. Add a new partition to the formula
3. While the formula is unsatisfiable:
 - Relax unsatisfiable core
Partitioning in MaxSAT

(1) Partition the soft clauses
(2) Add a new partition to the formula
(3) While the formula is unsatisfiable:
 ○ Relax unsatisfiable core
(4) The formula is satisfiable:
 ○ If there are no more partitions:
 ▶ Optimum found
 ○ Otherwise, go back to 2
Partitioning in MaxSAT

(1) Partition the soft clauses
(2) Add a new partition to the formula
(3) While the formula is unsatisfiable:
 ◦ Relax unsatisfiable core
(4) The formula is satisfiable:
 ◦ If there are no more partitions:
 ▶ Optimum found
 ◦ Otherwise, go back to 2
(1) Partition the soft clauses
(2) Add a new partition to the formula
(3) While the formula is unsatisfiable:
 - Relax unsatisfiable core
(4) The formula is satisfiable:
 - If there are no more partitions:
 - Optimum found
 - Otherwise, go back to 2
Partitioning in MaxSAT

(1) Partition the soft clauses

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
 ○ Relax unsatisfiable core

(4) The formula is satisfiable:
 ○ If there are no more partitions:
 ▷ Optimum found
 ○ Otherwise, go back to 2
Partitioning in MaxSAT

(1) Partition the soft clauses
(2) Add a new partition to the formula
(3) While the formula is unsatisfiable:
 - Relax unsatisfiable core
(4) The formula is satisfiable:
 - If there are no more partitions:
 - Optimum found
 - Otherwise, go back to 2
Partitioning in MaxSAT

(1) Partition the soft clauses
(2) Add a new partition to the formula
(3) While the formula is unsatisfiable:
 ○ Relax unsatisfiable core
(4) The formula is satisfiable:
 ○ If there are no more partitions:
 ▶ Optimum found
 ○ Otherwise, go back to 2
Partitioning in MaxSAT

(1) Partition the soft clauses
(2) Add a new partition to the formula
(3) While the formula is unsatisfiable:
 ○ Relax unsatisfiable core
(4) The formula is satisfiable:
 ○ If there are no more partitions:
 ▶ **Optimum found**
 ○ Otherwise, go back to 2
How to partition the soft clauses?

Use the structure of the problem to guide the search:

- **Weighted partial MaxSAT:**
 - Weight-based partitioning

- **Partial MaxSAT:**
 - All soft clauses have weight 1
 - Graph-based partitioning:
 - Hypergraph
 - Variable Incidence Graph
 - Clause-Variable Incidence Graph

Martins et al. [ECAI’12]
Martins et al. [SAT’13]
Exploiting the community structure!

SATGraf — https://bitbucket.org/znewsham/satgraf

(normalized-f20c10b_001_area_delay.wcnf)
Experimental Results (Partial MaxSAT)

• Benchmarks:
 ◦ 504 industrial partial MaxSAT instances

• Solvers:
 ◦ WBO
 ◦ rdm (Random partitioning – 16 partitions)
 ◦ hyp (Hypergraph partitioning – 16 partitions)
 ◦ VIG (Community partitioning – Variable Incidence Graph)
 ◦ CVIG (Community partitioning – Clause-Variable Incidence Graph)
 ◦ VBS (Virtual Best Solver)
Experimental Results (Partial MaxSAT)

- Running times of solvers for industrial partial MaxSAT instances
Experimental Results (Weighted Partial MaxSAT)

- **Benchmarks:**
 - 598 weighted partial MaxSAT instances

- **Solvers:**
 - *wbo*
 - *weight* (Weight-based partitioning)
 - *rdm* (Random partitioning – 16 partitions)
 - *hyp* (Hypergraph partitioning – 16 partitions)
 - *vig* (Community partitioning – Variable Incidence Graph)
 - *cvig* (Community partitioning – Clause-Variable Incidence Graph)
 - *vbs* (Virtual Best Solver)
Experimental Results (Weighted Partial MaxSAT)

- Running times of solvers for weighted partial MaxSAT instances
Partitioning in MaxSAT

- Partitioning approaches outperform WBO on most instances:
 - Finds smaller unsatisfiable cores

- Weight-based partitioning is the best for weighted partial MaxSAT

- All algorithms contribute to the VBS:
 - Different graph-based partition methods solve different instances
 - Using the structure of the formula improves the partitioning

- Partitioning idea may be applied to other algorithms and fields!
Want to try MaxSAT solving?

Try out Open-WBO!

webpage: http://sat.inesc-id.pt/open-wbo/

contact: open-wbo@sat.inesc-id.pt

Comments and suggestions are welcome and will help to improve Open-WBO!
MaxSAT algorithms:

References

Cardinality and Pseudo-Boolean Encodings:

Web pages of interest:

MaxSAT Evaluation: http://www.maxsat.udl.cat/
Open-WBO: http://sat.inesc-id.pt/open-wbo/