The (r)evolution of MaxSAT solving

Ruben Martins

University of Oxford

UNIVERSITY OF

OXFORD

April 2, 2015

Software Package Upgradeability Problem

Package Dependencies Conflicts
p1 {p2V p3} {pa}

p2 {ps} {}

P3 {p2} {pa}

P4 {p2 A p3} {}

e Set of packages we want to install: {p1, p2, p3, pa}
e Each package p; has a set of dependencies:
o Packages that must be installed for p; to be installed

e Each package p; has a set of conflicts:

o Packages that cannot be installed for p; to be installed

-
Solving the Software Package Upgradeability Problem

Package Dependencies Conflicts

p1 {p2V p3} {pa}
P2 {p3} {}
P3 {p2} {pa}
P4 {p2 A p3} {}

Encode the problem to Propositional Satisfiability
e A literal /; is either a Boolean variable x; or —x;:
e Aclause w =\, /;:

0wy =(q)wr=("x1VxeVx3)ws=("xV-x3)
e CNF formula ¢ = A; w;:

o = (w1 Awa Aws)

-
Solving the Software Package Upgradeability Problem

Package

Dependencies

Conflicts

P1
P2
P3
P4

{p2V ps}
{p3}
{p2}
{p2 A p3}

{pa}
{}
{pa}
{}

Encode the problem to Propositional Satisfiability

¢ Encoding dependencies:

[¢]

O
]
]

pr= (p2Vp3)=(—p1Vp2Vp3)

p2 = p3 = (=p2 V p3)
p3s = p2 = (=p3 V p2)
ps = (P2 A p3) = (=paV p2) A(=paV p3)

-
Solving the Software Package Upgradeability Problem

Package

Dependencies

Conflicts

P1
P2
P3
P4

{p2V ps}
{p3}
{p2}
{p2 A p3}

{pa}
{}
{pa}
{}

Encode the problem to Propositional Satisfiability

¢ Encoding conflicts:

o p1 = —ps = (—p1V ps)
© p3= ps = (—p3V —ps)

Solving the Software Package Upgradeability Problem

Package Dependencies Conflicts

p1 {p2V p3} {pa}
P2 {p3} {}
P3 {p2} {pa}
P4 {p2 A p3} {}

Encode the problem to Propositional Satisfiability
e Encoding installing all packages:
o (p1) A(p2) A(p3) A (pa)

-
Solving the Software Package Upgradeability Problem

CNF Formula:

“p1Vp2Vps p2Vp3 —p3V p2
—psV p2 “paVp3 p1Vops p3V pa

p1 p2 p3 P4

e Propositional Satisfiability (SAT):
o Decide if the formula is satisfiable or unsatisfiable

-
Solving the Software Package Upgradeability Problem

CNF Formula:

e Formula is unsatisfiable

-
Solving the Software Package Upgradeability Problem

CNF Formula:

“p1Vp2Vps —p2Vps p3Vp2
—ps V p2 “paVp3 p1Vops —p3Vps

P1 p2 p3 P4

e Formula is unsatisfiable
e \We cannot install all packages

e How many packages can we install?

What is Maximum Satisfiability?

e Maximum Satisfiability (MaxSAT):
o Optimized version of SAT
o All clauses in the formula are soft
o Minimize number of unsatisfied soft clauses

What is Maximum Satisfiability?

e Maximum Satisfiability (MaxSAT):
o Optimized version of SAT
o All clauses in the formula are soft
o Minimize number of unsatisfied soft clauses

e Partial MaxSAT:
o Clauses in the formula are soft or hard
o Hard clauses must be satisfied
o Minimize number of unsatisfied soft clauses

e Weighted Partial MaxSAT:
o Clauses in the formula are soft or hard
o Weights associated with soft clauses
o Minimize sum of weights of unsatisfied soft clauses

-
Software Package Upgradeability Problem as MaxSAT

Partial MaxSAT Formula:

@on (Hard): —p1VpaVps —p2Vps —-p3Vp
—paV p2 “paVp3 —p1Vops p3V pa
@s (Soft): p1 p2 p3 Pa
e Dependencies and conflicts are encoded as hard clauses

e Installation of packages are encoded as soft clauses

e Goal: maximize the number of installed packages

-
Software Package Upgradeability Problem as MaxSAT

Partial MaxSAT Formula:

¢p (Hard): =p1VpaVps —-ppVps —p3Vpo
—ps V p2 “paVp3 p1Vops —p3Vops

ps (Soft): p1 p2 p3 P4

e Dependencies and conflicts are encoded as hard clauses

e Installation of packages are encoded as soft clauses

e Optimal solution (3 out 4 packages are installed):
opu={pm=1,p=1,p3=1,ps =0}

-
Why is MaxSAT Important?

e Many real-world applications can be encoded to MaxSAT:

o Software package upgradeability:

e Eclipse platform uses MaxSAT for managing the plugins dependencies
Error localization in C code

Debugging of hardware designs

Haplotyping with pedigrees

Reasoning over Biological Networks

Course timetabling

Combinatorial auctions

O O O O O O O

e MaxSAT algorithms are effective for solving real-word problems

The MaxSAT (r)evolution — plain industrial instances

Number x of instances solved in y seconds

300 ‘ ‘ ‘ ‘
Open-WBO-In —— X
pmifumax-13 4
L WPM1-11 oo

250 wbo-1.4a-10 o
» wbo1.6-cnf-12
2
S 200
[&]
(0]
(2]
£ 150
(0] 8
£ ¥
Z 100 ¢
o ;

*** a
50 | Bt
¥
0 PR B R E ol ! !
0 5 10 15 20 25 30 35 40

Number of instances
Source: [MaxSAT 2014 organizers]

The MaxSAT (r)evolution — plain industrial instances

Number x of instances solved in y seconds

300

Open-WBO-In —+— x
pmifumax-13 &
I WPM1-11 e = ¥
=22 wbo-1.4a-10 - Bg
) wbo1.6-cnf-12
ke %
S 200 f .-
7] i
£ 150 |
(0] ,‘
£ *
2 100 f
S ;
*¥ 0
50 Bl
0 TR BB B R I $EY
0 5 10 15 20 25 30 35 40
Number of instances 48.1% more
Source: [MaxSAT 2014 organizers] instances solved!

8

The MaxSAT (r)evolution — partial

Number x of instances solved in y seconds

300

dpen-WBO-In —
QMaxSAT2-mt-13 i
L QMaxSat-g2-12 -
20 1 OMaxSat0.4-11 o £
QMaxSat-10 ﬁ
&
8

200

150

100

CPU time in seconds

50

0 50 100 150 200 250 300 350 400
Number of instances

Source: [MaxSAT 2014 organizers]

-
The MaxSAT (r)evolution — partial

Number x of instances solved in y seconds

300 ‘ ‘ ‘ o 3
Open-WBO-In —— *
QMaxSAT2-mt-13 B ¥
L QMaxSat-g2-12 - ¥ i
20 I QMaxSat0.4-11 = g]
- QMaxSat-10 B f
[/
5
150 g ; .

100

CPU time in seconds

50

O 50 100 150 200 250 300 350 . 400
Number of instances 71.5% more

Source: [MaxSAT 2014 organizers| instances solved!

The MaxSAT (r)evolution — weighted partial

Number x of instances solved in y seconds

300 ; ;
Eva500a —— M
WPM1-2013 ¥
L WPM1-11 %o
250 pwbo2.1-12 & 5
o wbo-1.4a-wenf-10 g
2 200 ¥
8 ¥
3 £
£ 150
[0]
£
2 100
(@]
50
0

0 50 100 150 200 250 300 350
Number of instances

Source: [MaxSAT 2014 organizers]
10

The MaxSAT (r)evolution — weighted partial

Number x of instances solved in y seconds

300 ‘ : .
Eva500a —— *
WPM1-2013 ;i
50 |- WPM1-11 e I
pwbo2.1-12 & @
7 wbo-1.4a-wenf-10 g
S 200} & g
3 ¥
[0
(2]
£ 150 .
[0
£
2 100 1
o
50 E
0 wul Il
0 50 100 150 200 250 300 350
Number of instances 51.5% more

Source: [MaxSAT 2014 organizers] instances solved!

10

e
Outline

e MaxSAT Algorithms:

o Linear search algorithms
o Unsatisfiability-based algorithms

¢ Incremental solving in MaxSAT:
o Keep the state of the SAT solver between MaxSAT calls

e Partitioning in MaxSAT:

o Use the structure of the problem to guide the search

11

e
Outline

e MaxSAT Algorithms:

o Linear search algorithms
o Unsatisfiability-based algorithms

11

-
MaxSAT algorithms

SAT-UNSAT Linear Search algorithm:

OPT

I | |
i T 1

e Optimum solution (OPT):
o Assignment with minimum cost

e Upper Bound (UB) value:
o Cost greater than or equal to OPT

e SAT-UNSAT Linear search algorithms:

o lterative calls to a SAT solver
o Refine UB value until OPT is found

12

-
MaxSAT algorithms

SAT-UNSAT Linear Search algorithm:

e Optimum solution (OPT):
o Assignment with minimum cost

e Upper Bound (UB) value:
o Cost greater than or equal to OPT

e SAT-UNSAT Linear search algorithms:

o lterative calls to a SAT solver
o Refine UB value until OPT is found

12

-
MaxSAT algorithms

SAT-UNSAT Linear Search algorithm:

OPT

I | |
i T 1

UB

e Optimum solution (OPT):
o Assignment with minimum cost

e Upper Bound (UB) value:
o Cost greater than or equal to OPT

e SAT-UNSAT Linear search algorithms:

o lterative calls to a SAT solver
o Refine UB value until OPT is found

12

-
MaxSAT algorithms

SAT-UNSAT Linear Search algorithm:

e Algorithm is incremental

o Only one SAT solver must be created
o New variables and constraints are added between SAT solver calls
o SAT solver calls are performed on refinements of the previous formula

e In incremental algorithms:

o No need to rebuild the SAT solver between iterations
o Keep all learned clauses
o Keep internal state of the SAT solver between calls

13

-
MaxSAT algorithms

Unsatisfiability-based algorithms:

OPT

e Lower Bound (LB) value:
o Cost smaller than or equal to OPT

e Unsatisfiability-based algorithms:

o lteratively increase the LB until a satisfiable call is performed
o Use unsatisfiable subformulas to refine LB value until OPT is found

e These algorithms are not incremental
o SAT solver is rebuilt at each iteration

14

-
MaxSAT algorithms

Unsatisfiability-based algorithms:

e Lower Bound (LB) value:
o Cost smaller than or equal to OPT

e Unsatisfiability-based algorithms:

o lteratively increase the LB until a satisfiable call is performed
o Use unsatisfiable subformulas to refine LB value until OPT is found

e These algorithms are not incremental
o SAT solver is rebuilt at each iteration

14

-
MaxSAT algorithms

Unsatisfiability-based algorithms:

OPT

I | |
i T 1

LB

e Lower Bound (LB) value:
o Cost smaller than or equal to OPT

e Unsatisfiability-based algorithms:

o lteratively increase the LB until a satisfiable call is performed
o Use unsatisfiable subformulas to refine LB value until OPT is found

e These algorithms are not incremental
o SAT solver is rebuilt at each iteration

14

MaxSAT Algorithms

e MaxSAT algorithms build on SAT solver technology:
o Unsatisfiable subformulas (or cores)

e MaxSAT algorithms use constraints not defined in causal form:
n
. -
o AtMostl constraints, Zj:1XJ <1

n
o General cardinality constraints, Z X < k
=

n
o Pseudo-Boolean constraints, g] 1ajxj < k
=

e Efficient encodings to CNF

15

CNF Encodings

Naive encoding for AtMost1 Constraints:

® x|+ x4+ x3 <1:
o (ﬁXl \ ﬁXz) VAN (ﬁXl V ﬁX3) A (ﬁXz V ﬁX3)

e For a general AtMostl constraint 1 +rn+...4+r, < 1:
o For each pair (r;, rj) add the clause (—r; V —rj)

o Complexity: O(n?) clauses

e More efficient encodings can be used! (PBLib'15)

16

-
CNF Encodings

Sequential counters (Sinz [CP'05])

e AtMostl constraints:
o Clauses/Variables: O(n)

e General cardinality constraints:
o Clauses/Variables: O(n k)

Sequential weighted counters (Halldobler et al. [KI'12])

o Pseudo-Boolean constraints:
o Clauses/Variables: O(n k)

16

-
Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

©h (Hard): Xo V X1 Xo V X3

vs (Soft): X1 X3 VX1 X3Vxi

17

-
Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

©h - Xo V X1 Xo V X3
Ps - X1\/- X3\/- XQ\/)_(l\/-)_<3\/X1\/-

e Relax all soft clauses

o Relaxation variables:

o VR - {rlv r, r3, r4}
o If a soft clause w; is unsatisfied, then r; =1
o If a soft clause w; is satisfied, then r, =0

17

-
Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

©h - X2 V X1 X2 V X3

Ps - x1Vn x3V xXo VX1V r3 X3V x1Vnr

Vg ={r,rn,n,n}

e Formula is satisfiable

ocv={x=1%=0,x=0n=0n=1rn=1rn=0}

e Goal: Minimize the number of relaxation variables assigned to 1

17

-
Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

©h - X2 V X1 X2 V X3

Ps - x1Vn x3V xXo VX1V r3 X3V x1Vnr

p=2 Vr=A{n,n,nmn}

e 1 and r3 were assigned truth value 1:
o Current solution unsatisfies 2 soft clauses

e Can less than 2 soft clauses be unsatisfied?

17

-
Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:
©h - x> V X1 Xo V X3 CNF(Zr,-GVR ri <].)

Ps - x1Vn x3V xXoVXx1Vr3 x3Vx1Vn

p=2 Ver=A{n,n,n,mn}

e Add cardinality constraint that excludes solutions that unsatisfies 2
or more soft clauses:

o CNF(I’1+I’2+I’3+I’4 S 1)

17

-
Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

©h - x> V X1 X V X3 CNF(Zr;GVR r < 1)

Ps - x1Vn x3V x2VX1Vnr xX3Vx1Vn

;u:2 VR:{r17r2ar3,r4}

e Formula is unsatisfiable:
o There are no solutions that unsatisfy 1 or less soft clauses

17

-
Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

Ph: X2 V X1 X2 V X3

Ps: X1 X3 X2 V X1 X3 V X1

p=2 Vr=A{n,n,nmn}

e Optimal solution: given by the last model and corresponds to
unsatisfying 2 soft clauses:

ov={xa=1x=0x=0}

e The same procedure can be generalized to weighted

17

-
Linear Search Algorithms UNSAT-SAT

Partial MaxSAT Formula:

©h - Xo V X1 Xo V X3
Ps - X1\/- X3\/- XQ\/)_(l\/-)_<3\/X1\/-

e Relax all soft clauses

o Relaxation variables:

o VR - {rlv r, r3, r4}
o If a soft clause w; is unsatisfied, then r; =1
o If a soft clause w; is satisfied, then r, =0

18

-
Linear Search Algorithms UNSAT-SAT

Partial MaxSAT Formula:

©s - x1Vn x3V xXoVXx1Vr3 X3V xiVn

/-'L:2 VR:{r17r2ar3,r4}

e Add cardinality constraint that excludes solutions that unsatisfies 1
or more soft clauses:

o CNF(rn+rn+r+rn <0)

18

Linear Search Algorithms UNSAT-SAT

Partial MaxSAT Formula:

©h - X VX1 x2VX3 CNF(Zr;GVR r < 0)

Ps - x1Vn x3V x2VX1Vnr xX3Vx1Vn

e Formula is unsatisfiable:
o There are no solutions that unsatisfy 0 or less soft clauses

e Add cardinality constraint that excludes solutions that unsatisfies 2
or more soft clauses:
o CNF(n+rn+n+mrn<1)

18

Linear Search Algorithms UNSAT-SAT

Partial MaxSAT Formula:

©h - x> V X1 X V X3 CNF(Zr;GVR r < 1)

Ps - x1Vn x3V x2VX1Vnr xX3Vx1Vn

e Formula is unsatisfiable:
o There are no solutions that unsatisfy 1 or less soft clauses

e Add cardinality constraint that excludes solutions that unsatisfies 3
or more soft clauses:
o CNF(n+rn+n+rn<2)

18

Linear Search Algorithms UNSAT-SAT

Partial MaxSAT Formula:

©h - X2 V X1 x2 V X3 CNF(Zr,-eVR ri < 2)

Ps - x1Vn x3V xXo VX1V x3VxiVn

e Formula is satisfiable:
ou={x=1,%=0x3=0,n=0,n=1rn=1rn=0}

e Optimal solution unsatisfies 2 soft clauses

e The same procedure can be generalized to weighted

18

UnsatiSﬁabi“ty—based A|g0r|thms (MSU3: Marques-Silva&Planes’'07)

Partial MaxSAT Formula:

©h (Hard): Xo V X1 Xo V X3

vs (Soft): X1 X3 VX1 X3Vxi

19

UnsatiSﬁabi“ty—based A|g0rlthms (MSU3: Marques-Silva&Planes’'07)

Partial MaxSAT Formula:

©h: X VX1 x2VX3

Ps: X1 X3 X2 V X1 X3V x1

e Formula is unsatisfiable

19

UnsatiSﬁabi“ty—based Algonthms (MSU3: Marques-Silva&Planes’'07)

Partial MaxSAT Formula:

©h: X VX1 x2VX3

Ps: X1 X3 xo V X1 X3V x1

e Formula is unsatisfiable

e |dentify an unsatisfiable core

19

UnsatiSﬁabi“ty—based A|g0rlthms (MSU3: Marques-Silva&Planes’'07)

Partial MaxSAT Formula:

Ps: X1 \/- X3\/- x> V X1 X3V X1

e Relax non-relaxed soft clauses in unsatisfiable core:

o Add cardinality constraint that excludes solutions that unsatisfies 2 or
more soft clauses:

° CNF(I’l +n S 1)
o Relaxation on demand instead of relaxing all soft clauses eagerly

19

UnsatiSﬁability—based A|g0rlthms (MSU3: Marques-Silva&Planes’'07)

Partial MaxSAT Formula:

wp: | X2V Xq x2 V X3 CNF(I’]_ +n< 1)

Ps: x1Vn x3V rp x2 V X1 X3V x1

e Formula is unsatisfiable

19

UnsatiSﬁability—based A|g0rlthms (MSU3: Marques-Silva&Planes’'07)

Partial MaxSAT Formula:

wp: | X2V Xq X2 V X3 CNF(I’]_ +n< 1)

Ps: x1Vn x3V rp x2 V X1 X3V x1

e Formula is unsatisfiable

e |dentify an unsatisfiable core

19

UnsatiSﬁabi“ty—based Algonthms (MSU3: Marques-Silva&Planes’'07)

Partial MaxSAT Formula:

Ps: x1Vn x3V X2\/)_<1\/-)_<3\/X1\/-

e Relax non-relaxed soft clauses in unsatisfiable core:

o Add cardinality constraint that excludes solutions that unsatisfies 3 or
more soft clauses:

e CNF(n+nrn+rmn+rmn<2)
o Relaxation on demand instead of relaxing all soft clauses eagerly

UnsatiSﬁabi“ty—based A|g0rlthms (MSU3: Marques-Silva&Planes’'07)

Partial MaxSAT Formula:

©h - Xo V X1 X2 V X3 CNF(r1+r2+r3+r4§2)

©s - x1Vn x3V XV X1Vnr3 X3V X1V

e Formula is satisfiable:

op={x=1%=0x3=0n=0,nr=1rn=1r=0}
e Optimal solution unsatisfies 2 soft clauses

e The same procedure can be generalized to weighted

19

Unsatisfiability-based Algorithms (Fu&Malik [SAT'06])

Partial MaxSAT Formula:

©h (Hard): Xo V X1 Xo V X3

vs (Soft): X1 X3 VX1 X3Vxi

20

Unsatisfiability-based Algorithms (Fu&Malik [SAT'06])

Partial MaxSAT Formula:

©h: X VX1 x2VX3

Ps: X1 X3 X2 V X1 X3V x1

e Formula is unsatisfiable

20

Unsatisfiability-based Algorithms (Fu&Malik [SAT'06])

Partial MaxSAT Formula:

©h: X VX1 x2VX3

Ps: X1 X3 xo V X1 X3V x1

e Formula is unsatisfiable

e |dentify an unsatisfiable core

20

Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

Ps: X1 \/- X3\/- x> V X1 X3V X1

e Relax unsatisfiable core:

o Add relaxation variables
o Add AtMostl constraint

20

Unsatisfiability-based Algorithms (Fu&Malik [SAT'06])

Partial MaxSAT Formula:

wp: | X2V Xq x2 V X3 CNF(I’]_ +n< 1)

Ps: x1Vn x3V rp x2 V X1 X3V x1

e Formula is unsatisfiable

20

Unsatisfiability-based Algorithms (Fu&Malik [SAT'06])

Partial MaxSAT Formula:

wp: | X2V Xq X2 V X3 CNF(I’]_ +n< 1)

Ps: x1Vn x3V rp x2 V X1 X3V x1

e Formula is unsatisfiable

e |dentify an unsatisfiable core

20

Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

Ps: x1\/r1\/- X3\/r2V- x2\/)_(1\/-)_<3\/X1\/-

e Relax unsatisfiable core:

o Add relaxation variables
o Add AtMostl constraint

e Soft clauses may be relaxed multiple times

20

Unsatisfiability-based Algorithms (Fu&Malik [SAT'06])

Partial MaxSAT Formula:
©h: Xo V X1 X2 V X3 CNF(r1+r2 <].) CNF(I’3—|—...+I‘6§].)

ps: x1VNnVmr x3VnVn X2 VX1V rs X3V Xx1Vre

e Formula is satisfiable

e An optimal solution would be:
o V= {Xl = 1,X2 :0,X3 :0}

20

Unsatisfiability-based Algorithms (Fu&Malik [SAT'06])

Partial MaxSAT Formula:
Ph-)_<2 V)_<1 Xo V)_(3
Ps: X1 X3 X V X1 X3V x1

e Formula is satisfiable

e An optimal solution would be:
ov={x=1x=0,x3=0}

e This assignment unsatisfies 2 soft clauses

20

Unsatisfiability-based Algorithms (Fu&Malik [SAT'06])

Partial MaxSAT Formula:

Ph: X2 V X1 X2 V X3

Ps: X1 X3 X2 V X1 X3 V X1

Formula is satisfiable

An optimal solution would be:
ov={x=1x=0,x3=0}

This assignment unsatisfies 2 soft clauses

How can this procedure be generalized to weighted?
(Manquinho et al. [SAT'09])

20

Unsatisfiability-based Algorithms (Manquinho et al. [SAT'09))

Weighted Partial MaxSAT Formula:

©h (Hard): x> V X1 X2 V X3

©s (SOft)Z (X1, 2) (X37 3) (X2 V X1, 1) ()_(3 V X1, 1)

21

Unsatisfiability-based Algorithms (Manquinho et al. [SAT'09))

Weighted Partial MaxSAT Formula:

©h (Hard): x> V X1 X2 V X3

©s (SOft)Z (X1, 2) (X37 3) (X2 V X1, 1) ()_(3 V X1, 1)

e Naive approach:

o For each soft clause (w, w) create w copies of weight 1
o Problem: Does not scale when the size of the weights increase

21

Unsatisfiability-based Algorithms (Manquinho et al. [SAT'09))

Weighted Partial MaxSAT Formula:

©h (Hard): x> V X1 X2 V X3

©s (SOft)Z (X1, 2) (X37 3) (X2 V X1, 1) ()_(3 V X1, 1)

e Solution:

o Create copies only when needed
o Use the weight of the unsatisfiable core to split the soft clauses

21

Unsatisfiability-based Algorithms (Manquinho et al. [SAT'09))

Weighted Partial MaxSAT Formula:

Oh Xo V X1 x2 V X3

s | (a,2) (x3,3) (x2Vx1,1) (Xx3Vx1,1)

e Formula is unsatisfiable

21

Unsatisfiability-based Algorithms (Manquinho et al. [SAT'09))

Weighted Partial MaxSAT Formula:

Oh Xo V X1 x2 V X3

Ps - (X1, 2) (X3, 3) (X2 V X1,].) ()_(3 V X1, 1)

e Formula is unsatisfiable

e |dentify an unsatisfiable core

21

Unsatisfiability-based Algorithms (Manquinho et al. [SAT'09))

Weighted Partial MaxSAT Formula:

©h - Xo V X1 x2 V X3

Ps - (xl\/r1,2) (X2 \/)_(1,]_) ()_(3\/X1,1)

e Core weight (cy): 2 (smallest weight of the soft clauses in the
core)

e Split soft clauses with weight larger than the core weight:
o (w,w) = (w,w —cw) A (w, cw)

21

Unsatisfiability-based Algorithms (Manquinho et al. [SAT'09))

Weighted Partial MaxSAT Formula:

(X3,1) (X2 \/)?1,].) ()_<3 \/Xl,].)

Ps -

e Core weight (cy): 2 (smallest weight soft clauses in the core)
e Split soft clauses with weight larger than the core weight:
o (w,w) = (w,w —cy) A (w, cw)

¢ Relax soft clauses with weight equal to c,,, add AtMost1 constraint

21

Unsatisfiability-based Algorithms (Manquinho et al. [SAT'09))

Weighted Partial MaxSAT Formula:

©h Xo V X1 xVix3 CNF(n+nrn<1)
Vs : (X1 Vo, 2) (X3, 1) (X2 V X1, 1) ()_<3 V X1, 1)
(X3 V r2,2)

e Formula is unsatisfiable

21

Unsatisfiability-based Algorithms (Manquinho et al. [SAT'09))

Weighted Partial MaxSAT Formula:

©Ohp - Xo V X1 xo VX3 CNF(rp+nrn<1)
vs: (avn,2) (a,1) (x2 V x1,1) (X3 V x1,1)
(X3 V r2,2)

e Formula is unsatisfiable

¢ |dentify unsatisfiable core

21

Unsatisfiability-based Algorithms (Manquinho et al. [SAT'09))

Weighted Partial MaxSAT Formula:

©h - X2 V X1 xo V X3 CNF(I‘l +nrn < 1)

©s - (xl\/r1,2) - (X2 \/)_(1,1)

(X3 V 1, 2)

e Formula is unsatisfiable
e |dentify unsatisfiable core

e Relax unsatisfiable core

Unsatisfiability-based Algorithms (Manquinho et al. [SAT'09))

Weighted Partial MaxSAT Formula:

©h - X2 V X1 X2 V X3 CNF(I‘l +nrn < 1) CNF(r3 +rp < 1)
©s - (X1 \/I’1,2) (X3\/r3,1) (X2 \/)_(1,1) ()_(3\/X1 \/I’4,1)
(X3 V r2,2)

e Formula is satisfiable
o V:{Xl :O,X2 = 1,X3 = 1,[’1 = 1,[’2:0,I’3 :O,I’4: 1}

e Optimal cost: 3

21

e
Outline

¢ Incremental solving in MaxSAT:
o Keep the state of the SAT solver between MaxSAT calls

22

Incremental MaxSAT algorithms Martins et al. [CP'14]

e Non-incremental algorithms

o Working formula is rebuilt at each SAT solver call

o MaxSAT algorithms need to update constraints between calls to the
SAT solver

o For soundness reasons, SAT solvers only allow to add new variables
and new constraints

23
-

Incremental MaxSAT algorithms Martins et al. [CP'14]

e Non-incremental algorithms

o Working formula is rebuilt at each SAT solver call

o MaxSAT algorithms need to update constraints between calls to the
SAT solver

o For soundness reasons, SAT solvers only allow to add new variables
and new constraints

e Goal: Make Unsatisfiability-based algorithms incremental

23
-

Incremental MaxSAT algorithms Martins et al. [CP'14]

e SAT solver calls allow to specify assumptions:

o Assumptions are literals that are set to true in the returned model

o Assumptions can be changed between calls to the SAT solver
o Soundness of the solver is maintained

e lterative encoding for cardinality constraints:
o Grow the encoding as needed

o Adds new relaxation variables to encoding only when necessary
o Use assumptions to fix the value of k for the current iteration

24
e

Iterative Encoding - Totalizer Encoding Martins et al. [CP'14]

(A:a,a,:2)

/ \
(Bib17b222) CZC1,C2:2)
VRN VAN

(D:h:1) (E:h:1) (G:h:1) (F:f,h:2)

/N

(H:l:1) (I:h:1)

° Encoding of /1 +/2—|—/3+/4+/5 <1

25

Iterative Encoding - Totalizer Encoding Martins et al. [CP'14]

(A:a,a,:2)

/ \
(Bib17b222) CZC1,C2:2)
VRN VAN

(D:h:1) (E:h:1) (G:h:1) (F:f,h:2)

/N

(H:l:1) (I:h:1)

° Encoding of /1 +/2—|—/3+/4+/5 <1

e Change it to /1+/2+/3+/4+/5+-§.

o Add two more literals (/7 and fg) to the left-hand side
o Increase the right-hand side by 2

25

Iterative Encoding - Totalizer Encoding Martins et al. [CP'14]

(A221,32,22) (J:j17j2:2)
— N /N
(B:bi,b:2) (C:c,e:2) (K:k:1) (L:k:1)
/N /N
(D:h:1) (E:h:1) (G:hk:1) (F:f,h:2)
AN

e Encodingof h+h+hk+Il4+16<1

e Changeitto h+h+h+ s+ I + g < Bl

o Add two more literals (/7 and fg) to the left-hand side
o Increase the right-hand side by 2

e Extend the representation
25

Iterative Encoding - Totalizer Encoding Martins et al. [CP'14]

(O :01,00,03,04 : 4)

(A: a1, 32,-1.) (J:j1,02:2)
— ~ /N
(B: b1, by :2) (C:a, o @B (K:kh:1) (L:k:1)
/N /N
(D:h:1) (E:h:1) (G:h:1) (F:f,h:2)
/N

(H:hL:1) (I:hk:1)

e Encodingof L+ h+h+ 14+ <1

e Changeittoh+h+h+1Ila+ 1k —|—-§.
o Add two more literals (/7 and fg) to the left-hand side
o Increase the right-hand side by 2

e Extend the representation
25

Experimental Results

e Open-WBO:
o http://sat.inesc-id.pt/open-wbo/
o Open-source MaxSAT solver
o Non-incremental MSU3 and incremental MSU3

e Benchmarks: unweighted (55) and partial (568) MaxSAT instances
from the industrial category of the MaxSAT Evaluation 2014
e AMD Opteron 6272 processors (2.3 GHz) running Fedora Core 18;

e Timeout: 1,800 seconds

26

http://sat.inesc-id.pt/open-wbo/

Experimental Results

¢ Non-incremental vs. Incremental MSU3

3 Lo *
10 . ° o o O.o.'.' N
. .o.’..‘l.!.'r .
'. .n * o.-i" .‘ .gu' M 4
2 (1] be, hd
10° T+ VT]
“1nide %
*de J3ge AN
OD) ‘. 4 -...' % “
n 1 P %o T e e
s 10 .o.’??:.::- . .
. S 'i'z".'.'.-“'
WL AN
. :’. o
2/, "
107 ¥—

107 10° 10" 102 103
Inc-MSU3 27

Experimental Results

e Running times of state-of-the-art MaxSAT solvers

1800 : ry o
WPM ' LS
MSU3 v TF
1600 - Clasp w P
MSCG o v g
L Eva —x— ; "
1400 1 e msU3 -+ v Kot
1200 ; *‘E{F .

1000

seconds

800

600

400

200

0 ! .
360 380 400 420 440 460 480 500 520
instances

28

-
Incremental MaxSAT Solving

e |terative encoding can be used in other more sophisticated
MaxSAT algorithms

e Experimental results clearly show the effectiveness of using
incrementality

e Due to incrementality, Open-WBO won the best solver award for
unweighted and partial MaxSAT at the MaxSAT Evaluation 2014

29

e
Outline

e Partitioning in MaxSAT:

o Use the structure of the problem to guide the search

30

-
Partitioning in MaxSAT

e Unsatisfiability-based algorithms are very effective on industrial
benchmarks

e However, performance is related with the unsatisfiable cores given
by the SAT solver:

o Some unsatisfiable cores may be unnecessarily large
o Solution: Partition the soft clauses

31

Partitioning in MaxSAT Martins et al. [ECAI'12]

(1) Partition the soft clauses
B! 72 73

32

Partitioning in MaxSAT Martins et al. [ECAI'12]

(1) Partition the soft clauses
72 73
(2) Add a new partition to the formula .

32

Partitioning in MaxSAT Martins et al. [ECAI'12]

(1) Partition the soft clauses
g 72 73

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
o Relax unsatisfiable core

32

Partitioning in MaxSAT Martins et al. [ECAI'12]

(1) Partition the soft clauses
gt "2 73

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
o Relax unsatisfiable core

(4) The formula is satisfiable:

o If there are no more partitions:
> Optimum found
o Otherwise, go back to 2

32

Partitioning in MaxSAT

Martins et al. [ECAI'12]

(1) Partition the soft clauses
(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
o Relax unsatisfiable core

(4) The formula is satisfiable:
o If there are no more partitions:
> Optimum found
o Otherwise, go back to 2

71

73

32

Partitioning in MaxSAT Martins et al. [ECAI'12]

(1) Partition the soft clauses
M 72 73

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
o Relax unsatisfiable core

Y1 U2

(4) The formula is satisfiable:
o If there are no more partitions:
> Optimum found
o Otherwise, go back to 2

32

Partitioning in MaxSAT Martins et al. [ECAI'12]

(1) Partition the soft clauses
M 72 73

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
o Relax unsatisfiable core

(4) The formula is satisfiable:
o If there are no more partitions:
> Optimum found
o Otherwise, go back to 2

Y1 U2

32

Partitioning in MaxSAT Martins et al. [ECAI'12]

(1) Partition the soft clauses
! V2

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
o Relax unsatisfiable core

(4) The formula is satisfiable:
o If there are no more partitions:
> Optimum found
o Otherwise, go back to 2

Y1 U2

32

Partitioning in MaxSAT Martins et al. [ECAI'12]

(1) Partition the soft clauses
M 72 73

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
o Relax unsatisfiable core

(4) The formula is satisfiable:
o If there are no more partitions:
> Optimum found
o Otherwise, go back to 2 Y1 Uy U3

Y1 U2

32

Partitioning in MaxSAT Martins et al. [ECAI'12]

(1) Partition the soft clauses
M 72 73

(2) Add a new partition to the formula

(3) While the formula is unsatisfiable:
o Relax unsatisfiable core

(4) The formula is satisfiable:
o If there are no more partitions:
> Optimum found
o Otherwise, go back to 2 Y1 U2 U3

Y1 U2

32

How to partition the soft clauses?

Use the structure of the problem to guide the search:

e Weighted partial MaxSAT:

Martins et al. [ECAI'12]
o Weight-based partitioning

e Partial MaxSAT:

o All soft clauses have weight 1
o Graph-based partitioning:
e Hypergraph
e Variable Incidence Graph
e Clause-Variable Incidence Graph

Martins et al. [SAT'13]

33

Exploiting the community structure!

SATGraf — https://bitbucket.org/znewsham/satgraf

(normalized-f20c10b_001_area_delay.wenf)

34

-
Experimental Results (Partial MaxSAT)

e Benchmarks:

[¢]

504 industrial partial MaxSAT instances

e Solvers:

[¢]

[¢]

[¢]

[¢]

WBO

rdm (Random partitioning — 16 partitions)

hyp (Hypergraph partitioning — 16 partitions)

VIG (Community partitioning — Variable Incidence Graph)

CVIG (Community partitioning — Clause-Variable Incidence Graph)
VBS (Virtual Best Solver)

35

-
Experimental Results (Partial MaxSAT)

e Running times of solvers for industrial partial MaxSAT instances
1800

1600 -

1400

1200

1000

seconds

800

600

400

200

0 .
100 150 200 250 300

instances

35

-
Experimental Results (Weighted Partial MaxSAT)

e Benchmarks:

[¢]

598 weighted partial MaxSAT instances

e Solvers:

[¢]

[¢]

[¢]

[¢]

wbo

weight (Weight-based partitioning)

rdm (Random partitioning — 16 partitions)

hyp (Hypergraph partitioning — 16 partitions)

vig (Community partitioning — Variable Incidence Graph)

cvig (Community partitioning — Clause-Variable Incidence Graph)
vbs (Virtual Best Solver)

36

Experimental Results (Weighted Partial MaxSAT)

e Running times of solvers for weighted partial MaxSAT instances

1800 ;
rdm —+—
h —a—

1600 - vie
CVIG —&—
1400 | WBO —e—

weight —e—
VBS ——

1200

1000 -

seconds

800

600

400

200

o T T T T 1
100 150 200 250 300 350 400
instances

36

-
Partitioning in MaxSAT

e Partitioning approaches outperform WBO on most instances:
o Finds smaller unsatisfiable cores

e Weight-based partitioning is the best for weighted partial MaxSAT
e All algorithms contribute to the VBS:

o Different graph-based partition methods solve different instances

o Using the structure of the formula improves the partitioning

e Partitioning idea may be applied to other algorithms and fields!

37

Want to try MaxSAT solving?

Open-WBO Try out Open-WBO!

An open source version of the MaxSAT solver WBO

webpage:
T S http://sat.inesc-id.pt/open-wbo/

- open source:

- uses a MiniSAT-Iike solver as a black box:

contact:
open-wbo@sat.inesc-id.pt

Hf you use Open-WBO in your research work pleass cite the following paper:

I8 Lyncs: Opan-WEO: A Mockar MaxSAT Sover. SAT 2014; 438-445

Contributors:

T Comments and suggestions are
o welcome and will help to improve
S Open-WBO!

38

h

References

MaxSAT algorithms:
Z. Fu, S. Malik. On Solving the Partial MAX-SAT Problem. SAT 2006:
252-265.

V. Manquinho, J. Marques-Silva, J. Planes. Algorithms for Weighted Boolean
Optimization. SAT 2009: 495-508

J. Marques-Silva, J. Planes. On using unsatisfiability for solving Maximum
Satisfiability. Technical report 2007

R. Martins, S. Joshi, V. Manquinho, I. Lynce. Incremental Cardinality Con-
straints for MaxSAT. CP 2014: 531-548

R. Martins, V. Manquinho, I. Lynce. Open-WBO: A Modular MaxSAT Solver.
SAT 2014: 438-445

R. Martins, V. Manquinho, I. Lynce. Community-Based Partitioning for
MaxSAT Solving. SAT 2013: 182-191

R. Martins, V. Manquinho, I. Lynce. On Partitioning for Maximum Satisfia-
bility. ECAI 2012: 913-914

39

References

Cardinality and Pseudo-Boolean Encodings:

C. Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Con-
straints. CP 2005: 827-831

N. Manthey, T. Philipp, P. Steinke. A More Compact Translation of Pseudo-
Boolean Constraints into CNF Such That Generalized Arc Consistency s
Maintained. Kl 2014: 123-134

P. Steinke. A C++ Toolkit for Encoding Pseudo-Boolean Constraints into
CNF. http://tools.computational-logic.org/content/pblib.php

Web pages of interest:

MaxSAT Evaluation: http://www.maxsat.udl.cat/
Open-WBO: http://sat.inesc-id.pt/open-wbo/

39

http://tools.computational-logic.org/content/pblib.php
http://www.maxsat.udl.cat/
http://sat.inesc-id.pt/open-wbo/

