SAT encodings: using the right tool for the right job

Ruben Martins

University of Oxford

April 2, 2015

How to encode a problem into SAT?

```
c famous problem (in CNF)
p cnf 6 9
1 4 0
250
360
-1 -2 0
-1 -3 0
-2 -3 0
-4 -50
-4 -6 0
```

-5 -6 0

How to encode a problem into SAT?

```
c pigeon hole problem
p cnf 6 9
140
                                 # pigeon[1]@hole[1] \vee pigeon[1]@hole[2]
250
                                 # pigeon[2]@hole[1] \vee pigeon[2]@hole[2]
360
                                 # pigeon[3]@hole[1] \times pigeon[3]@hole[2]
-1 -20
                              \# \neg pigeon[1]@hole[1] \lor \neg pigeon[2]@hole[1]
-1 -30
                              \# \neg pigeon[1]@hole[1] \lor \neg pigeon[3]@hole[1]
                              \# \neg pigeon[2]@hole[1] \lor \neg pigeon[3]@hole[1]
-2 -3 0
                              \# \neg pigeon[1]@hole[2] \lor \neg pigeon[2]@hole[2]
-4 - 50
                             \# \neg pigeon[1]@hole[2] \lor \neg pigeon[3]@hole[2]
-4 - 60
-5 -60
                             \# \neg pigeon[2]@hole[2] \lor \neg pigeon[3]@hole[2]
```

Encoding to CNF

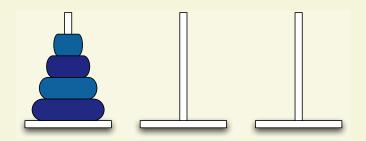
- What to encode?
 - Boolean formulas
 - Cardinality constraints

•
$$x_1 + ... + x_n \le k$$

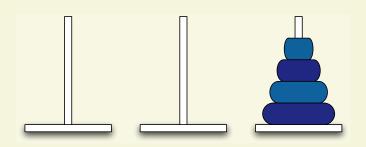
- Arithmetic
 - Addition, Comparison, Multiplication...
- 0 ...

- Which encoding to use?
 - Different encodings have a major impact on performance!

Encoding a problem into SAT – Towers of Hanoi



Encoding a problem into SAT – Towers of Hanoi



- Only one disk may be moved at a time;
- No disk may be placed on the top of a smaller disk;
- Each move consists in taking the upper disk from one of the towers and sliding it onto the top of another tower.

How to encode ToH?

STRIPS planning mode:

- Variables
- Actions: preconditions → postconditions
- Initial state
- Goal state

How to encode ToH?

[Selman & Kautz ECAI'92]

- Variables: on(d, dt, i); clear(dt, i)
- Actions: $move(d, dt, dt, i) = obj(d, i) \land from(dt, i) \land to(dt, i)$
 - preconditions:clear(d, i), clear(dt', i), on(d, dt, i)
 - o postconditions: $on(d, dt', i + 1), clear(dt, i + 1), \neg on(d, dt, i), \neg clear(dt', i + 1)$
- Initial state:
 - o $on(d_1, d_2, 1), \dots, on(d_{n-1}, d_n, 1), on(d_n, t_1, 1)$ $clear(d_1, 1), clear(t_1, 1), clear(t_2, 1), clear(t_3, 1)$
 - All other variables initialized to false
- Goal state:
 - \circ on $(d_1, d_2, 2^n 1), \ldots, on(d_{n-1}, d_n, 2^n 1), on(d_n, t_1, 2^n 1)$

How to encode ToH?

[Selman & Kautz ECAI'92]

Constraints:

- Exactly one disk is moved at each time step
- There is exactly one movement at each time step
- There are no movements to exactly the same position
- For a movement to be done the preconditions must be satisfied
- After performing a movement the postconditions are implied
- No disks can be moved to the top of smaller disks
- Initial state holds at time step 0
- Goal state holds at time step $2^n 1$
- Preserve the value of variables that were unaffected by movements

How good is this encoding?

Time limit of 10,000 seconds using **picosat**

Selman			
0.16			
8.31			
54.70			
5252.27			
-			
-			
-			
-			
-			

A more compact encoding

[Prestwich SAT'07]

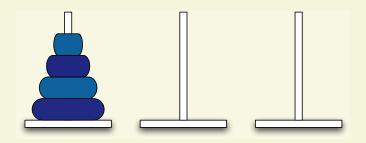
- Actions: $move(d, dt, dt, i) = obj(d, i) \land from(dt, i) \land to(dt, i)$
 - Before:
 - Movements from disks/towers to disks/towers
 - Now:
 - Movements from towers to towers
 - · Clear variable can be removed
- More compact encoding:
 - o Before: 5 towers requires 1,931 variables and 14,468 clauses
 - Now: 5 towers only requires 821 variables and 6,457 clauses

How good is this encoding?

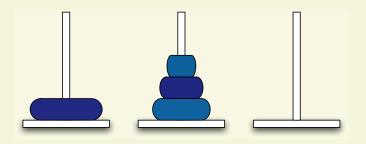
n	Selman	Prestwich	
4	0.16	0.01	
5	8.31	0.08	
6	54.70	0.47	
7	5252.27	3.65	
8	-	109.7	
9	-	7126.57	
10	-	-	
11	-	-	
12	-	-	

- Can we do better?
 - Look at the properties of the problem!

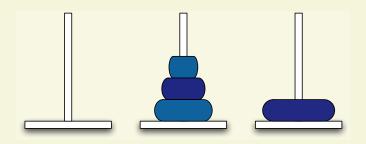
[Martins & Lynce LPAR'08]



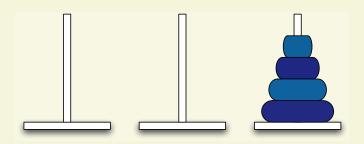
• Given a ToH of size n, one may easily find a solution taking into account the solution for a ToH of size n-1



• Given a ToH of size n, one may easily find a solution taking into account the solution for a ToH of size n-1



- Given a ToH of size n, one may easily find a solution taking into account the solution for a ToH of size n-1
- The order of the disks to be moved after moving the largest disk is exactly the same as before



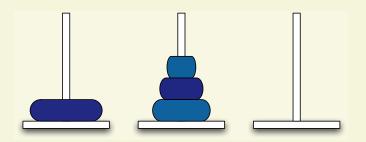
- Given a ToH of size n, one may easily find a solution taking into account the solution for a ToH of size n-1
- The order of the disks to be moved after moving the largest disk is exactly the same as before

ToH Properties (Symmetry)

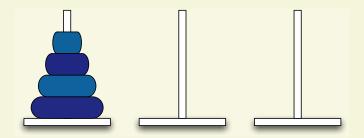


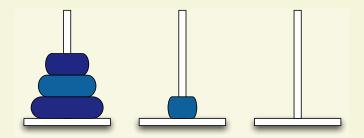
- ToH can be solved in $2^n 1$ steps
- Considering the relationship between the movement of the disks after/before moving the largest disk we only need to determine the first $2^{n-1}-1$ steps

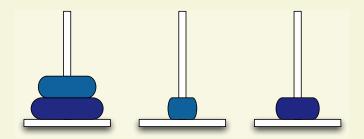
ToH Properties (Symmetry)

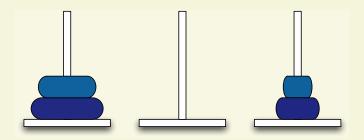


- ToH can be solved in $2^n 1$ steps
- Considering the relationship between the movement of the disks after/before moving the largest disk we only need to determine the first $2^{n-1}-1$ steps

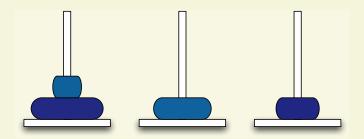


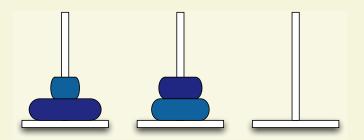


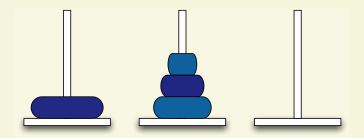






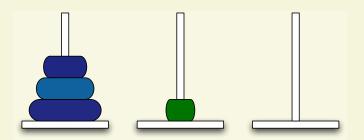




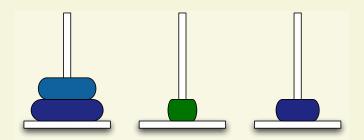


- All disks cycle in a given order between the towers:
 - o If n is even the odd disks will cycle clockwise $(T_1 \to T_2 \to T_3 \to T_1)$ while the even disks will cycle counterclockwise $(T_1 \to T_3 \to T_2 \to T_1)$
 - If n is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

- All disks cycle in a given order between the towers:
 - o If n is even the odd disks will cycle clockwise $(T_1 \to T_2 \to T_3 \to T_1)$ while the even disks will cycle counterclockwise $(T_1 \to T_3 \to T_2 \to T_1)$
 - If n is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise



- All disks cycle in a given order between the towers:
 - o If n is even the odd disks will cycle clockwise $(T_1 \to T_2 \to T_3 \to T_1)$ while the even disks will cycle counterclockwise $(T_1 \to T_3 \to T_2 \to T_1)$
 - If n is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

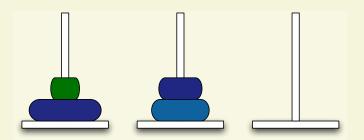


- All disks cycle in a given order between the towers:
 - o If n is even the odd disks will cycle clockwise $(T_1 \to T_2 \to T_3 \to T_1)$ while the even disks will cycle counterclockwise $(T_1 \to T_3 \to T_2 \to T_1)$
 - If n is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

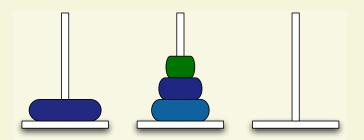
- All disks cycle in a given order between the towers:
 - o If n is even the odd disks will cycle clockwise $(T_1 \to T_2 \to T_3 \to T_1)$ while the even disks will cycle counterclockwise $(T_1 \to T_3 \to T_2 \to T_1)$
 - If n is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

- All disks cycle in a given order between the towers:
 - o If n is even the odd disks will cycle clockwise $(T_1 \to T_2 \to T_3 \to T_1)$ while the even disks will cycle counterclockwise $(T_1 \to T_3 \to T_2 \to T_1)$
 - If n is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

- All disks cycle in a given order between the towers:
 - o If n is even the odd disks will cycle clockwise $(T_1 \to T_2 \to T_3 \to T_1)$ while the even disks will cycle counterclockwise $(T_1 \to T_3 \to T_2 \to T_1)$
 - If n is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise



- All disks cycle in a given order between the towers:
 - o If n is even the odd disks will cycle clockwise $(T_1 \to T_2 \to T_3 \to T_1)$ while the even disks will cycle counterclockwise $(T_1 \to T_3 \to T_2 \to T_1)$
 - If n is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise



- All disks cycle in a given order between the towers:
 - o If n is even the odd disks will cycle clockwise $(T_1 \to T_2 \to T_3 \to T_1)$ while the even disks will cycle counterclockwise $(T_1 \to T_3 \to T_2 \to T_1)$
 - If n is odd the odd disks will cycle counterclockwise while the even disks will cycle clockwise

Experimental Results

Size	Selman	Prestwich	Disk Parity	Disk Cycle
4	0,16	0.01	0	0
5	8.31	0.08	0.01	0.02
6	54.70	0.47	0.03	0.05
7	5252.27	3.65	0.70	0.20
8	-	109.7	5.19	5.18
9	-	7126.57	79.11	7.65
10	-	-	1997.19	973.95
11	-	-	-	1206.37
12	-	-	-	_

• Disk Parity and Disk Cycle encodings use the symmetry property

Experimental Results

Size	Selman	Prestwich	Disk Parity	Disk Cycle
4	0,16	0.01	0	0
5	8.31	0.08	0.01	0.02
6	54.70	0.47	0.03	0.05
7	5252.27	3.65	0.70	0.20
8	-	109.7	5.19	5.18
9	-	7126.57	79.11	7.65
10	-	-	1997.19	973.95
11	-	-	-	1206.37
12	-	-	-	_

- Disk Parity and Disk Cycle encodings use the symmetry property
- Can we still do better?

A new encoding for ToH

- The Disk Sequence encoding:
 - The recursive property determines the disks to be moved at each step
 - Taking into consideration this we can keep only the variables on and drop all the others
 - Recursion+Symmetry+Parity:
 - Problem can be solved with just unit propagation!

Unit Propagation

- Unit clause rule:
 - Given a unit clause, its only unassigned literal must be assigned value
 1 for the clause to be satisfied
 - Example: for unit clause $(x_1 \lor \neg x_2 \lor \neg x_3)$, x_3 must be assigned value 0
- Unit propagation:
 - o Iterated application of the unit clause rule
- Unit propagation can satisfy clauses but can also unsatisfy clauses

Experimental Results

Size	Selman	Prestwich	Disk Parity	Disk Cycle	Disk Sequence
4	0.16	0.01	0	0	0
5	8.31	0.08	0.01	0.02	0
6	54.70	0.47	0.03	0.05	0
7	5252.27	3.65	0.70	0.20	0.01
8	-	109.7	5.19	5.18	0.03
9	-	7126.57	79.11	7.65	0.09
10	-	-	1997.19	973.95	0.23
11	-	-	-	1206.37	0.56
12	-	-	-	-	1.32

Unit Propagation & Encodings

- The effect of unit propagation on encodings plays a key role on performance!
- If a fact can be derived by using only unit propagation then no search is needed!
- Which other encodings can be improved with unit propagation?
 - Cardinality constraints
 - Arithmetic operations
 - 0 ...
 - Any encoding !

How to encode cardinality constraints?

At-most-one constraints:

- Naive (pairwise) encoding for at-most-one constraints:
 - Cardinality constraint: $x_1 + x_2 + x_3 + x_4 \le 1$
 - Clauses:

$$\begin{pmatrix} (x_1 \Rightarrow \neg x_2) \\ (x_1 \Rightarrow \neg x_3) \\ (x_1 \Rightarrow \neg x_4) \\ \dots \end{pmatrix} \begin{array}{c} \neg x_1 \lor \neg x_2 \\ \neg x_1 \lor \neg x_3 \\ \neg x_1 \lor \neg x_4 \\ \dots \end{array}$$

• Complexity: $\mathcal{O}(n^2)$ clauses

How to encode cardinality constraints?

At-most-k constraints:

- Naive encoding for at-most-k constraints:
 - Cardinality constraint: $x_1 + x_2 + x_3 + x_4 < 2$
 - Clauses:

$$\begin{array}{c} (x_1 \wedge x_2 \Rightarrow \neg x_3) \\ (x_1 \wedge x_2 \Rightarrow \neg x_4) \\ (x_2 \wedge x_3 \Rightarrow \neg x_4) \\ & \cdots \end{array} \right\} \begin{array}{c} (\neg x_1 \vee \neg x_2 \vee \neg x_3) \\ (\neg x_1 \vee \neg x_2 \vee \neg x_4) \\ (\neg x_2 \vee \neg x_3 \vee \neg x_4) \\ & \cdots \end{array}$$

 \circ Complexity: $\mathcal{O}(n^k)$ clauses

Encoding	Clauses	Variables	Туре	
Pairwise	$\mathcal{O}(n^2)$	0	at-most-one	
Ladder [SAT'04]	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one	
Bitwise [SAT'07]	$\mathcal{O}(n \log_2 n)$	$\mathcal{O}(\log_2 n)$	at-most-one	
Commander[CFV'07]	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one	
Product [ModRef'10]	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one	
Sequential [CP'05]	$\mathcal{O}(nk)$	$\mathcal{O}(nk)$	at-most-k	
Totalizer [CP'03]	$\mathcal{O}(nk)$	$\mathcal{O}(n \log_2 n)$	at-most-k	
Sorters [JSAT'06]	$\mathcal{O}(n \log_2^2 n)$	$\mathcal{O}(n \log_2^2 n)$	at-most-k	

Encoding	Clauses	Variables	Туре	
Pairwise	$\mathcal{O}(n^2)$	0	at-most-one	
Ladder [SAT'04]	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one	
Bitwise [SAT'07]	$\mathcal{O}(n \log_2 n)$	$\mathcal{O}(\log_2 n)$	at-most-one	
Commander[CFV'07]	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one	
Product [ModRef'10]	$\mathcal{O}(n)$	$\mathcal{O}(n)$	at-most-one	
Sequential [CP'05]	$\mathcal{O}(nk)$	$\mathcal{O}(nk)$	at-most-k	
Totalizer [CP'03]	$\mathcal{O}(nk)$	$\mathcal{O}(n \log_2 n)$	at-most-k	
Sorters [JSAT'06]	$\mathcal{O}(n \log_2^2 n)$	$\mathcal{O}(n \log_2^2 n)$	at-most-k	

• Many more encodings exist

[PBLib'15]

They can also be generalized to pseudo-Boolean constraints:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n \le k$$

Properties of cardinality encodings:

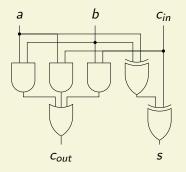
- Efficient encodings are arc consistent:
 - $x_1 + x_2 + x_3 + \ldots + x_n \le k$
 - \circ If more than k variables are assigned 1:
 - unit propagation detects a conflict!
 - If k variables are assigned 1:
 - unit propagation assigns 0 to the remaining variables!
- Cardinality encodings are optimal w.r.t unit propagation
 - For any partial assignment, if that partial assignment is unfeasible then unit propagation will detect a conflict
 - No search is needed!

Properties of cardinality encodings:

- Do non-optimal cardinality encodings exist?
 - Yes!
 - They can be smaller than optimal cardinality encodings
 - \circ But, their performance can be $10 \times$ slower than optimal encodings
- Cardinality encodings must be optimal for performance reasons
- All new cardinality encodings are arc-consistent!
- Efficient encodings for cardinality constraints have a large impact:
 - Better encodings for problems with linear constraints
 - Improving the performance of Boolean optimization solvers
 - 0 ...

[Stronger, Better, Faster: Optimally Propagating SAT Encodings, CADE'15]

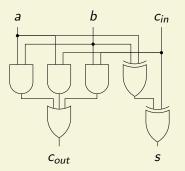
Full-adder:



Truth table:

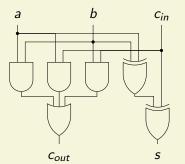
а	Ь	Cin	Cout	s
1	1	1	1	1
1	1	0	1	0
1	0	1	1	0
1	0	0	0	1
0	1	1	1	0
0	1	0	0	1
0	0	1	0	1
0	0	0	0	0

Full-adder:



Encoding:

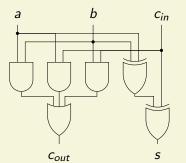
Full-adder:



Is this an optimal encoding?

Encoding:

Full-adder:

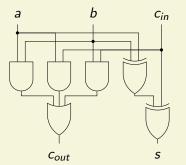


Encoding:

Is this an optimal encoding?

- No! Unit propagation does not have the same power as search!
- $UP(c_{cout}, s) = \top$ (no conflict)

Full-adder:

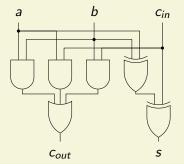


Encoding:

Is this an optimal encoding?

- No! Unit propagation does not have the same power as search!
- $UP(c_{cout}, s) = \top$ (no conflict) but $SAT(c_{cout}, s, \neg a) = \bot$ (conflict)
- Unit propagation did not infer that $c_{cout} \land s \implies a!$

Full-adder:



Encoding:

Is this an optimal encoding?

- No! Unit propagation does not have the same power as search!
- Can we automatically generate optimal encodings?

```
Input: \langle \Sigma, E_0, E_{Ref} \rangle
 1 E \leftarrow E_0
 2 PQ.push (\lambda v.?)
 3 while not PQ.empty() do
          core \leftarrow PQ.pop()
          foreach v \in \{x | x \in \Sigma \text{ and } \mathsf{UP}(\mathsf{E})(\mathsf{core})(v) =?\} do
 5
               foreach l \in \{v, \neg v\} do
 6
                    core' \leftarrow core \sqcap assign(I)
 7
                    if SATSolver(E_{Ref}, core') = sat then
 8
                         PQ.push (core')
                    else
10
                         E \leftarrow E \cup \{MUS(core')\}
PQ.compact()
11
12
```

13 return E

- E is not optimal
- E can be extended

$\overline{\nu}$	р	UPF	$SAT_{E_{ref}}$	learned	E_{ref}	E
	-	<u>L</u>	- ∟ret			
					$(\neg b \lor c)$	
					$ \begin{array}{c} (\neg a \lor c) \\ (\neg b \lor c) \\ (\neg c \lor d) \end{array} $	

- E is not optimal
- E can be extended

ν	р	UP_E	$SAT_{E_{ref}}$	learned	E_{ref}	Е
Ø	а	Т	Т	_		
					$(\neg b \lor c)$	
					$(\neg c \lor d)$	

- E is not optimal
- E can be extended

$\overline{\nu}$	р	UP_E	$SAT_{E_{ref}}$	learned	E_{ref}	Ε
Ø	а	Т	Т	_	$ \begin{array}{c} (\neg a \lor c) \\ (\neg b \lor c) \\ (\neg c \lor d) \end{array} $	
a	$\neg c$	Т	\perp	$(\neg a \lor c)$	$(\neg b \lor c)$	
					$(\neg c \lor d)$	

- E is not optimal
- E can be extended

$\overline{\nu}$	р	UP_E	$SAT_{E_{ref}}$	learned	E_{ref}	Е
Ø	а	Т	Т	_	$(\neg a \lor c)$	$(\neg a \lor c)$
а	$\neg c$	Т	\perp	$(\neg a \lor c)$	$(\neg b \lor c)$	
					$(\neg c \lor d)$	

- *E* is not optimal
- E can be extended

ν	р	UP_E	$SAT_{E_{ref}}$	learned	E_{ref}	Ε
Ø	а	Т	Т	_	(¬a∨c)	$(\neg a \lor c)$
a	$\neg c$	Т	\perp	$(\neg a \lor c)$	$(\neg b \lor c)$	
a, c	Ь	Т	Т	_	$(\neg c \lor d)$	

- *E* is not optimal
- E can be extended

$\overline{\nu}$	р	UP_E	$SAT_{E_{ref}}$	learned	E_{ref}	Ε
Ø	а	T	Т	_		(¬a∨c)
а	$\neg c$	Т	\perp	$(\neg a \lor c)$	$(\neg b \lor c)$	
a, c	Ь	Т	Т	_	$(\neg c \lor d)$	
a, c	$\neg d$	Т	\perp	$(\neg a \lor d)$		

- E is not optimal
- E can be extended

$\overline{\nu}$	р	UP_E	$SAT_{E_{ref}}$	learned	E_{ref}	Ε
Ø	а	Т	T	_	$(\neg a \lor c)$	$(\neg a \lor c)$
a	$\neg c$	Т	\perp	$(\neg a \lor c)$	$(\neg b \lor c)$	
a, c	Ь	Т	Т	_	$(\neg c \lor d)$	
a, c	$\neg d$	Т	\perp	$(\neg a \lor d)$		

- *E* is not optimal
- E can be extended

$\overline{\nu}$	р	UP_E	$SAT_{E_{ref}}$	learned	E _{ref}	Е
Ø	а	Т	Т	_	$(\neg a \lor c)$	$(\neg a \lor c)$
a	$\neg c$	Т	\perp	$(\neg a \lor c)$	$(\neg b \lor c)$	$(\neg a \lor d)$
a, c	Ь	Т	Т	_	$(\neg c \lor d)$	
a, c	$\neg d$	Т	\perp	$(\neg a \lor d)$		
$\neg c, \neg a$	b	Т	\perp	$(\neg b \lor c)$		

- E is not optimal
- E can be extended

ν	р	UP_E	$SAT_{E_{ref}}$	learned	E_{ref}	Ε
Ø	a	Т	Т	_	$(\neg a \lor c)$	$(\neg a \lor c)$
а	$\neg c$	Т	\perp	$(\neg a \lor c)$	$(\neg b \lor c)$	$(\neg a \lor d)$
a, c	b	Т	Т	_	$(\neg c \lor d)$	$(\neg b \lor c)$
a, c	$\neg d$	Т	\perp	$(\neg a \lor d)$		
$\neg c, \neg a$	b	T	\perp	$(\neg b \lor c)$		

- E is not optimal
- E can be extended

ν	р	UP_E	$SAT_{E_{ref}}$	learned	E_{ref}	Ε
Ø	а	Т	Т	_	$(\neg a \lor c)$	$(\neg a \lor c)$
а	$\neg c$	Т		$(\neg a \lor c)$	$(\neg b \lor c)$	$(\neg a \lor d)$
a, c	b	Т	Т	_	$(\neg c \lor d)$	$(\neg b \lor c)$
a, c	$\neg d$	Т	\perp	$(\neg a \lor d)$		
$\neg c, \neg a$	b	Т	\perp	$(\neg b \lor c)$		
$b, c, \neg a$	$\neg d$	Т	\perp	$(\neg b \lor d)$		

- E is not optimal
- E can be extended

ν	р	UP_E	$SAT_{E_{ref}}$	learned	E_{ref}	Ε
Ø	a	Т	Т	_	$(\neg a \lor c)$	$(\neg a \lor c)$
a	$\neg c$	Т	\perp	$(\neg a \lor c)$	$(\neg b \lor c)$	$(\neg a \lor d)$
a, c	Ь	Т	Т	_	$(\neg c \lor d)$	$(\neg b \lor c)$
a, c	$\neg d$	Т	\perp	$(\neg a \lor d)$		$(\neg b \lor d)$
$\neg c, \neg a$	b	Т	\perp	$(\neg b \lor c)$		
$b, c, \neg a$	$\neg d$	Т	\perp	$(\neg b \lor d)$		

- E is not optimal
- E can be extended

$\overline{\nu}$	р	UP_E	$SAT_{E_{ref}}$	learned	E_{ref}	Ε
Ø	a	Т	Т	_	$(\neg a \lor c)$	$(\neg a \lor c)$
а	$\neg c$	Т	\perp	$(\neg a \lor c)$	$(\neg b \lor c)$	$(\neg a \lor d)$
a, c	b	Т	Т	_	$(\neg c \lor d)$	$(\neg b \lor c)$
a, c	$\neg d$	Т	\perp	$(\neg a \lor d)$		$(\neg b \lor d)$
$\neg c, \neg a$	b	Т	\perp	$(\neg b \lor c)$		
$b, c, \neg a$	$\neg d$	Т	\perp	$(\neg b \lor d)$		
$\neg a, \neg b, \neg d$	С	Т		$(\neg c \lor d)$		

- E is not optimal
- E can be extended

$\overline{\nu}$	р	UP_E	$SAT_{E_{ref}}$	learned	E_{ref}	Ε
Ø	а	Т	Т	_	$(\neg a \lor c)$	$(\neg a \lor c)$
a	$\neg c$	T	\perp	$(\neg a \lor c)$	$(\neg b \lor c)$	$(\neg a \lor d)$
a, c	b	T	Т	_	$(\neg c \lor d)$	$(\neg b \lor c)$
a, c	$\neg d$	Т	\perp	$(\neg a \lor d)$		$(\neg b \lor d)$
$\neg c, \neg a$	b	Т	\perp	$(\neg b \lor c)$		$(\neg c \lor d)$
$b, c, \neg a$	$\neg d$	Т	\perp	$(\neg b \lor d)$		
$\neg a, \neg b, \neg d$	С	Т		$(\neg c \lor d)$		

$$E = \{ \{\neg a, c\}, \{\neg a, d\}, \{\neg b, c\}, \{\neg b, d\}, \{\neg c, d\} \}$$
 Is E a set-minimal optimal encoding?

```
E = \{ \{\neg a, c\}, \{\neg a, d\}, \{\neg b, c\}, \{\neg b, d\}, \{\neg c, d\} \}
Is E a set-minimal optimal encoding?
```

- No! Some clauses may be removed and E is still optimal!
- {¬a, d} is redundant:
 a ⇒ d can be inferred from {¬a, c} and {¬c, d}
 ¬d ⇒ ¬a can be inferred from {¬c, d} and {¬a, c}
- Can we minimize E to a set-minimal optimal encoding?

E _{opt}	redundant	reason
$\omega_1 = (\neg a \lor c)$	Х	$E_{opt} \setminus \omega_1 \cup \{a\} \implies c$
$\omega_2 = (\neg a \lor d)$	✓	$E_{opt} \setminus \omega_2 \cup \{a\} \stackrel{\omega_1}{\Longrightarrow} c \stackrel{\omega_5}{\Longrightarrow} d$
		$E_{opt} \setminus \omega_2 \cup \{\neg d\} \xrightarrow{\omega_5} \neg c \xrightarrow{\omega_1} \neg a$
$\omega_3 = (\neg b \lor c)$	Х	$E_{opt} \setminus \omega_3 \cup \{b\} \implies c$
$\omega_4 = (\neg b \lor d)$	✓	$E_{opt} \setminus \omega_4 \cup \{b\} \stackrel{\omega_3}{\Longrightarrow} c \stackrel{\omega_5}{\Longrightarrow} d$
		$E_{opt} \setminus \omega_4 \cup \{\neg d\} \xrightarrow{\omega_5} \neg c \xrightarrow{\omega_3} \neg b$
$\omega_5 = (\neg c \lor d)$	Х	$E_{opt} \setminus \omega_5 \cup \{\neg d\} \implies \neg c$

Generating optimal encodings

• prim: small primitive encodings

comparison: It, sltaddition: adder

o multiplication: mult2

• comp: composition of primitive encodings

			Origir	al enc.				
Benchmark	Type	Optimal	#Vars	#Cls	#Vars	#Cls	#minCls	time (s)
lt	prim	Х	10	19	6	18	17	< 0.01
slt	prim	Х	8	13	4	6	6	< 0.01
adder	prim	Х	9	17	5	14	14	< 0.01
mult2	prim	Х	77	182	8	26	21	< 0.01
lt-6bit	comp	Х	26	60	13	158	21	24.13
mult-4bit	comp	Х	285	800	16	5322	4942	297.47
plus-3bit	comp	Х	19	39	9	96	96	0.08
plus-aux-3bit	comp	Х	19	39	19	62	42	3.03
plus-4bit	comp	Х	27	58	21	336	336	2.83
plus-aux-4bit	comp	Х	27	58	27	91	65	242.81

Experimental Results

CVC4 SMT solver

[Barret et al. CAV'11]

- 31066 quantifier-free bit-vector benchmarks from SMT-LIB v2.0
 - o focus on industrial from industrial applications
- Experiments run on StarExec:
 - o timeout: 900 seconds
 - o memory limit: 100GB

Experimental Results

CVC4 SMT solver

[Barret et al. CAV'11]

- 31066 quantifier-free bit-vector benchmarks from SMT-LIB v2.0
 - focus on industrial from industrial applications
- Experiments run on StarExec:

timeout: 900 secondsmemory limit: 100GB

Do optimal encodings improve the performance of SMT solvers?

Comparison: cvcLtAddition: cvcAdd

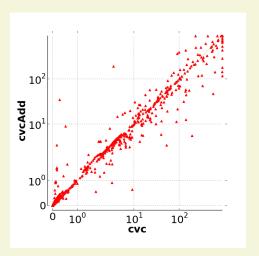
Addition: cvcAdd

Multiplication: cvcMBl2Opt

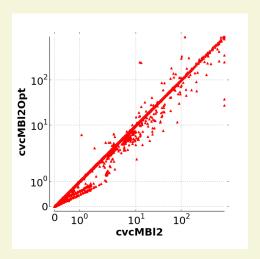
Encoding Comparison

		CVC	cvcLt		cvcAdd		cvcLtAdd		cvcMBI2		cvcMBl2Opt	
set	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
VS3 (11)	2	730.5	2	900.09	1	496.01	1	48.79	1	120.73	0	0.0
bmc-bv (135)	135	653.4	134	489.52	135	664.83	134	489.56	135	722.76	135	663.66
bru (52)	39	2619.36	39	2515.33	39	2095.94	39	1945.1	39	2626.0	39	2639.87
bru2 (65)	56	3367.28	56	3929.27	56	3319.4	56	3926.21	35	1918.09	36	1087.26
bru3 (79)	40	2791.84	44	5388.8	39	3497.52	43	5060.69	39	3249.56	40	3332.25
sp (64)	38	2768.64	38	2770.04	40	3104.32	40	3094.8	38	2738.17	38	2755.44
caly (23)	9	2.13	9	4.34	11	1339.1	11	471.9	9	16.34	9	5.33
fft (23)	8	874.8	7	71.94	7	298.1	7	179.53	8	876.93	8	881.75
float (213)	162	11433.73	160	12271.55	169	11504.6	166	10736.02	159	10214.84	161	10114.83
logs (208)	74	24486.26	75	24956.34	77	26014.95	79	27421.8	74	24595.51	73	23768.43
mcm (186)	78	7350.21	81	8554.8	83	8996.2	82	8644.39	78	7364.1	78	7337.21
rubik (7)	6	604.27	7	1378.3	6	625.01	7	1402.57	6	605.86	6	618.74
spear (1695)	1690	25972.3	1690	27633.65	1689	26231.45	1690	26133.82	1690	26258.91	1690	26237.04
taca (5)	5	1246.76	5	1075.59	5	957.8	5	1107.8	5	1242.27	5	1266.86
uclid (416)	416	1343.2	416	1561.67	416	1515.23	416	1705.26	416	1931.34	416	1592.56
uum (8)	2	10.3	2	10.18	2	10.21	2	10.2	2	10.23	2	10.18
wien (18)	14	14.14	14	14.0	14	19.39	14	19.45	14	20.93	14	21.63
	2774	86269.1	2779	93525.46	2789	90690.02	2792	92397.95	2748	84512.58	2750	82333.04

Optimal vs. Non-Optimal: Adder Encoding



Optimal vs. Non-Optimal: Multiplier Encoding



Conclusions

- Optimal encodings exist for any Boolean formula!
- Computing optimal encodings is exponential, but:
 - Feasible for small encodings
 - Small encodings can be composed into larger encodings:
 - Composition is optimal for addition and comparison
 - Composition is not optimal for multiplication
- Optimal encodings outperform non-optimal encodings!

Conclusions

- Optimal encodings exist for any Boolean formula!
- Computing optimal encodings is exponential, but:
 - Feasible for small encodings
 - Small encodings can be composed into larger encodings:
 - Composition is optimal for addition and comparison
 - Composition is not optimal for multiplication
- Optimal encodings outperform non-optimal encodings!
- Ongoing work:
 - Formalization of optimal encodings

[CADE'15]

- Improved generation of optimal encodings with auxiliary variables
- Measure how far an encoding is from an optimal encoding:
 - Predict the performance of different encodings

References

Tower of Hanoi Encodings:

- H. Kautz and B. Selman. Planning as Satisfiability. ECAI 1992: 359-363
- S. Prestwich. Variable Dependency in Local Search: Prevention Is Better Than Cure. SAT 2007: 107-120
- R. Martins and I. Lynce. Effective CNF Encodings of the Towers of Hanoi. LPAR 2008.

Cardinality and Pseudo-Boolean Encodings:

- C. Ansotegui and F. Manyá. Mapping problems with finite-domain variables into problems with boolean variables. SAT 2004: 1-15 (Ladder)
- S. Prestwich. Variable Dependency in Local Search: Prevention Is Better Than Cure. SAT 2007: 107-120 (Bitwise)
- W. Klieber and G. Kwon. Efficient CNF Encoding for Selecting 1 from N Objects. CFV 2007 (Commander)
- J. Chen. A New SAT Encoding of the At-Most-One Constraint. MofRef 2010 (Product)
- C. Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. CP 2005: 827-831 (Sequential)

References

Cardinality and Pseudo-Boolean Encodings:

- O. Bailleux and Y. Boufkhad. Efficient CNF Encoding of Boolean Cardinality Constraints. CP 2003: 108-122 (Totalizer)
- N. Een and N. Sörensson. Translating pseudo-Boolean Constraints into SAT. JSAT 2006 (2): 1-26 (Sorters)
- Peter Steinke. A C++ Toolkit for Encoding Pseudo-Boolean Constraints into CNF. http://tools.computational-logic.org/content/pblib.php

CVC4 SMT solver:

C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, C. Tinelli. CVC4. CAV 2011: 171-177

Optimal Encodings:

M. Brain, L. Hadarean, D. Kroening, and R. Martins. Stronger, Better, Faster: Optimally Propagating SAT Encodings. CADE 2015 (Submitted)