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How to encode a problem into SAT?

c famous problem (in CNF)
pecnf69
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How to encode a problem into SAT?

c pigeon hole problem
pcnf69
140
250
360
-1-20
-1-30
-2-30
-4-50
-4-60
560

# pigeon[1]@hole[1] V pigeon[1]@hole[2
# pigeon[2]@hole[1] V pigeon[2]@hole[2
# pigeon[3]@hole[1] V pigeon[3]@hole[2

# —pigeon[1]@hole[1]
# —pigeon[1]@hole[1]
# —pigeon[2]@hole[1]
# —pigeon[1]@hole[2]
# —pigeon[1]@hole[2]
# —pigeon|[2]@hole[2]

[1] ]
[2] ]
[3] ]
—pigeon[2]@hole[1]
—pigeon|[3]@hole[1]
—pigeon|[3]@hole[1]
—pigeon[2]@hole[2]
—pigeon|[3]@hole[2]
—pigeon[3]@hole[2]
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Encoding to CNF

e What to encode?

o Boolean formulas

Cardinality constraints

e x1+...+x, <k

Arithmetic

e Addition, Comparison, Multiplication...

@]

@]

e Which encoding to use?

o Different encodings have a major impact on performance !



Encoding a problem into SAT — Towers of Hanoi




Encoding a problem into SAT — Towers of Hanoi

e Only one disk may be moved at a time;
e No disk may be placed on the top of a smaller disk;

e Each move consists in taking the upper disk from one of the towers
and sliding it onto the top of another tower.



How to encode ToH?

STRIPS planning mode:

e \ariables

Actions: preconditions — postconditions

Initial state

Goal state



How to encode ToH?

[Selman & Kautz ECAI'92]

Variables: on(d, dt, i); clear(dt, i)
Actions: move(d, dt, dt, i) = obj(d, i) A from(dt, i) A to(dt, )
o preconditions:

clear(d, i), clear(dt’, i), on(d, dt, i)

o postconditions:
on(d, dt', i+ 1), clear(dt, i + 1), —on(d, dt, i), ~clear(dt',i + 1)

Initial state:

o on(dy, d>,1),...,0n(dr—1,d,, 1), 0n(dp, t1,1)
clear(dy, 1), clear(ty, 1), clear(tz, 1), clear(ts, 1)

o All other variables initialized to false

Goal state:
o on(dy,dr,2" —1),...,0n(dy—1,ds, 2" — 1), 0n(d,, t1,2" — 1)



How to encode ToH?

[Selman & Kautz ECAI'92]

Constraints:

Exactly one disk is moved at each time step

There is exactly one movement at each time step

There are no movements to exactly the same position

For a movement to be done the preconditions must be satisfied
After performing a movement the postconditions are implied
No disks can be moved to the top of smaller disks

Initial state holds at time step 0

Goal state holds at time step 27 — 1

Preserve the value of variables that were unaffected by movements



How good is this encoding?

Time limit of 10,000 seconds using picosat

n | Selman
4 0.16
5 8.31
6 54.70
7 | 5252.27
8 _

9 -

10 -

11 -

12 -




A more compact encoding

[Prestwich SAT'07]

e Actions: move(d, dt,dt,i) = obj(d, i) A from(dt, i) A to(dt, )
o Before:
e Movements from disks/towers to disks/towers
o Now:

e Movements from towers to towers
e Clear variable can be removed

e More compact encoding:

o Before: 5 towers requires 1,931 variables and 14,468 clauses
o Now: 5 towers only requires 821 variables and 6,457 clauses



How good is this encoding?

n | Selman | Prestwich
4 0.16 0.01
5 8.31 0.08
6 54.70 0.47
7 | 5252.27 3.65
8 - 109.7
9 - 7126.57
10 - -

11 - -

12 = =

e Can we do better?

o Look at the properties of the problem !

[Martins & Lynce LPAR’'08]



ToH Properties (Recursion)

e Given a ToH of size n, one may easily find a solution taking into
account the solution for a ToH of size n — 1
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e Given a ToH of size n, one may easily find a solution taking into
account the solution for a ToH of size n — 1

e The order of the disks to be moved after moving the largest disk is
exactly the same as before



ToH Properties (Recursion)

e Given a ToH of size n, one may easily find a solution taking into
account the solution for a ToH of size n — 1

e The order of the disks to be moved after moving the largest disk is
exactly the same as before



ToH Properties (Symmetry)

e ToH can be solved in 2" — 1 steps

e Considering the relationship between the movement of the disks
after/before moving the largest disk we only need to determine the
first 271 — 1 steps
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e ToH can be solved in 2" — 1 steps

e Considering the relationship between the movement of the disks
after/before moving the largest disk we only need to determine the
first 271 — 1 steps
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ToH Properties (Parity)

e When moving disks, no two odd/even disks can be moved next to
each other
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ToH Properties (Parity)

Y

e When moving disks, no two odd/even disks can be moved next to
each other
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e When moving disks, no two odd/even disks can be moved next to
each other
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ToH Properties (Cycle)

e All disks cycle in a given order between the towers:

o If nis even the odd disks will cycle clockwise (T; — T, — T3 — Ty)
while the even disks will cycle counterclockwise
(Tl — T3 — T2 = Tl)
o If nis odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise
12
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e All disks cycle in a given order between the towers:
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Experimental Results

’ Size \ Selman ‘ Prestwich

Disk Parity | Disk Cycle |

4 0,16 0.01 0 0

5 8.31 0.08 0.01 0.02
6 54.70 0.47 0.03 0.05
7 | 5252.27 3.65 0.70 0.20
8 - 109.7 5.19 5.18
9 - 7126.57 79.11 7.65
10 - - 1997.19 973.95
11 - - - 1206.37
12 - - - -

e Disk Parity and Disk Cycle encodings use the symmetry property




Experimental Results

’ Size \ Selman ‘ Prestwich

Disk Parity | Disk Cycle |

4 0,16 0.01 0 0

5 8.31 0.08 0.01 0.02
6 54.70 0.47 0.03 0.05
7 | 5252.27 3.65 0.70 0.20
8 - 109.7 5.19 5.18
9 - 7126.57 79.11 7.65
10 - - 1997.19 973.95
11 - - - 1206.37
12 - - - -

e Disk Parity and Disk Cycle encodings use the symmetry property
e Can we still do better?

13



A new encoding for ToH

e The Disk Sequence encoding:
o The recursive property determines the disks to be moved at each step

o Taking into consideration this we can keep only the variables on and
drop all the others

e Problem can be solved with just unit propagation !

14
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Unit Propagation

e Unit clause rule:
o Given a unit clause, its only unassigned literal be assigned value
1 for the clause to be satisfied
e Example: for unit clause (x1 V —x2 V —x3), x3 must be assigned value 0

e Unit propagation:
o lterated application of the unit clause rule

e Unit propagation can clauses but can also clauses

15



Experimental Results

’ Size \ Selman \ Prestwich \ Disk Parity \ Disk Cycle \ Disk Sequence ‘

4 0.16 0.01 0 0 0
5 8.31 0.08 0.01 0.02 0
6 54.70 0.47 0.03 0.05 0
7 5252.27 3.65 0.70 0.20 0.01
8 - 109.7 5.19 5.18 0.03
9 - 7126.57 79.11 7.65 0.09
10 - - 1997.19 973.95 0.23
11 - - - 1206.37 0.56
12 - - - - 1.32

16
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Unit Propagation & Encodings

e The effect of unit propagation on encodings plays a key role on
performance !

e |f a fact can be derived by using only unit propagation then no
search is needed !

e Which other encodings can be improved with unit propagation?

o Cardinality constraints
o Arithmetic operations
O
O

Any encoding !

17



How to encode cardinality constraints?

At-most-one constraints:

¢ Naive (pairwise) encoding for at-most-one constraints:

o Cardinality constraint: x; +x +x3 + x5 <1

o Clauses:
(X]_ = _\Xg) —ix1 V xo
(X1 = _|X3) =X V X3
(x1 = —xq) —x1 V —xg

o Complexity: O(n?) clauses

18
-



How to encode cardinality constraints?

At-most-k constraints:

e Naive encoding for at-most-k constraints:

o Cardinality constraint: x; +x, + x3 + x5 < 2

o Clauses:
(x1 A x2 = —x3) (=x1 V —x2 V —x3)
(1 A x2 = —xq) (mx1 V —x2 V —xq)
(2 A x3 = —xq) (mx2 V —x3 V —xq)

o Complexity: O(n*) clauses

18



Encodings for cardinality constraints

Encoding \ Clauses \ Variables \ Type

Pairwise O(n?) 0 at-most-one
Ladder  saro | O(n) n) at-most-one
Bitwise st | O(n loga n) logs n) at-most-one

Commandericrvor | O(n) n) at-most-one
n) at-most-one

Sequential cros; | O(nk) nk) at-most-k

Totalizer (cros | O(nk) n logy n) | at-most-k

o(
o(
O(
Product [vodrerio) O(n) O(
O(
O(
o(

Sorters  psaros) | O(n logs n) n logs n) | at-most-k

19



Encodings for cardinality constraints

’ Encoding \ Clauses Variables Type
Pairwise O(n?) 0 at-most-one
Ladder  saro | O(n) O(n) at-most-one
Bitwise  sator | O(n loge n) | O(logz n) at-most-one
Commandericrvor | O(n) O(n) at-most-one
Product vedrerio) | O(n) O(n) at-most-one
Sequential cros; | O(nk) O(nk) at-most-k
Totalizer (cros | O(nk) O(n logx n) | at-most-k
Sorters  (saros) | O(n logs n) | O(n logs n) | at-most-k

e Many more encodings exist

[PBLib'15]

e They can also be generalized to pseudo-Boolean constraints:
0 aixy+axxo+ ...+ apx, < k




Encodings for cardinality constraints

Properties of cardinality encodings:
e Efficient encodings are

oxit+xo+x3+...+x, <k
o If more than k variables are assigned 1:

e unit propagation detects a conflict !
o If k variables are assigned 1:

e unit propagation assigns 0 to the remaining variables !

e Cardinality encodings are w.r.t unit propagation

o For any partial assignment, if that partial assignment is unfeasible
then unit propagation will detect a conflict
o No search is needed !

19



Encodings for cardinality constraints

Properties of cardinality encodings:
e Do

o Yes !

cardinality encodings exist?

o They can be smaller than optimal cardinality encodings
o But, their performance can be 10x slower than optimal encodings

e Cardinality encodings
e All

be optimal for performance reasons
cardinality encodings are arc-consistent !
e Efficient encodings for cardinality constraints have a large

o encodings for problems with linear constraints
o Improving the

of Boolean optimization solvers
o ...

19
-



Can optimality be extended to other encodings?

[Stronger, Better, Faster: Optimally Propagating SAT Encodings, CADE'15]

Full-adder: Truth table:
a b Cin a | b |cnl Coul| s
‘ 1 1 1 1 1
| 1 1 0 1 0

J._/

1 0 1 1 0
1 0 0 0 1
0 1 1 1 0
U o 1|0l o1
0 0 1 0 1
Cout S 0 0 0 0 0

20




Can optimality be extended to other encodings?

Full-adder: Encoding:

a b Cin {"8, _‘ba Cin, —\S} {_'37 b’ Cin, _|S}
{37_'b7_‘cin7_‘5} {87 b’ Ci"’_‘s}
{_‘a,_\b,_'C;n,S} {_‘a’ b, C,'n,S}

{‘37 b7_‘cin7s} {av_'b7 Cfnvs}
{_'37 _‘bv COut} {_|3, —Cin, Cout}
{_‘b7 —Cin, Cout} {37 b7 _‘Cout}
U {au Cinvﬁcout} {b7 Cl'n7"COUl'}
Cout S

20




Can optimality be extended to other encodings?

Full-adder: Encoding:

a b Ci” {_‘37_‘[)7 Cin7_‘5} {_'av b,_|C,‘n,_‘S}
{aa_‘ba_‘cina_‘s} {aa b, C,',,,—|S}
{_‘37_‘b7_‘cin75} {_‘aa b? Cfnvs}

{a, b, ~Cin, s} {a, b, cin, s}
{_‘37_‘b7 Cout} {_\a, _‘Cimcout}
{ﬁb’ﬁcimcout} {37 bvﬁcout}
U {3, Cim_‘Cout} {b> Cim_‘cout}
Cout S

Is this an optimal encoding?
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Can optimality be extended to other encodings?

Full-adder: Encoding:
a b Cin {_'aa_‘ba Cin>ﬁ5} {_'37 b,ﬁC;n,ﬁS}
‘ {a,ﬁb7_\C,'n7ﬁS} {av b7 Cl'na_‘s}
\L/ {_'a>_‘ba_'cina } {_‘aa b7 Cin, }

{37 b7_‘Cin7 } {av_'b7 Cfnv }
{_'37 —\b, } {—|a, —Cin, }
{ﬁb,ﬁcim } {37 by_‘cout}

U {au Cinvﬁcout} {b7 Cimﬁcout}

Cout )

Is this an optimal encoding?

e No! Unit propagation does not have the same power as search !
e UP(ccout;s) = T (no conflict)
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Can optimality be extended to other encodings?

Full-adder: Encoding:
a b Cin {=a,=b, cin,—s}  {—a, b, ~Cin, s}
‘ {a, , Cin, TS} {a, b, cin, —s}
l_/ {_‘37 =b, ~cin, } {_‘aa b, cin, }
{a, b, —cjpn, 5} {a, b, cin, 5}

{_‘aa _'b7 } {_'aa —Cin, }
{_'ba —Cin, } {aa aﬁcout}
U {a7 7_‘Cout} {b7 Cinv_‘Cout}
Cout S

Is this an optimal encoding?

e No! Unit propagation does not have the same power as search !
® UP(ccout;s) = T (no conflict) SAT (ccout, S, ~a) = L (conflict)

e Unit propagation did not infer that ccout As = a!
20




Can optimality be extended to other encodings?

Full-adder:
a b G
\
|
\L_,/
Cout S

Is this an optimal encoding?

Encoding:

{—a, b, cin,—s} {—a, b, cin, 7S}
{a,—|b,—|c,-,,,—|s} {a, b, C,',,,—|S}
{—a,=b,—cin,s}  {—a,b,cin, s}
{a, b, ~cin, s} {a, b, cin, s}
{_‘37 _‘b; Cout} {_\a, —Cin, Cout}
{_‘b,ﬂcin,cout} {37 b7_‘COut}
{37 Cim_‘Cout} {b> Ciny_‘cout}

e No! Unit propagation does not have the same power as search !

e Can we automatically generate optimal encodings?

20




Finding optimal encodings

0 N O s WN =

10
11
12

13

Input: (X, Eq, Eger)

E(—Eo

PQ.push(Av.?)
while not PQ.empty () do

return E

core < PQ.pop()
foreach v € {x|x € ¥ and UP(E)(core)(v) =7} do
foreach / € {v,-v} do

core’ « core M assign(/)
if SATSolver (Egef, core’) = sat then
‘ PQ.push (core’)
else
E + E U{MUS (core) }
L PQ.compact ()

21



Finding optimal encodings

Given partial assignment v, reference encoding E,er, goal encoding E,
and unassigned literal p; if UPg(v) = T and SATg (v U {p}) = L:

e £ is not optimal

e £ can be extended

v p UPe SATE, learned Eref E
(maVe)
(=bVc)
(mcVvd)
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Finding optimal encodings

Given partial assignment v, reference encoding E,er, goal encoding E,
and unassigned literal p; if UPg(v) = T and SATg (v U {p}) =

e £ is not optimal

e £ can be extended
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Finding set-minimal optimal encodings

E = {{—|a, C}, {—|a, d}, {—|b, C}, {—|b, d}, {—|C, d}}
Is E a set-minimal optimal encoding?

22



Finding set-minimal optimal encodings

E = {{—|a, C}, {—|a, d}, {—|b, C}, {—|b, d}, {—|C, d}}
Is E a set-minimal optimal encoding?

e No! Some clauses may be removed and E is still optimal !
o {—a,d}is

o a = d can be inferred from {—a, c} and {—c, d}

o -d = —a can be inferred from {-c,d} and {2, ¢}

Can we minimize E to a set-minimal optimal encoding?
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Finding set-minimal optimal encodings

Input: Eqpt
foreach c € Eg,: do

-

foreach /it € c do
p < UP(Eop \ )(=(c \ fit)
if p({/it}) =7 then
L gotol
| EOpt <— EOpt \ C
return Eqp;

N O s WN
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Finding set-minimal optimal encodings

Eopt redundant reason
w1 =(-aVec) X Eopt \w1U{a} =& ¢
wy = (—aVd) v Eopt \w2 U{a} === c == d

Eopt \ w2 U {~d} =25 —~c =2 —a
(;.)3:(—|b\/C) X Eopt\w?,U{b} == C
ws = (—bV d) v Eopt \wa U {b} == c == d

Eopt \ wa U {~d} == -c == b
Eopt \ ws U{~d} =5 —c

ws = (mc VvV d)

>

22




Generating optimal encodings

e prim: small encodings

o comparison: lt, slt
o addition: adder
o multiplication: mult2

e comp: of primitive encodings
[ Original enc. | Optimal enc. |

Benchmark Type Optimal #Vars #Cls #Vars #Cls #minCls time (s)
It prim X 10 19 6 18 17 <0.01
slt prim X 8 13 4 6 6 <0.01
adder prim X 9 17 5 14 14 <0.01
mult2 prim X 7 182 8 26 21 <0.01
It-6bit comp X 26 60 13 158 21 24.13
mult-4bit comp X 285 800 16 5322 4942  297.47
plus-3bit comp X 19 39 9 96 96 0.08
plus-aux-3bit | comp X 19 39 19 62 42 3.03
plus-4bit comp X 27 58 21 336 336 2.83
plus-aux-4bit | comp X 27 58 27 91 65 242.81
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Experimental Results

L CVC4 SMT SOIVer [Barret et al. CAV'11]
e 31066 quantifier-free bit-vector benchmarks from SMT-LIB v2.0

o focus on industrial from industrial applications
e Experiments run on StarExec:

o timeout: 900 seconds

o memory limit: 100GB
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Experimental Results

CVC4 SMT SOIVer [Barret et al. CAV'11]
31066 quantifier-free bit-vector benchmarks from SMT-LIB v2.0

o focus on industrial from industrial applications
Experiments run on StarExec:

o timeout: 900 seconds
o memory limit: 100GB

Do optimal encodings improve the performance of SMT solvers?
o Comparison: cvclt

o Addition: cvcAdd

o Multiplication: cveMBI20pt
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Encoding Comparison

cve I cvelt I cvcAdd I cvcltAdd I cvcMBI2 cvcMBI20pt
st solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)
VS3 (11) 2 7305 2 900.09 1 496.01 1 48.79 1 12073 0 0.0
| bmc-bv (135) | 135  653.4 | 134 48952 | 135  664.83 | 134 48956 | 135 72276 | 135  663.66
bru (52) 39 261936 39 251533 30 209594 39 19451 | 39 26260 | 39  2639.87
| bru2 (65) 56 3367.28 | 56 392927 | 56 3319.4 | 56 392621 | 35 191809 | 36 1087.26
bru3 (79) 40 2791.84 44 5388.8 30 349752 43  5060.69 | 39 324056 | 40 333225
| sp (64) 38 2768.64 | 38 2770.04 | 40 310432 | 40  3094.8 | 38 273817 | 38 2755.44
caly (23) 9 213 9 434 11 13391 11 471.9 9 16.34 9 533
| fft (23) 8 8748 | 7 7194 7 2981 7 179.53 8  876.93 8  88L75
float (213) 162 1143373 160 1227155 169 11504.6 166 10736.02 | 159 10214.84 | 161 10114.83
| logs (208) 74 2448626 | 75 24956.34 | 77 26014.95 | 79 27421.8 | 74 2459551 | 73 23768.43
mem (186) 78 735021 81 85548 83 89962 82 864439 | 78 73641 | 78 7337.21
| rubik (7) 6 60427 | 7 13783| 6 62501 | 7 140257 6  605.86 6 61874
spear (1695) | 1690 25972.3 1690 27633.65 1689 26231.45 1690 26133.82 | 1690 26258.91 | 1690 26237.04
| taca (5) 5 124676 | 5 107559 | 5  957.8| 5 1107.8 5 124227 5 1266.86
uclid (416) 416 13432 416 1561.67 416 151523 416 170526 | 416 1931.34 | 416 159256
| uum (8) 2 03| 2 1018 | 2 1021 2 10.2 2 10.23 2 10.18
wien (18) 14 1414 14 140 14 1939 14 1945 | 14 2093 | 14 21.63
2774 86260.1 | 2779 9352546 | 2789 90690.02 [ 2792 92307.95 | 2748 84512.58 | 2750 82333.04
25
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Optimal vs. Non-Optimal: Adder Encoding

102
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Optimal vs.

Non-Optimal: Multiplier Encoding

=
o
N

cvcMBI20pt
=
o
2

=
o
o

o
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Conclusions

e Optimal encodings for any Boolean formula !

e Computing optimal encodings is exponential, but:

o for small encodings

o Small encodings can be into larger encodings:

e Composition is optimal for addition and comparison
e Composition is not optimal for multiplication

e Optimal encodings outperform non-optimal encodings !
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Conclusions

Optimal encodings for any Boolean formula !

Computing optimal encodings is exponential, but:
o for small encodings
o Small encodings can be into larger encodings:

e Composition is optimal for addition and comparison
e Composition is not optimal for multiplication

Optimal encodings outperform non-optimal encodings !

Ongoing work:

o of optimal encodings [CADE'15]
o Improved generation of optimal encodings with
o Measure how far an encoding is from an optimal encoding:

° the performance of different encodings
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