
SAT encodings: using the right tool for the right job

Ruben Martins

University of Oxford

April 2, 2015



How to encode a problem into SAT?

c famous problem (in CNF)
p cnf 6 9
1 4 0
2 5 0
3 6 0
-1 -2 0
-1 -3 0
-2 -3 0
-4 -5 0
-4 -6 0
-5 -6 0

2



How to encode a problem into SAT?

c pigeon hole problem
p cnf 6 9
1 4 0 # pigeon[1]@hole[1] ∨ pigeon[1]@hole[2]
2 5 0 # pigeon[2]@hole[1] ∨ pigeon[2]@hole[2]
3 6 0 # pigeon[3]@hole[1] ∨ pigeon[3]@hole[2]
-1 -2 0 # ¬pigeon[1]@hole[1] ∨ ¬pigeon[2]@hole[1]
-1 -3 0 # ¬pigeon[1]@hole[1] ∨ ¬pigeon[3]@hole[1]
-2 -3 0 # ¬pigeon[2]@hole[1] ∨ ¬pigeon[3]@hole[1]
-4 -5 0 # ¬pigeon[1]@hole[2] ∨ ¬pigeon[2]@hole[2]
-4 -6 0 # ¬pigeon[1]@hole[2] ∨ ¬pigeon[3]@hole[2]
-5 -6 0 # ¬pigeon[2]@hole[2] ∨ ¬pigeon[3]@hole[2]

2



Encoding to CNF

• What to encode?
◦ Boolean formulas
◦ Cardinality constraints

• x1 + . . . + xn ≤ k

◦ Arithmetic

• Addition, Comparison, Multiplication...

◦ . . .

• Which encoding to use?

◦ Different encodings have a major impact on performance !

3



Encoding a problem into SAT – Towers of Hanoi

• Only one disk may be moved at a time;

• No disk may be placed on the top of a smaller disk;

• Each move consists in taking the upper disk from one of the towers
and sliding it onto the top of another tower.

4



Encoding a problem into SAT – Towers of Hanoi

• Only one disk may be moved at a time;

• No disk may be placed on the top of a smaller disk;

• Each move consists in taking the upper disk from one of the towers
and sliding it onto the top of another tower.

4



How to encode ToH?

STRIPS planning mode:

• Variables

• Actions: preconditions → postconditions

• Initial state

• Goal state

5



How to encode ToH?

[Selman & Kautz ECAI’92]

• Variables: on(d , dt, i); clear(dt, i)

• Actions: move(d , dt, dt, i) = obj(d , i) ∧ from(dt, i) ∧ to(dt, i)
◦ preconditions:

clear(d , i), clear(dt ′, i), on(d , dt, i)
◦ postconditions:

on(d , dt ′, i + 1), clear(dt, i + 1),¬on(d , dt, i),¬clear(dt ′, i + 1)

• Initial state:
◦ on(d1, d2, 1), . . . , on(dn−1, dn, 1), on(dn, t1, 1)

clear(d1, 1), clear(t1, 1), clear(t2, 1), clear(t3, 1)
◦ All other variables initialized to false

• Goal state:
◦ on(d1, d2, 2

n − 1), . . . , on(dn−1, dn, 2
n − 1), on(dn, t1, 2

n − 1)

5



How to encode ToH?

[Selman & Kautz ECAI’92]

Constraints:

• Exactly one disk is moved at each time step

• There is exactly one movement at each time step

• There are no movements to exactly the same position

• For a movement to be done the preconditions must be satisfied

• After performing a movement the postconditions are implied

• No disks can be moved to the top of smaller disks

• Initial state holds at time step 0

• Goal state holds at time step 2n − 1

• Preserve the value of variables that were unaffected by movements

5



How good is this encoding?

Time limit of 10,000 seconds using picosat

n Selman

4 0.16
5 8.31
6 54.70
7 5252.27
8 -
9 -

10 -
11 -
12 -

6



A more compact encoding

[Prestwich SAT’07]

• Actions: move(d , dt, dt, i) = obj(d , i) ∧ from(dt, i) ∧ to(dt, i)
◦ Before:

• Movements from disks/towers to disks/towers

◦ Now:

• Movements from towers to towers
• Clear variable can be removed

• More compact encoding:
◦ Before: 5 towers requires 1,931 variables and 14,468 clauses
◦ Now: 5 towers only requires 821 variables and 6,457 clauses

7



How good is this encoding?

n Selman Prestwich

4 0.16 0.01
5 8.31 0.08
6 54.70 0.47
7 5252.27 3.65
8 - 109.7
9 - 7126.57

10 - -
11 - -
12 - -

• Can we do better? [Martins & Lynce LPAR’08]

◦ Look at the properties of the problem !

8



ToH Properties (Recursion)

• Given a ToH of size n, one may easily find a solution taking into
account the solution for a ToH of size n − 1

• The order of the disks to be moved after moving the largest disk is
exactly the same as before

9



ToH Properties (Recursion)

• Given a ToH of size n, one may easily find a solution taking into
account the solution for a ToH of size n − 1

• The order of the disks to be moved after moving the largest disk is
exactly the same as before

9



ToH Properties (Recursion)

• Given a ToH of size n, one may easily find a solution taking into
account the solution for a ToH of size n − 1

• The order of the disks to be moved after moving the largest disk is
exactly the same as before

9



ToH Properties (Recursion)

• Given a ToH of size n, one may easily find a solution taking into
account the solution for a ToH of size n − 1

• The order of the disks to be moved after moving the largest disk is
exactly the same as before

9



ToH Properties (Symmetry)

• ToH can be solved in 2n − 1 steps

• Considering the relationship between the movement of the disks
after/before moving the largest disk we only need to determine the
first 2n−1 − 1 steps

10



ToH Properties (Symmetry)

• ToH can be solved in 2n − 1 steps

• Considering the relationship between the movement of the disks
after/before moving the largest disk we only need to determine the
first 2n−1 − 1 steps

10



ToH Properties (Parity)

• When moving disks, no two odd/even disks can be moved next to
each other

11



ToH Properties (Parity)

• When moving disks, no two odd/even disks can be moved next to
each other

11



ToH Properties (Parity)

• When moving disks, no two odd/even disks can be moved next to
each other

11



ToH Properties (Parity)

• When moving disks, no two odd/even disks can be moved next to
each other

11



ToH Properties (Parity)

• When moving disks, no two odd/even disks can be moved next to
each other

11



ToH Properties (Parity)

• When moving disks, no two odd/even disks can be moved next to
each other

11



ToH Properties (Parity)

• When moving disks, no two odd/even disks can be moved next to
each other

11



ToH Properties (Parity)

• When moving disks, no two odd/even disks can be moved next to
each other

11



ToH Properties (Cycle)

• All disks cycle in a given order between the towers:

◦ If n is even the odd disks will cycle clockwise (T1 → T2 → T3 → T1)
while the even disks will cycle counterclockwise
(T1 → T3 → T2 → T1)

◦ If n is odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise

12



ToH Properties (Cycle)

• All disks cycle in a given order between the towers:

◦ If n is even the odd disks will cycle clockwise (T1 → T2 → T3 → T1)
while the even disks will cycle counterclockwise
(T1 → T3 → T2 → T1)

◦ If n is odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise

12



ToH Properties (Cycle)

• All disks cycle in a given order between the towers:

◦ If n is even the odd disks will cycle clockwise (T1 → T2 → T3 → T1)
while the even disks will cycle counterclockwise
(T1 → T3 → T2 → T1)

◦ If n is odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise

12



ToH Properties (Cycle)

• All disks cycle in a given order between the towers:

◦ If n is even the odd disks will cycle clockwise (T1 → T2 → T3 → T1)
while the even disks will cycle counterclockwise
(T1 → T3 → T2 → T1)

◦ If n is odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise

12



ToH Properties (Cycle)

• All disks cycle in a given order between the towers:

◦ If n is even the odd disks will cycle clockwise (T1 → T2 → T3 → T1)
while the even disks will cycle counterclockwise
(T1 → T3 → T2 → T1)

◦ If n is odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise

12



ToH Properties (Cycle)

• All disks cycle in a given order between the towers:

◦ If n is even the odd disks will cycle clockwise (T1 → T2 → T3 → T1)
while the even disks will cycle counterclockwise
(T1 → T3 → T2 → T1)

◦ If n is odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise

12



ToH Properties (Cycle)

• All disks cycle in a given order between the towers:

◦ If n is even the odd disks will cycle clockwise (T1 → T2 → T3 → T1)
while the even disks will cycle counterclockwise
(T1 → T3 → T2 → T1)

◦ If n is odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise

12



ToH Properties (Cycle)

• All disks cycle in a given order between the towers:

◦ If n is even the odd disks will cycle clockwise (T1 → T2 → T3 → T1)
while the even disks will cycle counterclockwise
(T1 → T3 → T2 → T1)

◦ If n is odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise

12



ToH Properties (Cycle)

• All disks cycle in a given order between the towers:

◦ If n is even the odd disks will cycle clockwise (T1 → T2 → T3 → T1)
while the even disks will cycle counterclockwise
(T1 → T3 → T2 → T1)

◦ If n is odd the odd disks will cycle counterclockwise while the even
disks will cycle clockwise

12



Experimental Results

Size Selman Prestwich Disk Parity Disk Cycle

4 0,16 0.01 0 0

5 8.31 0.08 0.01 0.02

6 54.70 0.47 0.03 0.05

7 5252.27 3.65 0.70 0.20

8 - 109.7 5.19 5.18

9 - 7126.57 79.11 7.65

10 - - 1997.19 973.95

11 - - - 1206.37

12 - - - -

• Disk Parity and Disk Cycle encodings use the symmetry property

• Can we still do better?

13



Experimental Results

Size Selman Prestwich Disk Parity Disk Cycle

4 0,16 0.01 0 0

5 8.31 0.08 0.01 0.02

6 54.70 0.47 0.03 0.05

7 5252.27 3.65 0.70 0.20

8 - 109.7 5.19 5.18

9 - 7126.57 79.11 7.65

10 - - 1997.19 973.95

11 - - - 1206.37

12 - - - -

• Disk Parity and Disk Cycle encodings use the symmetry property

• Can we still do better?

13



A new encoding for ToH

• The Disk Sequence encoding:

◦ The recursive property determines the disks to be moved at each step

◦ Taking into consideration this we can keep only the variables on and
drop all the others

◦ Recursion+Symmetry+Parity:

• Problem can be solved with just unit propagation !

14



Unit Propagation

• Unit clause rule:
◦ Given a unit clause, its only unassigned literal must be assigned value

1 for the clause to be satisfied

• Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be assigned value 0

• Unit propagation:
◦ Iterated application of the unit clause rule

• Unit propagation can satisfy clauses but can also unsatisfy clauses

15



Experimental Results

Size Selman Prestwich Disk Parity Disk Cycle Disk Sequence

4 0.16 0.01 0 0 0
5 8.31 0.08 0.01 0.02 0
6 54.70 0.47 0.03 0.05 0
7 5252.27 3.65 0.70 0.20 0.01
8 - 109.7 5.19 5.18 0.03
9 - 7126.57 79.11 7.65 0.09

10 - - 1997.19 973.95 0.23
11 - - - 1206.37 0.56
12 - - - - 1.32

16



Unit Propagation & Encodings

• The effect of unit propagation on encodings plays a key role on
performance !

• If a fact can be derived by using only unit propagation then no
search is needed !

• Which other encodings can be improved with unit propagation?
◦ Cardinality constraints
◦ Arithmetic operations
◦ . . .
◦ Any encoding !

17



How to encode cardinality constraints?

At-most-one constraints:

• Naive (pairwise) encoding for at-most-one constraints:

◦ Cardinality constraint: x1 + x2 + x3 + x4 ≤ 1
◦ Clauses:

(x1 ⇒ ¬x2)
(x1 ⇒ ¬x3)
(x1 ⇒ ¬x4)

. . .


¬x1 ∨ ¬x2

¬x1 ∨ ¬x3

¬x1 ∨ ¬x4

. . .

◦ Complexity: O(n2) clauses

18



How to encode cardinality constraints?

At-most-k constraints:

• Naive encoding for at-most-k constraints:

◦ Cardinality constraint: x1 + x2 + x3 + x4 ≤ 2
◦ Clauses:

(x1 ∧ x2 ⇒ ¬x3)
(x1 ∧ x2 ⇒ ¬x4)
(x2 ∧ x3 ⇒ ¬x4)

. . .


(¬x1 ∨ ¬x2 ∨ ¬x3)
(¬x1 ∨ ¬x2 ∨ ¬x4)
(¬x2 ∨ ¬x3 ∨ ¬x4)

. . .

◦ Complexity: O(nk) clauses

18



Encodings for cardinality constraints

Encoding Clauses Variables Type

Pairwise O(n2) 0 at-most-one

Ladder [SAT’04] O(n) O(n) at-most-one

Bitwise [SAT’07] O(n log2 n) O(log2 n) at-most-one

Commander[CFV’07] O(n) O(n) at-most-one

Product [ModRef’10] O(n) O(n) at-most-one

Sequential [CP’05] O(nk) O(nk) at-most-k

Totalizer [CP’03] O(nk) O(n log2 n) at-most-k

Sorters [JSAT’06] O(n log2
2 n) O(n log2

2 n) at-most-k

19



Encodings for cardinality constraints

Encoding Clauses Variables Type

Pairwise O(n2) 0 at-most-one

Ladder [SAT’04] O(n) O(n) at-most-one

Bitwise [SAT’07] O(n log2 n) O(log2 n) at-most-one

Commander[CFV’07] O(n) O(n) at-most-one

Product [ModRef’10] O(n) O(n) at-most-one

Sequential [CP’05] O(nk) O(nk) at-most-k

Totalizer [CP’03] O(nk) O(n log2 n) at-most-k

Sorters [JSAT’06] O(n log2
2 n) O(n log2

2 n) at-most-k

• Many more encodings exist [PBLib’15]

• They can also be generalized to pseudo-Boolean constraints:
◦ a1x1 + a2x2 + . . .+ anxn ≤ k

19



Encodings for cardinality constraints

Properties of cardinality encodings:

• Efficient encodings are arc consistent:
◦ x1 + x2 + x3 + . . .+ xn ≤ k
◦ If more than k variables are assigned 1:

• unit propagation detects a conflict !

◦ If k variables are assigned 1:

• unit propagation assigns 0 to the remaining variables !

• Cardinality encodings are optimal w.r.t unit propagation
◦ For any partial assignment, if that partial assignment is unfeasible

then unit propagation will detect a conflict
◦ No search is needed !

19



Encodings for cardinality constraints

Properties of cardinality encodings:

• Do non-optimal cardinality encodings exist?
◦ Yes !
◦ They can be smaller than optimal cardinality encodings
◦ But, their performance can be 10× slower than optimal encodings

• Cardinality encodings must be optimal for performance reasons

• All new cardinality encodings are arc-consistent !

• Efficient encodings for cardinality constraints have a large impact:
◦ Better encodings for problems with linear constraints
◦ Improving the performance of Boolean optimization solvers
◦ . . .

19



Can optimality be extended to other encodings?

[Stronger, Better, Faster: Optimally Propagating SAT Encodings, CADE’15]

Full-adder:

a b cin

cout s

Truth table:

a b cin cout s

1 1 1 1 1
1 1 0 1 0
1 0 1 1 0
1 0 0 0 1
0 1 1 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 0 0

20



Can optimality be extended to other encodings?

Full-adder:

a b cin

cout s

Encoding:

{¬a,¬b, cin,¬s} {¬a, b,¬cin,¬s}
{a,¬b,¬cin,¬s} {a, b, cin,¬s}
{¬a,¬b,¬cin, s} {¬a, b, cin, s}
{a, b,¬cin, s} {a,¬b, cin, s}
{¬a,¬b, cout} {¬a,¬cin, cout}
{¬b,¬cin, cout} {a, b,¬cout}
{a, cin,¬cout} {b, cin,¬cout}

20



Can optimality be extended to other encodings?

Full-adder:

a b cin

cout s

Encoding:

{¬a,¬b, cin,¬s} {¬a, b,¬cin,¬s}
{a,¬b,¬cin,¬s} {a, b, cin,¬s}
{¬a,¬b,¬cin, s} {¬a, b, cin, s}
{a, b,¬cin, s} {a,¬b, cin, s}
{¬a,¬b, cout} {¬a,¬cin, cout}
{¬b,¬cin, cout} {a, b,¬cout}
{a, cin,¬cout} {b, cin,¬cout}

Is this an optimal encoding?

20



Can optimality be extended to other encodings?

Full-adder:

a b cin

cout s

Encoding:

{¬a,¬b, cin,¬s} {¬a, b,¬cin,¬s}
{a,¬b,¬cin,¬s} {a, b, cin,¬s}
{¬a,¬b,¬cin, s} {¬a, b, cin, s}
{a, b,¬cin, s} {a,¬b, cin, s}
{¬a,¬b, cout} {¬a,¬cin, cout}
{¬b,¬cin, cout} {a, b,¬cout}
{a, cin,¬cout} {b, cin,¬cout}

Is this an optimal encoding?

• No ! Unit propagation does not have the same power as search !
• UP(ccout , s) = > (no conflict)

20



Can optimality be extended to other encodings?

Full-adder:

a b cin

cout s

Encoding:

{¬a,¬b, cin,¬s} {¬a, b,¬cin,¬s}
{a, ¬b , ¬cin, ¬s} {a, b, cin,¬s}
{¬a,¬b,¬cin, s} {¬a, b, cin, s}
{a, b,¬cin, s} {a,¬b, cin, s}
{¬a,¬b, cout} {¬a,¬cin, cout}
{¬b,¬cin, cout} {a, b ,¬cout}
{a, cin,¬cout} {b, cin,¬cout}

Is this an optimal encoding?

• No ! Unit propagation does not have the same power as search !
• UP(ccout , s) = > (no conflict) but SAT (ccout , s,¬a) = ⊥ (conflict)
• Unit propagation did not infer that ccout ∧ s =⇒ a !

20



Can optimality be extended to other encodings?

Full-adder:

a b cin

cout s

Encoding:

{¬a,¬b, cin,¬s} {¬a, b,¬cin,¬s}
{a,¬b,¬cin,¬s} {a, b, cin,¬s}
{¬a,¬b,¬cin, s} {¬a, b, cin, s}
{a, b,¬cin, s} {a,¬b, cin, s}
{¬a,¬b, cout} {¬a,¬cin, cout}
{¬b,¬cin, cout} {a, b,¬cout}
{a, cin,¬cout} {b, cin,¬cout}

Is this an optimal encoding?

• No ! Unit propagation does not have the same power as search !

• Can we automatically generate optimal encodings?
20



Finding optimal encodings

Input: 〈Σ,E0,ERef〉
1 E ← E0

2 PQ.push(λv .?)
3 while not PQ.empty() do
4 core ← PQ.pop()
5 foreach v ∈ {x |x ∈ Σ and UP(E)(core)(v) =?} do
6 foreach l ∈ {v ,¬v} do
7 core′ ← core u assign(l)
8 if SATSolver(ERef , core′) = sat then

9 PQ.push(core′)

10 else
11 E ← E ∪{MUS(core′)}
12 PQ.compact()

13 return E
21



Finding optimal encodings

Given partial assignment ν, reference encoding Eref , goal encoding E ,
and unassigned literal p; if UPE (ν) = > and SATEref

(ν ∪ {p}) = ⊥:

• E is not optimal

• E can be extended

ν p UPE SATEref
learned Eref E

(¬a ∨ c)
(¬b ∨ c)
(¬c ∨ d)

21



Finding optimal encodings

Given partial assignment ν, reference encoding Eref , goal encoding E ,
and unassigned literal p; if UPE (ν) = > and SATEref

(ν ∪ {p}) = ⊥:

• E is not optimal

• E can be extended

ν p UPE SATEref
learned Eref E

∅ a > > − (¬a ∨ c)
(¬b ∨ c)
(¬c ∨ d)

21



Finding optimal encodings

Given partial assignment ν, reference encoding Eref , goal encoding E ,
and unassigned literal p; if UPE (ν) = > and SATEref

(ν ∪ {p}) = ⊥:

• E is not optimal

• E can be extended

ν p UPE SATEref
learned Eref E

∅ a > > − (¬a ∨ c)
a ¬c > ⊥ (¬a ∨ c) (¬b ∨ c)

(¬c ∨ d)

21



Finding optimal encodings

Given partial assignment ν, reference encoding Eref , goal encoding E ,
and unassigned literal p; if UPE (ν) = > and SATEref

(ν ∪ {p}) = ⊥:

• E is not optimal

• E can be extended

ν p UPE SATEref
learned Eref E

∅ a > > − (¬a ∨ c) (¬a ∨ c)
a ¬c > ⊥ (¬a ∨ c) (¬b ∨ c)

(¬c ∨ d)

21



Finding optimal encodings

Given partial assignment ν, reference encoding Eref , goal encoding E ,
and unassigned literal p; if UPE (ν) = > and SATEref

(ν ∪ {p}) = ⊥:

• E is not optimal

• E can be extended

ν p UPE SATEref
learned Eref E

∅ a > > − (¬a ∨ c) (¬a ∨ c)
a ¬c > ⊥ (¬a ∨ c) (¬b ∨ c)
a, c b > > − (¬c ∨ d)

21



Finding optimal encodings

Given partial assignment ν, reference encoding Eref , goal encoding E ,
and unassigned literal p; if UPE (ν) = > and SATEref

(ν ∪ {p}) = ⊥:

• E is not optimal

• E can be extended

ν p UPE SATEref
learned Eref E

∅ a > > − (¬a ∨ c) (¬a ∨ c)
a ¬c > ⊥ (¬a ∨ c) (¬b ∨ c)
a, c b > > − (¬c ∨ d)
a, c ¬d > ⊥ (¬a ∨ d)

21



Finding optimal encodings

Given partial assignment ν, reference encoding Eref , goal encoding E ,
and unassigned literal p; if UPE (ν) = > and SATEref

(ν ∪ {p}) = ⊥:

• E is not optimal

• E can be extended

ν p UPE SATEref
learned Eref E

∅ a > > − (¬a ∨ c) (¬a ∨ c)
a ¬c > ⊥ (¬a ∨ c) (¬b ∨ c) (¬a ∨ d)
a, c b > > − (¬c ∨ d)
a, c ¬d > ⊥ (¬a ∨ d)

21



Finding optimal encodings

Given partial assignment ν, reference encoding Eref , goal encoding E ,
and unassigned literal p; if UPE (ν) = > and SATEref

(ν ∪ {p}) = ⊥:

• E is not optimal

• E can be extended

ν p UPE SATEref
learned Eref E

∅ a > > − (¬a ∨ c) (¬a ∨ c)
a ¬c > ⊥ (¬a ∨ c) (¬b ∨ c) (¬a ∨ d)
a, c b > > − (¬c ∨ d)
a, c ¬d > ⊥ (¬a ∨ d)
¬c,¬a b > ⊥ (¬b ∨ c)

21



Finding optimal encodings

Given partial assignment ν, reference encoding Eref , goal encoding E ,
and unassigned literal p; if UPE (ν) = > and SATEref

(ν ∪ {p}) = ⊥:

• E is not optimal

• E can be extended

ν p UPE SATEref
learned Eref E

∅ a > > − (¬a ∨ c) (¬a ∨ c)
a ¬c > ⊥ (¬a ∨ c) (¬b ∨ c) (¬a ∨ d)
a, c b > > − (¬c ∨ d) (¬b ∨ c)
a, c ¬d > ⊥ (¬a ∨ d)
¬c,¬a b > ⊥ (¬b ∨ c)

21



Finding optimal encodings

Given partial assignment ν, reference encoding Eref , goal encoding E ,
and unassigned literal p; if UPE (ν) = > and SATEref

(ν ∪ {p}) = ⊥:

• E is not optimal

• E can be extended

ν p UPE SATEref
learned Eref E

∅ a > > − (¬a ∨ c) (¬a ∨ c)
a ¬c > ⊥ (¬a ∨ c) (¬b ∨ c) (¬a ∨ d)
a, c b > > − (¬c ∨ d) (¬b ∨ c)
a, c ¬d > ⊥ (¬a ∨ d)
¬c,¬a b > ⊥ (¬b ∨ c)
b, c ,¬a ¬d > ⊥ (¬b ∨ d)

21



Finding optimal encodings

Given partial assignment ν, reference encoding Eref , goal encoding E ,
and unassigned literal p; if UPE (ν) = > and SATEref

(ν ∪ {p}) = ⊥:

• E is not optimal

• E can be extended

ν p UPE SATEref
learned Eref E

∅ a > > − (¬a ∨ c) (¬a ∨ c)
a ¬c > ⊥ (¬a ∨ c) (¬b ∨ c) (¬a ∨ d)
a, c b > > − (¬c ∨ d) (¬b ∨ c)
a, c ¬d > ⊥ (¬a ∨ d) (¬b ∨ d)
¬c,¬a b > ⊥ (¬b ∨ c)
b, c ,¬a ¬d > ⊥ (¬b ∨ d)

21



Finding optimal encodings

Given partial assignment ν, reference encoding Eref , goal encoding E ,
and unassigned literal p; if UPE (ν) = > and SATEref

(ν ∪ {p}) = ⊥:

• E is not optimal

• E can be extended

ν p UPE SATEref
learned Eref E

∅ a > > − (¬a ∨ c) (¬a ∨ c)
a ¬c > ⊥ (¬a ∨ c) (¬b ∨ c) (¬a ∨ d)
a, c b > > − (¬c ∨ d) (¬b ∨ c)
a, c ¬d > ⊥ (¬a ∨ d) (¬b ∨ d)
¬c,¬a b > ⊥ (¬b ∨ c)
b, c ,¬a ¬d > ⊥ (¬b ∨ d)
¬a,¬b,¬d c > ⊥ (¬c ∨ d)

21



Finding optimal encodings

Given partial assignment ν, reference encoding Eref , goal encoding E ,
and unassigned literal p; if UPE (ν) = > and SATEref

(ν ∪ {p}) = ⊥:

• E is not optimal

• E can be extended

ν p UPE SATEref
learned Eref E

∅ a > > − (¬a ∨ c) (¬a ∨ c)
a ¬c > ⊥ (¬a ∨ c) (¬b ∨ c) (¬a ∨ d)
a, c b > > − (¬c ∨ d) (¬b ∨ c)
a, c ¬d > ⊥ (¬a ∨ d) (¬b ∨ d)
¬c,¬a b > ⊥ (¬b ∨ c) (¬c ∨ d)
b, c ,¬a ¬d > ⊥ (¬b ∨ d)
¬a,¬b,¬d c > ⊥ (¬c ∨ d)

21



Finding set-minimal optimal encodings

E = {{¬a, c}, {¬a, d}, {¬b, c}, {¬b, d}, {¬c , d}}
Is E a set-minimal optimal encoding?

• No ! Some clauses may be removed and E is still optimal !

• {¬a, d} is redundant:
◦ a =⇒ d can be inferred from {¬a, c} and {¬c , d}
◦ ¬d =⇒ ¬a can be inferred from {¬c , d} and {¬a, c}

• Can we minimize E to a set-minimal optimal encoding?

22



Finding set-minimal optimal encodings

E = {{¬a, c}, {¬a, d}, {¬b, c}, {¬b, d}, {¬c , d}}
Is E a set-minimal optimal encoding?

• No ! Some clauses may be removed and E is still optimal !

• {¬a, d} is redundant:
◦ a =⇒ d can be inferred from {¬a, c} and {¬c , d}
◦ ¬d =⇒ ¬a can be inferred from {¬c , d} and {¬a, c}

• Can we minimize E to a set-minimal optimal encoding?

22



Finding set-minimal optimal encodings

Input: EOpt

1 foreach c ∈ EOpt do

2 foreach lit ∈ c do
3 p ← UP(EOpt \ c)(¬(c \ lit))
4 if p({lit}) =? then
5 go to 1

6 EOpt ← EOpt \ c
7 return EOpt

22



Finding set-minimal optimal encodings

Eopt redundant reason

ω1 = (¬a ∨ c) 7 Eopt \ ω1 ∪ {a} 6=⇒ c

ω2 = (¬a ∨ d) 3 Eopt \ ω2 ∪ {a}
ω1==⇒ c

ω5==⇒ d

Eopt \ ω2 ∪ {¬d}
ω5==⇒ ¬c ω1==⇒ ¬a

ω3 = (¬b ∨ c) 7 Eopt \ ω3 ∪ {b} 6=⇒ c

ω4 = (¬b ∨ d) 3 Eopt \ ω4 ∪ {b}
ω3==⇒ c

ω5==⇒ d

Eopt \ ω4 ∪ {¬d}
ω5==⇒ ¬c ω3==⇒ ¬b

ω5 = (¬c ∨ d) 7 Eopt \ ω5 ∪ {¬d} 6=⇒ ¬c

22



Generating optimal encodings

• prim: small primitive encodings
◦ comparison: lt, slt
◦ addition: adder
◦ multiplication: mult2

• comp: composition of primitive encodings

Original enc. Optimal enc.
Benchmark Type Optimal #Vars #Cls #Vars #Cls #minCls time (s)

lt prim 7 10 19 6 18 17 <0.01
slt prim 7 8 13 4 6 6 <0.01
adder prim 7 9 17 5 14 14 <0.01
mult2 prim 7 77 182 8 26 21 <0.01
lt-6bit comp 7 26 60 13 158 21 24.13
mult-4bit comp 7 285 800 16 5322 4942 297.47
plus-3bit comp 7 19 39 9 96 96 0.08
plus-aux-3bit comp 7 19 39 19 62 42 3.03
plus-4bit comp 7 27 58 21 336 336 2.83
plus-aux-4bit comp 7 27 58 27 91 65 242.81

23



Experimental Results

• CVC4 SMT solver [Barret et al. CAV’11]

• 31066 quantifier-free bit-vector benchmarks from SMT-LIB v2.0
◦ focus on industrial from industrial applications

• Experiments run on StarExec:
◦ timeout: 900 seconds
◦ memory limit: 100GB

• Do optimal encodings improve the performance of SMT solvers?
◦ Comparison: cvcLt
◦ Addition: cvcAdd
◦ Multiplication: cvcMBl2Opt

24



Experimental Results

• CVC4 SMT solver [Barret et al. CAV’11]

• 31066 quantifier-free bit-vector benchmarks from SMT-LIB v2.0
◦ focus on industrial from industrial applications

• Experiments run on StarExec:
◦ timeout: 900 seconds
◦ memory limit: 100GB

• Do optimal encodings improve the performance of SMT solvers?
◦ Comparison: cvcLt
◦ Addition: cvcAdd
◦ Multiplication: cvcMBl2Opt

24



Encoding Comparison

cvc cvcLt cvcAdd cvcLtAdd cvcMBl2 cvcMBl2Opt
set solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

VS3 (11) 2 730.5 2 900.09 1 496.01 1 48.79 1 120.73 0 0.0
bmc-bv (135) 135 653.4 134 489.52 135 664.83 134 489.56 135 722.76 135 663.66
bru (52) 39 2619.36 39 2515.33 39 2095.94 39 1945.1 39 2626.0 39 2639.87
bru2 (65) 56 3367.28 56 3929.27 56 3319.4 56 3926.21 35 1918.09 36 1087.26
bru3 (79) 40 2791.84 44 5388.8 39 3497.52 43 5060.69 39 3249.56 40 3332.25
sp (64) 38 2768.64 38 2770.04 40 3104.32 40 3094.8 38 2738.17 38 2755.44
caly (23) 9 2.13 9 4.34 11 1339.1 11 471.9 9 16.34 9 5.33
fft (23) 8 874.8 7 71.94 7 298.1 7 179.53 8 876.93 8 881.75
float (213) 162 11433.73 160 12271.55 169 11504.6 166 10736.02 159 10214.84 161 10114.83
logs (208) 74 24486.26 75 24956.34 77 26014.95 79 27421.8 74 24595.51 73 23768.43
mcm (186) 78 7350.21 81 8554.8 83 8996.2 82 8644.39 78 7364.1 78 7337.21
rubik (7) 6 604.27 7 1378.3 6 625.01 7 1402.57 6 605.86 6 618.74
spear (1695) 1690 25972.3 1690 27633.65 1689 26231.45 1690 26133.82 1690 26258.91 1690 26237.04
taca (5) 5 1246.76 5 1075.59 5 957.8 5 1107.8 5 1242.27 5 1266.86
uclid (416) 416 1343.2 416 1561.67 416 1515.23 416 1705.26 416 1931.34 416 1592.56
uum (8) 2 10.3 2 10.18 2 10.21 2 10.2 2 10.23 2 10.18
wien (18) 14 14.14 14 14.0 14 19.39 14 19.45 14 20.93 14 21.63

2774 86269.1 2779 93525.46 2789 90690.02 2792 92397.95 2748 84512.58 2750 82333.04

25



Optimal vs. Non-Optimal: Adder Encoding

26



Optimal vs. Non-Optimal: Multiplier Encoding

27



Conclusions

• Optimal encodings exist for any Boolean formula !

• Computing optimal encodings is exponential, but:
◦ Feasible for small encodings
◦ Small encodings can be composed into larger encodings:

• Composition is optimal for addition and comparison
• Composition is not optimal for multiplication

• Optimal encodings outperform non-optimal encodings !

• Ongoing work:
◦ Formalization of optimal encodings [CADE’15]

◦ Improved generation of optimal encodings with auxiliary variables
◦ Measure how far an encoding is from an optimal encoding:

• Predict the performance of different encodings

28



Conclusions

• Optimal encodings exist for any Boolean formula !

• Computing optimal encodings is exponential, but:
◦ Feasible for small encodings
◦ Small encodings can be composed into larger encodings:

• Composition is optimal for addition and comparison
• Composition is not optimal for multiplication

• Optimal encodings outperform non-optimal encodings !

• Ongoing work:
◦ Formalization of optimal encodings [CADE’15]

◦ Improved generation of optimal encodings with auxiliary variables
◦ Measure how far an encoding is from an optimal encoding:

• Predict the performance of different encodings

28



References

Tower of Hanoi Encodings:

H. Kautz and B. Selman. Planning as Satisfiability. ECAI 1992: 359-363

S. Prestwich. Variable Dependency in Local Search: Prevention Is Better
Than Cure. SAT 2007: 107-120

R. Martins and I. Lynce. Effective CNF Encodings of the Towers of Hanoi.
LPAR 2008.

Cardinality and Pseudo-Boolean Encodings:

C. Ansotegui and F. Manyá. Mapping problems with finite-domain variables
into problems with boolean variables. SAT 2004: 1-15 (Ladder)

S. Prestwich. Variable Dependency in Local Search: Prevention Is Better
Than Cure. SAT 2007: 107-120 (Bitwise)

W. Klieber and G. Kwon. Efficient CNF Encoding for Selecting 1 from N
Objects. CFV 2007 (Commander)

J. Chen. A New SAT Encoding of the At-Most-One Constraint. MofRef 2010
(Product)

C. Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Con-
straints. CP 2005: 827-831 (Sequential)

29



References

Cardinality and Pseudo-Boolean Encodings:

O. Bailleux and Y. Boufkhad. Efficient CNF Encoding of Boolean Cardinality
Constraints. CP 2003: 108-122 (Totalizer)

N. Een and N. Sörensson. Translating pseudo-Boolean Constraints into SAT.
JSAT 2006 (2): 1-26 (Sorters)

Peter Steinke. A C++ Toolkit for Encoding Pseudo-Boolean Constraints into
CNF. http://tools.computational-logic.org/content/pblib.php

CVC4 SMT solver:

C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A.
Reynolds, C. Tinelli. CVC4. CAV 2011: 171-177

Optimal Encodings:

M. Brain, L. Hadarean, D. Kroening, and R. Martins. Stronger, Better,
Faster: Optimally Propagating SAT Encodings. CADE 2015 (Submitted)

29

http://tools.computational-logic.org/content/pblib.php

