
Clause Sharing in Deterministic Parallel
Maximum Satisfiability

Ruben Martins Vasco Manquinho Inês Lynce

IST/INESC-ID, Technical University of Lisbon, Portugal

RCRA 2012, Rome, Italy



Maximum Satisfiability

• Maximum Satisfiability (MaxSAT):
◦ Optimization version of Boolean Satisfiability (SAT);
◦ Goal: Given a propositional formula ϕ, find an assignment to problem

variables that maximizes (minimizes) number of satisfied (unsatisfied)
clauses in ϕ.

2 / 20



Maximum Satisfiability

• Maximum Satisfiability (MaxSAT):
◦ Optimization version of Boolean Satisfiability (SAT);
◦ Goal: Given a propositional formula ϕ, find an assignment to problem

variables that maximizes (minimizes) number of satisfied (unsatisfied)
clauses in ϕ.

• Partial MaxSAT
◦ Goal: Given a propositional formula ϕ = ϕh

⋃
ϕs , find an assignment

to problem variables such that all hard clauses in ϕh are satisfied,
while minimizing the number of unsatisfied soft clauses in ϕs .

2 / 20



Maximum Satisfiability

• Maximum Satisfiability (MaxSAT):
◦ Optimization version of Boolean Satisfiability (SAT);
◦ Goal: Given a propositional formula ϕ, find an assignment to problem

variables that maximizes (minimizes) number of satisfied (unsatisfied)
clauses in ϕ.

• Partial MaxSAT
◦ Goal: Given a propositional formula ϕ = ϕh

⋃
ϕs , find an assignment

to problem variables such that all hard clauses in ϕh are satisfied,
while minimizing the number of unsatisfied soft clauses in ϕs .

2 / 20



Maximum Satisfiability

• Main algorithmic approaches:
◦ Branch and Bound

• Extensive use of lower bounding procedures

• Restrictive use of MaxSAT inference rules

◦ Linear search on the number of unsatisfied clauses

• Each time a new restriction is found, a new constraint is added that

excludes solutions with higher cost

◦ Unsatisfiability-based solvers

• Iterative identification of unsatisfiable subformulas

Our focus is on the latter two approaches since these have been
shown to be more effective in Industrial instances

3 / 20



Linear search on the number of unsatisfied clauses

Best: ∞

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example of MaxSAT formula; Hard clauses in blue; Soft in red

4 / 20



Linear search on the number of unsatisfied clauses

Best: ∞

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1 ∨ r1

¬x6 ∨ x8 ∨ r2 x6 ∨ ¬x8 ∨ r3 x2 ∨ x4 ∨ r4 ¬x4 ∨ x5 ∨ r5

x7 ∨ x5 ¬x7 ∨ x5 ∨ r6 ¬x5 ∨ x3 ¬x3 ∨ r7

Add a relaxation variable to each soft clause; All clauses are now
considered hard

4 / 20



Linear search on the number of unsatisfied clauses

Best: ∞

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1 ∨ r1

¬x6 ∨ x8 ∨ r2 x6 ∨ ¬x8 ∨ r3 x2 ∨ x4 ∨ r4 ¬x4 ∨ x5 ∨ r5

x7 ∨ x5 ¬x7 ∨ x5 ∨ r6 ¬x5 ∨ x3 ¬x3 ∨ r7

Goal is to find an assignment that minimizes the number of relaxation
variables assigned value 1

4 / 20



Linear search on the number of unsatisfied clauses

Best: 4

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1 ∨ r1

¬x6 ∨ x8 ∨ r2 x6 ∨ ¬x8 ∨ r3 x2 ∨ x4 ∨ r4 ¬x4 ∨ x5 ∨ r5

x7 ∨ x5 ¬x7 ∨ x5 ∨ r6 ¬x5 ∨ x3 ¬x3 ∨ r7

Find a solution; Suppose a solution is found such that 4 relaxation
variables are assigned value 1;

4 / 20



Linear search on the number of unsatisfied clauses

Best: 4

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1 ∨ r1

¬x6 ∨ x8 ∨ r2 x6 ∨ ¬x8 ∨ r3 x2 ∨ x4 ∨ r4 ¬x4 ∨ x5 ∨ r5

x7 ∨ x5 ¬x7 ∨ x5 ∨ r6 ¬x5 ∨ x3 ¬x3 ∨ r7

∑7
i=1 ri ≤ 3

Add new constraint that excludes solutions with equal or higher cost;

4 / 20



Linear search on the number of unsatisfied clauses

Best: 2

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1 ∨ r1

¬x6 ∨ x8 ∨ r2 x6 ∨ ¬x8 ∨ r3 x2 ∨ x4 ∨ r4 ¬x4 ∨ x5 ∨ r5

x7 ∨ x5 ¬x7 ∨ x5 ∨ r6 ¬x5 ∨ x3 ¬x3 ∨ r7

∑7
i=1 ri ≤ 3

Find another solution; Suppose a solution is found such that 2
relaxation variables are assigned value 1;

4 / 20



Linear search on the number of unsatisfied clauses

Best: 2

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1 ∨ r1

¬x6 ∨ x8 ∨ r2 x6 ∨ ¬x8 ∨ r3 x2 ∨ x4 ∨ r4 ¬x4 ∨ x5 ∨ r5

x7 ∨ x5 ¬x7 ∨ x5 ∨ r6 ¬x5 ∨ x3 ¬x3 ∨ r7

∑7
i=1 ri ≤ 3

∑7
i=1 ri ≤ 1

Add new constraint that excludes solutions with equal or higher cost;

4 / 20



Linear search on the number of unsatisfied clauses

Best: 2

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1 ∨ r1

¬x6 ∨ x8 ∨ r2 x6 ∨ ¬x8 ∨ r3 x2 ∨ x4 ∨ r4 ¬x4 ∨ x5 ∨ r5

x7 ∨ x5 ¬x7 ∨ x5 ∨ r6 ¬x5 ∨ x3 ¬x3 ∨ r7

∑7
i=1 ri ≤ 3

∑7
i=1 ri ≤ 1

Instance is now UNSAT; Optimal solution is to have two unsatisfied
soft clauses

4 / 20



Unsatisfiability-based MaxSAT solvers

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example of MaxSAT formula; Hard clauses in blue; Soft in red;

5 / 20



Unsatisfiability-based MaxSAT solvers

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is unsat; Get Unsatisfiable subformula (Unsat Core)

5 / 20



Unsatisfiability-based MaxSAT solvers

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1 ∨ r1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ∨ r2 ¬x4 ∨ x5 ∨ r3

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3 ∨ r4

∑4
i=1 ri ≤ 1

Add relaxation variables to soft clauses and AtMost1 constraint

5 / 20



Unsatisfiability-based MaxSAT solvers

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1 ∨ r1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ∨ r2 ¬x4 ∨ x5 ∨ r3

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3 ∨ r4

∑4
i=1 ri ≤ 1

Formula is still unsat; Get another Unsat Core

5 / 20



Unsatisfiability-based MaxSAT solvers

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1 ∨ r1 ∨ r5

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ∨ r2 ¬x4 ∨ x5 ∨ r3

x7 ∨ x5 ¬x7 ∨ x5 ∨ r6 ¬x5 ∨ x3 ¬x3 ∨ r4 ∨ r7

∑4
i=1 ri ≤ 1

∑7
i=5 ri ≤ 1

Add new relaxation variables to soft clauses in Unsat Core and
AtMost1 constraint

5 / 20



Unsatisfiability-based MaxSAT solvers

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1 ∨ r1 ∨ r5

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ∨ r2 ¬x4 ∨ x5 ∨ r3

x7 ∨ x5 ¬x7 ∨ x5 ∨ r6 ¬x5 ∨ x3 ¬x3 ∨ r4 ∨ r7

∑4
i=1 ri ≤ 1

∑7
i=5 ri ≤ 1

Instance is now SAT; Algorithm Ends; Optimal solution is to have two
unsatisfied soft clauses

5 / 20



Parallel MaxSAT Solvers

• pwbo is a parallel MaxSAT solver based on having several threads
running a portfolio of two orthogonal algorithms:
◦ an unsatisfiability-based algorithm that searches on the lower bound of

the optimal solution;
◦ a classical linear search algorithm that searches on the upper bound.

6 / 20



Parallel MaxSAT Solvers

• pwbo is a parallel MaxSAT solver based on having several threads
running a portfolio of two orthogonal algorithms:
◦ an unsatisfiability-based algorithm that searches on the lower bound of

the optimal solution;
◦ a classical linear search algorithm that searches on the upper bound.

6 / 20



Parallel MaxSAT Solvers

• Shared Clause: a clause that is shared by a thread to be used in
other threads;

• Imported Clause: a clause that is imported by a thread;

7 / 20



Parallel MaxSAT Solvers

• Shared Clause: a clause that is shared by a thread to be used in
other threads;

• Imported Clause: a clause that is imported by a thread;

• Not all learned clauses should be shared/imported since it could
lead to an exponential blow up in memory;

• Shared clauses can be imported or discarded by the receiving
thread;

7 / 20



Parallel MaxSAT Solvers

• Shared Clause: a clause that is shared by a thread to be used in
other threads;

• Imported Clause: a clause that is imported by a thread;

• Not all learned clauses should be shared/imported since it could
lead to an exponential blow up in memory;

• Shared clauses can be imported or discarded by the receiving
thread;

• Question: which learned clauses should be shared/imported by the
different threads?

7 / 20



Clause Sharing Heuristics

• Static:
◦ Learned clauses are shared/imported within a given cutoff.

• Dynamic:
◦ Dynamic heuristics adjust the cutoff during the search.

• Freezing:

◦ Shared clauses are temporarily frozen until they are expected to be
useful.

8 / 20



Clause Sharing Heuristics (Static)

• Size:
◦ The clause size is given by the number of literals;
◦ Small clauses are expected to be more useful than larger clauses.

• Literal Block Distance (LBD):
◦ The literal block distance corresponds to the number of different

decision levels involved in a clause;
◦ Clauses with small LBD are considered as more relevant.

• Random:
◦ Randomly decide whether to share each learned clause with a given

probability.

9 / 20



Clause Sharing Heuristics (Dynamic)

• The size of learned clauses tends to increase over time;

• Dynamic heuristics adjust the size of shared clauses during the
search;

• Hamadi et al. proposed the following dynamic heuristic:
◦ At every k conflicts the throughput of shared clauses is evaluated

between each pair of threads (ti → tj);

◦ If the sharing is small, the cutoff is dynamically increased;

◦ If the sharing is large, the cutoff is dynamically reduced.

10 / 20



Clause Sharing Heuristics (Dynamic)

• The previous heuristic has been improved by Hamadi et al. by
considering the quality of shared clauses:
◦ A shared clause is said to have quality if at least half of its literals are

active;

◦ A literal is active if the variable’s decision heuristic score is high, i.e. it
is likely to be chosen as a decision variable in the near future;

◦ If the quality is high then the increase (decrease) in the size limit of
shared clauses will be larger (smaller).

• The reasoning behind this heuristic is that the information recently
received from a thread ti is qualitatively linked to the information
which could be received from the same thread ti in the near future.

10 / 20



Clause Sharing Heuristics (Freezing)

Freezing procedure for importing clauses shared by other threads

Freeze(ω)?

Shared
Clauses

Frozen
Clauses

Import ω

Reevaluate Clauses

For each clause ω

No

Yes

Cleaning

11 / 20



Clause Sharing Heuristics (Freezing)

The freezing heuristic:

• Considers the status of the shared clause ω in the context of the
importing thread:
◦ Satisfied: if at least one of its literals is satisfied;

◦ Unsatisfied: if all of its literals are unsatisfied;

◦ Unit: if all literals but one are unsatisfied and the remaining literal is
unassigned;

◦ Unresolved: if it is not satisfied, unsatisfied or unit.

• Freezes shared clauses ω that are not likely to be useful in the near
future.

12 / 20



Clause Sharing Heuristics (Freezing)

• A satisfied clause is expected to be useful in the near future if:

◦ It is not necessary to backtrack significantly to make the clause unit;

◦ The number of unassigned literals that are not active literals is small;

• Unsatisfied clauses and unit clauses are always useful to the
current search;

• An Unresolved clause is expected to be useful in the near future if:

◦ The number of unassigned literals that are not active literals is small;

12 / 20



Clause Sharing Heuristics (Evaluation)

Question: How to properly evaluate all these clause sharing
heuristics?

13 / 20



Clause Sharing Heuristics (Evaluation)

Question: How to properly evaluate all these clause sharing
heuristics?

Observe that:

• Parallel solvers are non-deterministic due to cooperation between
threads

• Cooperation is known to boost the performance of parallel solvers

• Variations might result from other factors than clause sharing
procedures

• Therefore, a more stable environment is required for a fair
evaluation

13 / 20



Clause Sharing Heuristics (Evaluation)

Question: How to properly evaluate all these clause sharing
heuristics?

Observe that:

• Parallel solvers are non-deterministic due to cooperation between
threads

• Cooperation is known to boost the performance of parallel solvers

• Variations might result from other factors than clause sharing
procedures

• Therefore, a more stable environment is required for a fair
evaluation

Proposed approach: test different clause sharing heuristics in a
deterministic parallel MaxSAT solver

13 / 20



Deterministic Parallel MaxSAT Solver

• Cooperation between threads must be deterministic

• Introduction of synchronization points

• Information is only exchanged at synchronization points

• When a thread reaches a synchronization point, waits until all
other threads reach the same point

• Only when all threads stop at the synchronization point the
information exchange takes place

14 / 20



Deterministic Parallel MaxSAT Solver

Threadlb1

LB Search
(export: clauses)

export:
core

sync

import:
core, clauses

LB Search
(export: clauses)

. . .

sync

end

Threadlb2

LB Search
(export: clauses)

export:
core

sync

import:
core, clauses

LB Search
(export: clauses)

. . .

sync

end

Threadub3

UB Search
(export: clauses)

export:
solution, UB value

sync

import:
UB value, clauses

UB Search
(export: clauses)

optimal solution
export: solution

sync

end

Threadub4

UB Search
(export: clauses)

export:
solution, UB value

sync

import:
UB value, clauses

UB Search
(export: clauses)

. . .

sync

end

15 / 20



Deterministic Parallel MaxSAT Solver

• The definition of synchronization points must be deterministic

• Example: Synchronize after k conflicts

• If k is small, number of synchronization points is large and threads
are idle more often

• If k is large, there is little cooperation between threads

• For our experiments, we defined k = 100

• New ways of defining synchronization points are being tested

16 / 20



Experimental Results

• Benchmarks: partial MaxSAT instances from the industrial
category of the MaxSAT Evaluation 2011:
◦ Instances that took less than 60 seconds to be solved were not

considered;

• AMD Opteron 6172 processors (2.1 GHz with 64 GB of RAM)
running Fedora Core 13;

• Timeout: 1,800 seconds (wall clock time);

• Portfolio version of pwbo with 4 threads:

◦ A deterministic version of pwbo was used;
◦ Information is only exchanged at synchronization points (every 100

conflicts).

17 / 20



Experimental Results

Comparison of the different heuristics for sharing learned clauses

Heuristic #Solved Avg. #Clauses Avg. Size Time Speedup

No sharing 137 − − 32,188.57 1.00

S
ta
ti
c

Random 30 134 10,140.22 128.21 27,394.46 1.18
LBD 5 137 8,947.36 9.94 25,346.69 1.27
Size 8 137 7,529.18 5.30 25,098.85 1.28
Size 32 138 18,027.48 11.76 25,174.29 1.28
Dynamic 138 13,296.28 7.33 24,218.84 1.33
Freezing 140 16,228.53 11.01 21,611.21 1.49

• Randomly sharing clauses deteriorates the performance;

• LBD and size heuristics have similar speedups;

• Dynamic heuristic outperforms the static heuristics but is
outperformed by the freezing heuristic.

18 / 20



Experimental Results

Non-deterministic vs. Deterministic version

Solver #Solved Time (s) Avg. Idle CPU (%) Speedup

Non-Deterministic 141 13,401.88 0 1.00
Deterministic 140 21,611.21 43.12 0.62

• Deterministic version is slower

• Number of solved instances is very similiar

• Large idle times should be decreased with other synchronization
techniques

19 / 20



Conclusions

• Parallel MaxSAT solvers are now emerging:
◦ Sharing learned clauses boosts the performance of the solver.

• Heuristics are used for sharing learned clauses:
◦ Static, Dynamic and Freezing.

• Impact of sharing learned clauses in parallel MaxSAT:
◦ Number of solved instances does not increase significantly;
◦ Solving time is considerably reduced.

• The freezing heuristic outperforms all other heuristics both in
solving time and number of solved instances.

• Deterministic parallel MaxSAT solver is slower but is still able to
solve almost all instances solved by the non-deterministic version

20 / 20


