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Scenarios in Reconfiguration

• LEGAL: can be changed without further changes

• RECONFIGURE: can be changed but some other default
decisions need to be changed.

• ILLEGAL: cannot be changed without violating the formula or
without altering other user decisions.
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Some Concepts from (Propositional) Logic

• CNF: express an instance clauses

• E.g.
{(¬x ∨ z), (¬y ∨ z), (¬x ∨ ¬y)}

• A CNF is satisfiable if there’s a truth assignment that makes
all the clauses true. It is unsatisfiable otherwise. We can use a
SAT solver to decide formula’s satisfiability.

• A Minimally Unsatisfiable Set (MUS) of clauses is a
irreducible unsatisfiable CNF.

• A Minimal Correction Subset (MCS) of clauses is a irreducible
set of clauses whose removal makes the original formula
satisfiable.
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Handling Reconfiguration Scenarios

Modeling the problem.

• F . . . configuration instance

• Da . . . decisions made by the agent

• E.g. {¬x , y}

• Dd . . . default decisions.

Changing from decision l to ¬l

• LEGAL: Just update Da and Dd

• RECONFIGURE: Change Dd so that the new decision can be
accommodated. Use MCSes for that.

• ILLEGAL: Provide an explanation why.
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Lazy Approach
1 Function Change (l)
2 begin
3 (st1, µ1, core1)← SAT(F ∪Da ∪Dd r{l}∪{¬l})
4 (st2, µ1, core2)← SAT(F ∪Da r{l}∪{¬l})
5 if st1 then
6 Da ← Da r{l}∪{¬l}
7 Dd ← Dd r{l}
8 return LEGAL

9 if st2 then
10 Da ← Da r{l}∪{¬l}
11 Dd ← Dd r{l}
12 Dd = Reconfigure(F ∧Da,Dd)
13 return RECONFIGURE

14 Explain(F ,Da r{l}∪{¬l})
15 return ILLEGAL
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Eager Approach—Change

If F ∪Da ∪Dd r{l} |= l , remember a reason Rl ⊆ Da ∪Dd s.t.
F ∪ Rl |= l .

1 Function Change (l)
2 begin
3 foreach k s.t. l ∈ Rk do
4 remove Rk as reason for k
5 mark k as LEGAL

6 foreach k is LEGAL do
7 Check(k)
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Eager Approach—Check Literal

1 Function Check (l)
2 begin
3 (st1, µ1, core1)← SAT(F ∪Da ∪Dd r{l}∪{¬l})
4 (st2, µ1, core2)← SAT(F ∪Da r{l}∪{¬l})
5 if st1 then
6 mark l as LEGAL

7 else if st2 then
8 mark l as RECONFIGURE

9 Rl ← core1 ∩ (Da ∪Dd) r {¬l}
10 else
11 mark l as ILLEGAL
12 Rl ← core2 ∩ Da r{¬l}
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Experimental Results

SPLOT rl SPLOT rnd LVAT mod LVAT hard

Algorithm eager eager lazy lazy
Maximal time 0.008 s 1.3 s 2 s 41.76 s
time < 0.5 s 100% 99.8% 99.9% 86%
time < 1.5 s 100% 100% 99.9% 91%
# RECONF 4199 79860 43821 28259
# ILLEGAL 3987 97103 167795 55903
# LEGAL 4314 73037 33384 5838
Max. RECON 0.006 s 0.5 s 2 s 41.76 s
Max. ILLEG 0.001 s 0.02 s 0.92 s 11.10 s
Max. LEGAL 0.006 s 0.32 s 0.005 s 0.01 s
Max. INITIAL 0.008 s 1.3 s 0.01 s 0.15 s
# models 25 10 10 4
# variables 60–366 10,000–10,000 684–14910 23,516–62,482
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Conclusions and Future Work

• SAT-based support for reconfiguration.

• 3 types of scenarios: LEGAL, RECONFIGURE, and ILLEGAL.

• For RECONFIGURE, use MCS to change other variables.

• For ILLEGAL, use MUS to explain.

• Developed a lazy algorithm, which computes a status of a
variable on demand.

• Developed an eager algorithm, which maintains a status of
each variable at all times.

• Eager—102 of variables, Lazy—104 variables.

• How to deal with “large” reconfiguration?

• How to apply reconfiguration in the vicinity only?

• What do users want from reconfiguration?
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Thank you for your attention!

Questions?
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