
On Lazy and Eager Interactive Reconfiguration

Mikoláš Janota1

Goetz Botterweck2 Joao Marques-Silva1,3

1 INESC-ID/IST, Lisbon, Portugal
2Lero, Limerick, Ireland

3 CASL/CSI, University College Dublin, Ireland

VAMOS 2014, January 22–24
Nice, France

Janota et al. On Lazy and Eager Interactive Reconfiguration 1 / 11



Reconfiguration Example

Laptop

excludes

requires

Docking 
Station Extra Power 

Adapter Graphics 
Accelerator Display 

14" 15" 17" 

Janota et al. On Lazy and Eager Interactive Reconfiguration 2 / 11



Reconfiguration Example

Laptop

excludes

requires

Docking 
Station Extra Power 

Adapter Graphics 
Accelerator Display 

14" 15" 17" 

Docking 
Station 

Janota et al. On Lazy and Eager Interactive Reconfiguration 2 / 11



Reconfiguration Example

Laptop

excludes

requires

Docking 
Station Extra Power 

Adapter Graphics 
Accelerator Display 

14" 15" 17" 

Docking 
Station Graphics 

Accelerator 

Janota et al. On Lazy and Eager Interactive Reconfiguration 2 / 11



Reconfiguration Example

Laptop

excludes

requires

Docking 
Station Extra Power 

Adapter Graphics 
Accelerator Display 

14" 15" 17" 

Docking 
Station Graphics 

Accelerator 

14" 15" 17" 

Janota et al. On Lazy and Eager Interactive Reconfiguration 2 / 11



Scenarios in Reconfiguration

• LEGAL: can be changed without further changes

• RECONFIGURE: can be changed but some other default
decisions need to be changed.

• ILLEGAL: cannot be changed without violating the formula or
without altering other user decisions.

Janota et al. On Lazy and Eager Interactive Reconfiguration 3 / 11



Scenarios in Reconfiguration

• LEGAL: can be changed without further changes

• RECONFIGURE: can be changed but some other default
decisions need to be changed.

• ILLEGAL: cannot be changed without violating the formula or
without altering other user decisions.

Janota et al. On Lazy and Eager Interactive Reconfiguration 3 / 11



Scenarios in Reconfiguration

• LEGAL: can be changed without further changes

• RECONFIGURE: can be changed but some other default
decisions need to be changed.

• ILLEGAL: cannot be changed without violating the formula or
without altering other user decisions.

Janota et al. On Lazy and Eager Interactive Reconfiguration 3 / 11



Some Concepts from (Propositional) Logic

• CNF: express an instance clauses

• E.g.
{(¬x ∨ z), (¬y ∨ z), (¬x ∨ ¬y)}

• A CNF is satisfiable if there’s a truth assignment that makes
all the clauses true. It is unsatisfiable otherwise. We can use a
SAT solver to decide formula’s satisfiability.

• A Minimally Unsatisfiable Set (MUS) of clauses is a
irreducible unsatisfiable CNF.

• A Minimal Correction Subset (MCS) of clauses is a irreducible
set of clauses whose removal makes the original formula
satisfiable.

Janota et al. On Lazy and Eager Interactive Reconfiguration 4 / 11



Some Concepts from (Propositional) Logic

• CNF: express an instance clauses
• E.g.

{(¬x ∨ z), (¬y ∨ z), (¬x ∨ ¬y)}

• A CNF is satisfiable if there’s a truth assignment that makes
all the clauses true. It is unsatisfiable otherwise. We can use a
SAT solver to decide formula’s satisfiability.

• A Minimally Unsatisfiable Set (MUS) of clauses is a
irreducible unsatisfiable CNF.

• A Minimal Correction Subset (MCS) of clauses is a irreducible
set of clauses whose removal makes the original formula
satisfiable.

Janota et al. On Lazy and Eager Interactive Reconfiguration 4 / 11



Some Concepts from (Propositional) Logic

• CNF: express an instance clauses
• E.g.

{(¬x ∨ z), (¬y ∨ z), (¬x ∨ ¬y)}

• A CNF is satisfiable if there’s a truth assignment that makes
all the clauses true. It is unsatisfiable otherwise. We can use a
SAT solver to decide formula’s satisfiability.

• A Minimally Unsatisfiable Set (MUS) of clauses is a
irreducible unsatisfiable CNF.

• A Minimal Correction Subset (MCS) of clauses is a irreducible
set of clauses whose removal makes the original formula
satisfiable.

Janota et al. On Lazy and Eager Interactive Reconfiguration 4 / 11



Some Concepts from (Propositional) Logic

• CNF: express an instance clauses
• E.g.

{(¬x ∨ z), (¬y ∨ z), (¬x ∨ ¬y)}

• A CNF is satisfiable if there’s a truth assignment that makes
all the clauses true. It is unsatisfiable otherwise. We can use a
SAT solver to decide formula’s satisfiability.

• A Minimally Unsatisfiable Set (MUS) of clauses is a
irreducible unsatisfiable CNF.

• A Minimal Correction Subset (MCS) of clauses is a irreducible
set of clauses whose removal makes the original formula
satisfiable.

Janota et al. On Lazy and Eager Interactive Reconfiguration 4 / 11



Some Concepts from (Propositional) Logic

• CNF: express an instance clauses
• E.g.

{(¬x ∨ z), (¬y ∨ z), (¬x ∨ ¬y)}

• A CNF is satisfiable if there’s a truth assignment that makes
all the clauses true. It is unsatisfiable otherwise. We can use a
SAT solver to decide formula’s satisfiability.

• A Minimally Unsatisfiable Set (MUS) of clauses is a
irreducible unsatisfiable CNF.

• A Minimal Correction Subset (MCS) of clauses is a irreducible
set of clauses whose removal makes the original formula
satisfiable.

Janota et al. On Lazy and Eager Interactive Reconfiguration 4 / 11



Handling Reconfiguration Scenarios

Modeling the problem.

• F . . . configuration instance

• Da . . . decisions made by the agent

• E.g. {¬x , y}

• Dd . . . default decisions.

Changing from decision l to ¬l

• LEGAL: Just update Da and Dd

• RECONFIGURE: Change Dd so that the new decision can be
accommodated. Use MCSes for that.

• ILLEGAL: Provide an explanation why.

Janota et al. On Lazy and Eager Interactive Reconfiguration 5 / 11



Handling Reconfiguration Scenarios

Modeling the problem.

• F . . . configuration instance

• Da . . . decisions made by the agent

• E.g. {¬x , y}
• Dd . . . default decisions.

Changing from decision l to ¬l

• LEGAL: Just update Da and Dd

• RECONFIGURE: Change Dd so that the new decision can be
accommodated. Use MCSes for that.

• ILLEGAL: Provide an explanation why.

Janota et al. On Lazy and Eager Interactive Reconfiguration 5 / 11



Handling Reconfiguration Scenarios

Modeling the problem.

• F . . . configuration instance

• Da . . . decisions made by the agent
• E.g. {¬x , y}

• Dd . . . default decisions.

Changing from decision l to ¬l

• LEGAL: Just update Da and Dd

• RECONFIGURE: Change Dd so that the new decision can be
accommodated. Use MCSes for that.

• ILLEGAL: Provide an explanation why.

Janota et al. On Lazy and Eager Interactive Reconfiguration 5 / 11



Handling Reconfiguration Scenarios

Modeling the problem.

• F . . . configuration instance

• Da . . . decisions made by the agent
• E.g. {¬x , y}

• Dd . . . default decisions.

Changing from decision l to ¬l

• LEGAL: Just update Da and Dd

• RECONFIGURE: Change Dd so that the new decision can be
accommodated. Use MCSes for that.

• ILLEGAL: Provide an explanation why.

Janota et al. On Lazy and Eager Interactive Reconfiguration 5 / 11



Handling Reconfiguration Scenarios

Modeling the problem.

• F . . . configuration instance

• Da . . . decisions made by the agent
• E.g. {¬x , y}

• Dd . . . default decisions.

Changing from decision l to ¬l

• LEGAL: Just update Da and Dd

• RECONFIGURE: Change Dd so that the new decision can be
accommodated. Use MCSes for that.

• ILLEGAL: Provide an explanation why.

Janota et al. On Lazy and Eager Interactive Reconfiguration 5 / 11



Handling Reconfiguration Scenarios

Modeling the problem.

• F . . . configuration instance

• Da . . . decisions made by the agent
• E.g. {¬x , y}

• Dd . . . default decisions.

Changing from decision l to ¬l

• LEGAL: Just update Da and Dd

• RECONFIGURE: Change Dd so that the new decision can be
accommodated. Use MCSes for that.

• ILLEGAL: Provide an explanation why.

Janota et al. On Lazy and Eager Interactive Reconfiguration 5 / 11



Handling Reconfiguration Scenarios

Modeling the problem.

• F . . . configuration instance

• Da . . . decisions made by the agent
• E.g. {¬x , y}

• Dd . . . default decisions.

Changing from decision l to ¬l

• LEGAL: Just update Da and Dd

• RECONFIGURE: Change Dd so that the new decision can be
accommodated. Use MCSes for that.

• ILLEGAL: Provide an explanation why.

Janota et al. On Lazy and Eager Interactive Reconfiguration 5 / 11



Lazy Approach
1 Function Change (l)
2 begin
3 (st1, µ1, core1)← SAT(F ∪Da ∪Dd r{l}∪{¬l})
4 (st2, µ1, core2)← SAT(F ∪Da r{l}∪{¬l})
5 if st1 then
6 Da ← Da r{l}∪{¬l}
7 Dd ← Dd r{l}
8 return LEGAL

9 if st2 then
10 Da ← Da r{l}∪{¬l}
11 Dd ← Dd r{l}
12 Dd = Reconfigure(F ∧Da,Dd)
13 return RECONFIGURE

14 Explain(F ,Da r{l}∪{¬l})
15 return ILLEGAL

Janota et al. On Lazy and Eager Interactive Reconfiguration 6 / 11



Eager Approach—Change

If F ∪Da ∪Dd r{l} |= l , remember a reason Rl ⊆ Da ∪Dd s.t.
F ∪ Rl |= l .

1 Function Change (l)
2 begin
3 foreach k s.t. l ∈ Rk do
4 remove Rk as reason for k
5 mark k as LEGAL

6 foreach k is LEGAL do
7 Check(k)

Janota et al. On Lazy and Eager Interactive Reconfiguration 7 / 11



Eager Approach—Check Literal

1 Function Check (l)
2 begin
3 (st1, µ1, core1)← SAT(F ∪Da ∪Dd r{l}∪{¬l})
4 (st2, µ1, core2)← SAT(F ∪Da r{l}∪{¬l})
5 if st1 then
6 mark l as LEGAL

7 else if st2 then
8 mark l as RECONFIGURE

9 Rl ← core1 ∩ (Da ∪Dd) r {¬l}
10 else
11 mark l as ILLEGAL
12 Rl ← core2 ∩ Da r{¬l}

Janota et al. On Lazy and Eager Interactive Reconfiguration 8 / 11



Experimental Results

SPLOT rl SPLOT rnd LVAT mod LVAT hard

Algorithm eager eager lazy lazy
Maximal time 0.008 s 1.3 s 2 s 41.76 s
time < 0.5 s 100% 99.8% 99.9% 86%
time < 1.5 s 100% 100% 99.9% 91%
# RECONF 4199 79860 43821 28259
# ILLEGAL 3987 97103 167795 55903
# LEGAL 4314 73037 33384 5838
Max. RECON 0.006 s 0.5 s 2 s 41.76 s
Max. ILLEG 0.001 s 0.02 s 0.92 s 11.10 s
Max. LEGAL 0.006 s 0.32 s 0.005 s 0.01 s
Max. INITIAL 0.008 s 1.3 s 0.01 s 0.15 s
# models 25 10 10 4
# variables 60–366 10,000–10,000 684–14910 23,516–62,482

Janota et al. On Lazy and Eager Interactive Reconfiguration 9 / 11



Conclusions and Future Work

• SAT-based support for reconfiguration.

• 3 types of scenarios: LEGAL, RECONFIGURE, and ILLEGAL.

• For RECONFIGURE, use MCS to change other variables.

• For ILLEGAL, use MUS to explain.

• Developed a lazy algorithm, which computes a status of a
variable on demand.

• Developed an eager algorithm, which maintains a status of
each variable at all times.

• Eager—102 of variables, Lazy—104 variables.

• How to deal with “large” reconfiguration?

• How to apply reconfiguration in the vicinity only?

• What do users want from reconfiguration?

Janota et al. On Lazy and Eager Interactive Reconfiguration 10 / 11



Conclusions and Future Work

• SAT-based support for reconfiguration.

• 3 types of scenarios: LEGAL, RECONFIGURE, and ILLEGAL.

• For RECONFIGURE, use MCS to change other variables.

• For ILLEGAL, use MUS to explain.

• Developed a lazy algorithm, which computes a status of a
variable on demand.

• Developed an eager algorithm, which maintains a status of
each variable at all times.

• Eager—102 of variables, Lazy—104 variables.

• How to deal with “large” reconfiguration?

• How to apply reconfiguration in the vicinity only?

• What do users want from reconfiguration?

Janota et al. On Lazy and Eager Interactive Reconfiguration 10 / 11



Conclusions and Future Work

• SAT-based support for reconfiguration.

• 3 types of scenarios: LEGAL, RECONFIGURE, and ILLEGAL.

• For RECONFIGURE, use MCS to change other variables.

• For ILLEGAL, use MUS to explain.

• Developed a lazy algorithm, which computes a status of a
variable on demand.

• Developed an eager algorithm, which maintains a status of
each variable at all times.

• Eager—102 of variables, Lazy—104 variables.

• How to deal with “large” reconfiguration?

• How to apply reconfiguration in the vicinity only?

• What do users want from reconfiguration?

Janota et al. On Lazy and Eager Interactive Reconfiguration 10 / 11



Conclusions and Future Work

• SAT-based support for reconfiguration.

• 3 types of scenarios: LEGAL, RECONFIGURE, and ILLEGAL.

• For RECONFIGURE, use MCS to change other variables.

• For ILLEGAL, use MUS to explain.

• Developed a lazy algorithm, which computes a status of a
variable on demand.

• Developed an eager algorithm, which maintains a status of
each variable at all times.

• Eager—102 of variables, Lazy—104 variables.

• How to deal with “large” reconfiguration?

• How to apply reconfiguration in the vicinity only?

• What do users want from reconfiguration?

Janota et al. On Lazy and Eager Interactive Reconfiguration 10 / 11



Conclusions and Future Work

• SAT-based support for reconfiguration.

• 3 types of scenarios: LEGAL, RECONFIGURE, and ILLEGAL.

• For RECONFIGURE, use MCS to change other variables.

• For ILLEGAL, use MUS to explain.

• Developed a lazy algorithm, which computes a status of a
variable on demand.

• Developed an eager algorithm, which maintains a status of
each variable at all times.

• Eager—102 of variables, Lazy—104 variables.

• How to deal with “large” reconfiguration?

• How to apply reconfiguration in the vicinity only?

• What do users want from reconfiguration?

Janota et al. On Lazy and Eager Interactive Reconfiguration 10 / 11



Conclusions and Future Work

• SAT-based support for reconfiguration.

• 3 types of scenarios: LEGAL, RECONFIGURE, and ILLEGAL.

• For RECONFIGURE, use MCS to change other variables.

• For ILLEGAL, use MUS to explain.

• Developed a lazy algorithm, which computes a status of a
variable on demand.

• Developed an eager algorithm, which maintains a status of
each variable at all times.

• Eager—102 of variables, Lazy—104 variables.

• How to deal with “large” reconfiguration?

• How to apply reconfiguration in the vicinity only?

• What do users want from reconfiguration?

Janota et al. On Lazy and Eager Interactive Reconfiguration 10 / 11



Conclusions and Future Work

• SAT-based support for reconfiguration.

• 3 types of scenarios: LEGAL, RECONFIGURE, and ILLEGAL.

• For RECONFIGURE, use MCS to change other variables.

• For ILLEGAL, use MUS to explain.

• Developed a lazy algorithm, which computes a status of a
variable on demand.

• Developed an eager algorithm, which maintains a status of
each variable at all times.

• Eager—102 of variables, Lazy—104 variables.

• How to deal with “large” reconfiguration?

• How to apply reconfiguration in the vicinity only?

• What do users want from reconfiguration?

Janota et al. On Lazy and Eager Interactive Reconfiguration 10 / 11



Conclusions and Future Work

• SAT-based support for reconfiguration.

• 3 types of scenarios: LEGAL, RECONFIGURE, and ILLEGAL.

• For RECONFIGURE, use MCS to change other variables.

• For ILLEGAL, use MUS to explain.

• Developed a lazy algorithm, which computes a status of a
variable on demand.

• Developed an eager algorithm, which maintains a status of
each variable at all times.

• Eager—102 of variables, Lazy—104 variables.

• How to deal with “large” reconfiguration?

• How to apply reconfiguration in the vicinity only?

• What do users want from reconfiguration?

Janota et al. On Lazy and Eager Interactive Reconfiguration 10 / 11



Conclusions and Future Work

• SAT-based support for reconfiguration.

• 3 types of scenarios: LEGAL, RECONFIGURE, and ILLEGAL.

• For RECONFIGURE, use MCS to change other variables.

• For ILLEGAL, use MUS to explain.

• Developed a lazy algorithm, which computes a status of a
variable on demand.

• Developed an eager algorithm, which maintains a status of
each variable at all times.

• Eager—102 of variables, Lazy—104 variables.

• How to deal with “large” reconfiguration?

• How to apply reconfiguration in the vicinity only?

• What do users want from reconfiguration?

Janota et al. On Lazy and Eager Interactive Reconfiguration 10 / 11



Conclusions and Future Work

• SAT-based support for reconfiguration.

• 3 types of scenarios: LEGAL, RECONFIGURE, and ILLEGAL.

• For RECONFIGURE, use MCS to change other variables.

• For ILLEGAL, use MUS to explain.

• Developed a lazy algorithm, which computes a status of a
variable on demand.

• Developed an eager algorithm, which maintains a status of
each variable at all times.

• Eager—102 of variables, Lazy—104 variables.

• How to deal with “large” reconfiguration?

• How to apply reconfiguration in the vicinity only?

• What do users want from reconfiguration?

Janota et al. On Lazy and Eager Interactive Reconfiguration 10 / 11



Thank you for your attention!

Questions?

Janota et al. On Lazy and Eager Interactive Reconfiguration 11 / 11


