
Expansion-based QBF Solving versus Q-Resolution

Mikoláš Janotaa,∗, Joao Marques-Silvaa,b

aIST/INESC-ID, Lisbon, Portugal
bUniversity College Dublin, Ireland

Abstract

This article introduces and studies a proof system ∀Exp+Res that enables
us to refute quantified Boolean formulas (QBFs). The system ∀Exp+Res op-
erates in two stages: it expands all universal variables through conjunctions
and refutes the result by propositional resolution. This approach contrasts
with the Q-resolution calculus, which enables refuting QBFs by rules simi-
lar to propositional resolution. In practice, Q-resolution enables producing
proofs from conflict-driven DPLL-based QBF solvers. The system ∀Exp+Res
can on the other hand certify certain expansion-based solvers. So a natural
question is to ask which of the systems, Q-resolution and ∀Exp+Res, is more
powerful? The article gives several partial responses to this question. On
the positive side, we show that ∀Exp+Res can p-simulate tree Q-resolution.
On the negative side, we show that ∀Exp+Res does not p-simulate unre-
stricted Q-resolution. In the favor of ∀Exp+Res we show that ∀Exp+Res is
more powerful than a certain fragment of Q-resolution, which is important
for DPLL-based QBF solving.

Keywords: quantified Boolean formula, proof theory, expansion,
Q-resolution, SAT

1. Introduction

Semantically, Quantified Boolean Formulas (QBFs) can be seen as propo-
sitional formulas since quantifiers can be rewritten through conjunctions and
disjunctions. Such rewriting, however, leads to an exponential blowup of the

∗Corresponding author.
Email addresses: mikolas@sat.inesc-id.pt (Mikoláš Janota), jpms@ist.utl.pt

(Joao Marques-Silva)

Preprint submitted to TCS February 6, 2015

formula. Consequently, QBFs and QBF solving are fundamentally differ-
ent from propositional formulas and satisfiability solving (SAT). While SAT
is NP-complete, deciding whether a given QBF is true or not is PSPACE-
complete. Further complexity differences exist. For instance, QBF remains
PSPACE-complete even for bounded tree-width [1] whereas SAT becomes
tractable in such case [2].

This article follows the line of research on proof systems for propositional
and Quantified Boolean Formulas (QBFs). This research is motivated by
complexity theory and more recently by the objective to develop and certify
QBF solvers [3, 4, 5, 6]. Proof systems for QBF come in different styles
and flavors. Kraj́ıček and Pudlák propose a Gentzen-style calculus KP for
QBF [4]. Büning et al. propose a refutation calculus Q-resolution [5], an
extension of propositional resolution. Giunchiglia et al. extend the work
of Büning et al. into term resolution for proofs of true formulas [6] . Cer-
tain separation results were shown between KP and Q-resolution recently
by Egly [7]. Van Gelder introduces a generalization of Q-resolution, called
QU-resolution [8].

While many QBF solvers are based on the DPLL procedure and conflict-
driven learning [9, 10, 11, 12, 13], other solvers tackle the given formula by
expanding out quantifiers until a single quantifier type is left. At that point,
this formula is handed to a SAT solver [14, 15, 16, 17]. Experimental results
show that expansion-based QBF solvers can outperform DPLL-based solvers
on a number of families of practical instances. Also, expansion can be used
in QBF preprocessing [18, 19].

This practical importance of expansion motivates the theoretical study
carried out in this article. We define a proof system ∀Exp+Res, which elim-
inates universal quantification from the given false QBF and then applies
propositional resolution to refute the remainder. We show several results on
how ∀Exp+Res compares to Q-resolution.

The article is organized as follows. Section 2 introduces concepts and
notation used throughout the paper. Section 3 introduces the proof system
∀Exp+Res. Section 4 shows that tree Q-resolution is polynomially simulated
by ∀Exp+Res. Section 5 investigates the relation in the opposite direction
and shows that Q-resolution polynomially simulates a certain fragment of
∀Exp+Res. Section 6 shows that the result shown in Section 4 “cannot be
improved”, i.e. that unrestricted Q-resolution is not polynomially simulated
by ∀Exp+Res. Section 7 shows a somewhat weaker negative result in the
opposite direction; it shows that a certain restriction of Q-resolution does not

2

polynomially simulate ∀Exp+Res (we discuss why this result is important for
QBF solving). Finally, Section 8 summarizes and concludes the article and
suggests directions for future work.

This article is based on authors’ SAT ’13 paper [20], which served as
the bases for Sections 3–5. The separation result shown in Section 6 was
presented at the International QBF Workshop ’13 [21].

2. Preliminaries

A literal is a Boolean variable or its negation. The literal complementary
to a literal l is denoted as l̄, i.e. x̄ = ¬x, ¬x = x. A clause is a disjunction
of zero or more noncomplementary literals. A formula in conjunctive normal
form (CNF) is a conjunction of clauses. Whenever convenient, a clause is
treated as a set of literals and a CNF formula as a set of sets of literals.
For a literal l = x or l = x̄, we write var(l) for x. For a clause C, we
write var(C) to denote {var(l) | l ∈ C} and for a CNF ψ, var(ψ) denotes
{l | l ∈ var(ψ), C ∈ ψ}

Substitutions are denoted as ψ1/x1, . . . , ψn/xn, with xi 6= xj for i 6= j and
φi arbitrary formulas. The set of variables x1, . . . , xn is called the domain
of the substitution, denoted by dom(). An application of a substitution on
a formula φ is denoted as φ[ψ1/x1, . . . , ψn/xn] meaning that variables xi are
simultaneously substituted by corresponding ψi in φ.

An assignment is a mapping from Boolean variables to the values 0, 1.
An assignment is called total, or complete, for a set of variables X if each
x ∈ X is in the domain of the assignment. Assignments will be denoted as
in this example [x�0, y�1]. For assignments τ1 and τ2 with disjoint domains
we write τ1 ∪ τ2 for the assignment that assigns τ1(x) to x if x ∈ dom(τ1) and
assigns τ2(x) to x if x ∈ dom(τ2).

For an assignment τ and a formula φ we write φτ for the application of τ
to φ. That is, xτ = τ(x) if x ∈ dom(τ) and xτ = x otherwise; (¬φ)τ = 1− c
if φτ = c for c ∈ {0, 1} and (¬φ)τ = ¬(φτ) otherwise; (φ0 ∧ φ1)τ = 0 if
φiτ = 0 for i ∈ 0..1; (φ0 ∧ φ1)τ = φ1−i if φiτ = 1 for i ∈ 0..1; (φ ∧ ψ)τ = 0
if φτ = 0 or ψτ = 0; and (φ ∧ ψ)τ = (φτ ∧ ψτ) otherwise. Similarly for
other connectives. If φ is in CNF, then the application of an assignment τ
additionally removes any clauses that evaluate to 1.

The resolution rule is defined for clauses C1 ∨ x and C2 ∨ ¬x s.t. there
are no complementary literals in C1 ∪C2. The result of resolution is called
the resolvent and is the clause C1 ∨ C2. For a CNF φ, a resolution proof of

3

a clause C is a sequence of clauses C1, . . . , Cn where Cn = C and any Ci in
the sequence is part of the formula φ or it is a resolvent for some pair of the
preceding clauses. A resolution proof is called a refutation iff C is the empty
clause, denoted ⊥.

2.1. Quantified Boolean Formulas

Quantified Boolean Formulas (QBFs) [22] extend propositional logic by
enabling quantification over Boolean variables. Any propositional formula φ
is also a QBF with all variables free. If Φ is a QBF with a free variable x,
the formulas ∃x.Φ and ∀x.Φ are QBFs with x bound, i.e. not free. Note
that we disallow expressions such as ∃x.∃x. x. Whenever possible, we write
∃x1 . . . xk instead of ∃x1 . . . ∃xk; analogously for ∀. For a QBF Φ = ∀x.Ψ we
say that x is universal in Φ and is existential in ∃x.Ψ. Analogously, a literal
l is universal (resp. existential) if var(l) is universal (resp. existential).

The application of an assignment τ is defined for a QBF Φ if all variables
of dom(τ) are free in Φ, and, it is defined as (Qx.Φ)τ = Φτ for Q ∈ {∃,∀}.
QBFs can be seen as compact representations of propositional formulas. In
particular, the formula ∀x.Ψ is satisfied by the same truth assignments as
Ψ[x�0]∧Ψ[x�1] and ∃x.Ψ by Ψ[x�0]∨Ψ[x�1]. Since ∀x∀y.Φ and ∀y∀x.Φ
are semantically equivalent, we allow writing ∀X for a set of variables X;
analogously for ∃. A QBF with no free variables is false (resp. true), iff it is
semantically equivalent to the constant 0 (resp. 1).

A QBF is closed if it does not contain any free variables. A QBF is
in prenex form if it is of the form Q1X1 . . .QkXk. φ, where Qi ∈ {∃,∀},
Qi 6= Qi+1, and φ is propositional. The propositional part φ is called the
matrix and the rest the prefix. If a variable x is in the set Xi, we say that x
is at level i and write lv(x) = i; we write lv(l) for lv(var(l)).

We write QCNF for the class of QBF in prenex form where the matrix is
in CNF. Unless specified otherwise, QBFs are assumed to be closed.

2.2. Q-resolution

Q-resolution [5] is an extension of propositional resolution enabling re-
futing formulas in QCNF.

For a clause C, a universal literal l ∈ C is blocked by an existential literal
k ∈ C iff lv(l) < lv(k). ∀-reduction is the operation of removing from a clause
C all universal literals that are not blocked by some literal.

Q-resolution is defined for two clauses x ∨ C1 and x̄ ∨ C2 that satisfy
the following conditions: x is existential and there is no literal k s.t. k, k̄ ∈

4

C1 ∪C2. The result of Q-resolution is the clause C1 ∨ C2, which we call the
Q-resolvent. We say simply resolvent whenever the context permits.

For a QCNF P . φ, a Q-resolution proof of a clause C is a sequence of
clauses C1, . . . , Cn where Cn = C and any Ci in the sequence is part of
the given matrix φ; or was obtained from one of the preceding clauses by
∀-reduction; or it is a Q-resolvent of some pair of preceding clauses. A Q-
resolution proof is called a refutation iff C is the empty clause, denoted ⊥.

p4 C

p3 Cu

p2

C1 ∨ x
p1

C2 ∨ x̄

Figure 1: Q-resolution

In this article Q-resolution and plain resolu-
tion proofs are treated as connected directed acyclic
graphs (DAG) so that each clause C in the proof
corresponds to some node pn labeled with C. More
precisely, a resolution of two clauses C1 and C2 re-
sulting in the resolvent Cr corresponds to 3 nodes p1,
p2, pr labeled by the respective clauses and an edge
going from each pi to pr for i ∈ 1..2. If a clause Cr
resulted from C1 by ∀-reduction, the graph contains
two corresponding nodes pr and p1 connected by an edge from p1 to pr.

Any graph representing a resolution or Q-resolution proof has one and
only one node with out-degree 0, which we call the root (the final clause in
the proof). All the nodes with in-degree 0 are labeled with clauses from the
original formula and we call them leafs. Q-resolution steps are depicted as
in Figure 1.

A Q-resolution proof is called tree (or tree-like), if the corresponding
graph forms a tree (rooted in the final clause). It is known that at the
propositional level, tree resolution does not p-simulate DAG resolution [23].

Remark 1. Note that the condition that there are no two complementary
literals in the antecedents of a Q-resolution step is there to preserve sound-
ness. For instance, for the true formula ∀u∃e. (u ∨ e) ∧ (ū ∨ ē) removing
this condition would enable us to derive a refutation. One would first resolve
the two clauses into (u ∨ ū) and second, apply ∀-reduction to that clause
and thus derive ⊥. Alternatively to this restriction one could instead pro-
hibit ∀-reductions of complementary literals but that would not give us any
advantage.

2.3. Proof Systems

Throughout the article, we use the term “proof system” in the sense of
Cook and Reckhow [3]. That is, for finite alphabets ΣD, Σ1, and L ⊆ Σ∗D a

5

proof system is a function f : Σ∗1 → L, where the function f is polynomi-
ally computable and it is onto. We say that a proof system f2 : Σ∗2 → L
p-simulates the proof system f iff there exists a polynomially computable
function g : Σ∗1 → Σ∗2 s.t. f2(g(x)) = f(x) for all x. (Intuitively, the func-
tion f produces the formula being proven from its proof and g translates in
polynomial time any proof in the system f to a proof of the same formula in
the system f2.)

As usual, we consider refutation-based procedures (such as resolution or
Q-resolution) also as proof systems. For such, we can assume that a proof
of a QBF is formed by a refutation of its negation. Note that, just as in
the case of propositional logic, a QBF that does not have a CNF matrix
can be efficiently translated into a QBF with a CNF matrix using Tseitin
transformation [24] (see e.g. [25, §5] or [26, Sec. 2.2] for further discussion).

3. Expansion

Modern SAT solvers can be readily used in a black-box setting, which
suggests a straightforward approach to solving QBFs by expanding variables
until only one type of quantifier is left; at that point a SAT solver can be
invoked. Further, modern mainstream SAT solvers accept formulas in CNF
and enable producing resolution refutations for unsatisfiable formulas. This
motivates the proof system developed in this section. For a false QCNF we
wish to provide a proof that combines expansion of all but one quantifier and
a resolution refutation of the result of the expansion.

Existential quantifier can be expanded by the equivalence ∃x.Φ = Φ[x�0]∨
Φ[x�1] and universal quantification by the equivalence ∀x.Φ = Φ[x�0] ∧
Φ[x�1]. These equivalences reveal two main obstacles to developing a proof
system using both expansion and plain resolution (besides the exponential
growth). The first obstacle is that the result of an expansion is not in prenex
form; this can be overcome by prenexing the expansion. The second obstacle
is that the result of expanding the existential quantifier does not yield CNF.
Hence, in this paper we focus only on expansion of the universal quantifier.
We show that this limitation still leads to a refutation complete calculus with
many interesting properties.

Expansion of universal quantifiers enables decreasing the number of quan-
tifiers at the cost of an increase in size. Prenexing enables maintaining prenex
normal form at the cost of introducing fresh variables. For instance, ex-
panding ∃x∀y∃z. φ yields ∃x. (∃z. φ[y�0]) ∧ (∃z. φ[y�1]). To get back to

6

prenex form, we add two fresh copies of z, one for the sub-QBF where
y = 0 and one for the sub-QBF where y = 1, thus obtaining the formula
∃xz0z1. φ[y�0][z0/z] ∧ φ[y�1][z1/z].

A significant drawback of expansion is that the formula grows in size
exponentially. This effect can be mitigated by observing that only partial
expansions may be sufficient to show unsatisfiability. For instance, expanding
the formula ∀y∃x. (y ∨ x) ∧ (y ∨ x̄) only with the assignment y�0 yields
∃x0. x0 ∧ x̄0 and therefore this expansion is sufficient to show the formula
false.

Another source of rapid growth lies in the number of the formula’s quan-
tification levels. Expanding y in ∃x∀y∃z∀u∃w. φ yields ∃x. (∃z∀u∃w. φ[y�0])∧
(∃z∀u∃w. φ[y�1]). We could again prenex all variables but since we are aim-
ing at eventually expanding all universal variables, we can expand more
carefully by prenexing only z first:

∃xz0z1. (∀u∃w. φ[y�0][z0/z]) ∧ (∀u∃w. φ[y�1][z1/z])

If for instance now we wish to expand u as 1 in the first sub-formula and
0 in the second sub-formula we obtain the following:

∃xz0z1. (∃w. φ[y�0][z0/z][u�1]) ∧ (∃w. φ[y�1][z1/z][u�0])

= ∃xz0z1w01w10. φ[y�0, u�1][z0/z, w01/w] ∧ φ[y�1, u�0][z1/z, w10/w]

Had we started the expansion from higher to lower levels (“inside-out”),
this tighter control would not be possible; it would not be possible to expand
u differently for each expansion of y.

Consider a general QCNF

Φ = ∀U1∃E2 . . . ∀U2N−1∃E2N . φ (1)

(WLOG we start with a universal quantifier to simplify notation). For
succinctness, from now on Φ refers to this formula. An expansion consists
of expanding variables U1 with some values and introducing fresh variables
for E2 variables yielding a sub-QBF for each considered assignment to the
U1 variables. These sub-QBFs are recursively expanded in an analogous
fashion. Note that if we expanded from the highest quantification level (in-
nermost level), we would lose the structural information, which is enabling
the above-mentioned finer expansion steps. Let us now introduce definitions
that formalize this process.

7

u2�0, u3�0 u2�1, u3�1

u1�0

Figure 2: Example ∀-expansion tree.

The following definition introduces a structure that prescribes how a given
formula should be expanded. Starting from the outermost level, it gives
which assignments are considered for the variables U1 and then it proceeds
recursively.

Definition 1 (∀-expansion tree). A ∀-expansion tree for Φ is a rooted

tree T such that each path p0
τ1→ p1 . . .

τN→ pN in T from the root p0 to some
leaf pN has exactly N edges and each edge pi−1

τi−→ pi is labeled with a total
assignment τi to the variables U2i−1, for i ∈ 1..N . Each path in T is uniquely
determined by its labeling.

Example 1. Consider Φ = ∀u1∃e1∀u2∀u3∃e2. φ, with φ = (u1∨e1∨u2∨u3∨
e2)∧ (u1∨ ē1∨ ū2∨ ū3∨ e2)∧ (ē2). Figure 2 shows an example expansion tree
for this formula. The tree is depicted with the root on top and it first tells
us that u1 should be expanded only with the negative polarity. Then, for the
variables u2, u3, two assignments are considered (out of the 4 possible ones).
In general, each node can have as many children as there are assignments
to the pertaining variables. In particular, if all assignments are considered
for each set of variables, the number of nodes in the tree are 2| U1 | × · · · ×
2| U2N−1 | + 1.

Convention. Since paths from the root in an ∀-expansion tree are
uniquely determined by the labeling of the edges, i.e. assignments, we treat
paths and the union of the appropriate assignments interchangeably.

Definition 2 (∀-expansion). Let T be a ∀-expansion tree and P = p0
τ1→

p1 . . .
τN→ pN be a path from the root p0 to some leaf pN .

1. For an existential variable x at level 2k with k ∈ 1..N define E v(P, x) =
xτ1,...,τk , where xτ1,...,τk is a fresh variable.

2. For a propositional formula ξ define E (P, ξ) as ξ[τ1 ∪ . . .∪ τN][σR] where
σR = {E v(P, x)/x | x an existential variable}.

8

T

u2�1

u1�0

u2�0 u2�1

u1�1

(a) ∀-expansion tree

Ψ = ∀u1∃e1∀u2∃e2. ψ E (T ,Ψ)

u1 ∨ e1 ∨ ū2 ∨ e2 eu1�0
1 ∨ eu1�0,u2�1

2

u1 ∨ e1 ∨ ū2 ∨ ē2 eu1�0
1 ∨ ēu1�0,u2�1

2

u1 ∨ ē1 ēu1�0
1

ū1 ∨ ē1 ∨ ū2 ∨ ē2 ēu1�1
1 ∨ ēu1�1,u2�1

2

ū1 ∨ ē1 ∨ ū2 ∨ e2 ēu1�1
1 ∨ eu1�1,u2�1

2

ū1 ∨ e1 ∨ u2 ∨ ē2 eu1�1
1 ∨ ēu1�1,u2�0

2

ū1 ∨ e1 ∨ u2 ∨ e2 eu1�1
1 ∨ eu1�1,u2�0

2
(b) ∀-expansion

Figure 3: Example expansion tree and its application

3. Define E (T ,Φ) as the union of all E (P, φ) for each root-to-leaf path P
in T .

Example 2. Consider again the formula from Example 1 and the expansion
tree in Figure 2. The tree has the paths P1 = {u1�0}, {u2�0, u3�0} and
P2 = {u1�0}, {u2�1, u3�1}. It holds that E (P1, φ) = (eu1�0

1 ∨ eu2�0,u3�0
2) ∧

ēu2�0,u3�0
2 and E (P2, φ) = (ēu1�0

1 ∨ eu2�1,u3�1
2) ∧ ēu2�1,u3�1

2 .

Observation 1. Let P be a root-to-leaf path in an ∀-expansion tree T . It
holds that E (P,Φ) =

⋃
C∈φ E (P,C). Consequently, E (T ,Φ) can be computed

as an expansion of all clauses of the matrix φ over all root-to-leaf paths of T .

Example 3. Figure 3(a) shows an example of a ∀-expansion tree and Fig-
ure 3(b) shows a ∀-expansion of some formula Ψ based on this tree. The
expansion considers both values of u1 but only the value 1 is considered for u2
when u1 = 0. The tree has 3 leafs so the formula could potentially grow 3
times. But because the formula is very simple, for each clause C there is only
a single path P from the root to some leaf of T for which E (P,C) 6= 1. Hence,
the expansion has the same size as the original formula. Note that there
are as many copies of e2 as there are leafs in the expansion tree (eu1�0,u2�1

2 ,
eu1�1,u2�0
2 , eu1�1,u2�1

2) but only two copies of e1 (eu1�1
1 ,eu1�1

1); this is because e1
is at a lower quantification level than e2.

Definition 3 (∀Exp+Res). ∀Exp+Res refutation for Φ is a pair (T , π)
where T is a ∀-expansion tree for Φ and π is a resolution refutation for
E (T ,Φ). A size of (T , π), denoted |(T , π)|, is the sum of the numbers of
nodes in T and π.

9

T
u1�0,
u2�0

u1�1,
u2�1

(a) Expansion tree

⊥
eu1�1,u2�1
2

¬eu1�1,u2�1
2

¬eu1�0,u2�0
2

eu1�0,u2�0
2 ∨ eu1�1,u2�1

2

e1 ∨ eu1�0,u2�0
2 ¬e1 ∨ eu1�1,u2�1

2

(b) Plain resolution

Figure 4: An example proof in ∀Exp+Res on the prefix ∃e1∀u1u2∃e2.

Example 4. Consider the formula Φ = ∃e1∀u1u2∃e2. (e1 ∨ u1 ∨ u2 ∨ e2) ∧
(¬e1 ∨ ¬u1 ∨ ¬u2 ∨ e2) ∧ ¬e2. Figure 4(a) together with Figure 4(b) form a
∀Exp+Res refutation of Φ.

Remark 2. In SAT and QBF solving a formula is commonly simplified by
the pure literal rule [27]. A literal l is pure iff l̄ does not appear in the
formula. If a universal literal is pure, then removing all its occurrences from
the matrix preserves the truth value of the formula. This is reflected by the
∀Exp+Res system. Whenever a formula contains a pure universal literal l,
it is always sufficient in a ∀Exp+Res refutation to consider only one polarity
of var(l) (the assignment that sets l to 0). Nevertheless, if an expansion
tree considers only some assignments, it does not mean that there are pure
literals. This is illustrated by Example 4. The expansion tree has only 2
branches out of the 4 possible ones. However, none of the universal literals
are pure. In fact, any false formula with pure literals can be turned into a
formula with no pure literals by adding “dummy” clauses. In contrast, an
expansion tree needs to consider only those expansions that are necessary to
prove falsity.

Note that for a ∀-expansion tree T the size of E (T ,Φ) is bounded by the
number of leafs of T times the size of the matrix φ. Therefore a ∀Exp+Res
refutation can be validated in polynomial time.

Theorem 1. A formula Φ is false iff there exists a ∀Exp+Res refutation
for Φ. Hence, the calculus is sound and refutationally complete.

Proof. If Φ is false, consider T full capturing a full expansion of all of the
quantifiers. More precisely, each node pi of T full at depth i (with the root

10

being at depth 0) has 2| U2i+1 | children, each corresponding to a total assign-
ment to variables U2i+1. Since this expansion mirrors semantics of QBF,
E (T full,Φ) is false iff Φ is false.

Throughout the ∀-expansion process, (sub-)QBFs ∀U .Ψ are replaced
with the conjuncts Ξ =

∧
τ∈ω Ψτ for some ω—a set of total assignments

to U . Since Ξ is equivalent to ∀U .Ψ when ω is the set of all assignments,
it is weaker if ω is a set of only some total assignments, i.e. (∀U .Ψ) → Ξ.
Consequently, Φ→ E (T ,Φ) holds for any ∀-expansion tree T . Therefore, if
E (T ,Φ) is false, then Φ is false. �

Remark 3. ∀Exp+Res is inspired by the solver RAReQS [28, 17], which ex-
pands the formula partially, just as ∀Exp+Res, and tests whether such partial
expansion is sufficient to disprove the formula. Because the solver does not
know in advance whether the formula is true or false, it also maintains an
expansion of the formula’s negation for the case when it is true. In RAReQS
a partial expansion is referred to as abstraction, and, the abstraction is im-
proved by refinement. Such refinement corresponds to adding an edge to the
expansion tree. RAReQS significantly differs from earlier expansion solvers,
e.g. Quantor [15], which expand in both polarities, i.e. consider the full expan-
sion tree. Consequently, such solvers tend to blowup in memory. In the worst
case, however, RAReQS may also end up producing the full expansion tree.
Nevertheless, experimental analysis show that partial expansion significantly
outperforms through expansion on large number of instances [28, 17].

4. Simulating Tree Q-resolution by ∀Exp+Res

Consider a tree Q-resolution refutation π of Φ. Our objective is to con-
struct a ∀Exp+Res refutation (T , π′) based on π. We will construct T and
π′ so that π′ will share its basic structure with π but with universal variables
removed and existential variables renamed according to the definition of E .

We observe that if π consists of a single node ⊥, T and π′ are easily
constructed by setting T to the empty tree and setting π′ to ⊥. Therefore,
from now on, we assume that all leafs of π are labeled with nonempty clauses.
For the sake of succinctness, in this section, π always refers to the given Q-
resolution proof that we wish to translate to a ∀Exp+Res refutation (T , π′).

We will first look at Figure 5 to illustrate the main ideas of the proof.
Figure 5(a) is a tree Q-resolution refutation and Figure 5(b) shows a cor-
responding ∀Exp+Res refutation. Observe that Figure 5(b) maintains the
structure of the original proof but the ∀-reductions are no longer necessary.

11

p0 ⊥
p1 u1

p2u1 ∨ ē1

p3u1 ∨ ē1 ∨ u2 ∨ u3

p4u1 ∨ ē1 ∨ u2 ∨ u3 ∨ e4 p5 ē4

p6 e1

p7 e1 ∨ ū2 ∨ ū3

p8 e1 ∨ ū2 ∨ e4 p9 e1 ∨ ū3 ∨ ē4
u2�0,u3�0 (p3) u2�1,u3�1 (p7)

u1�0 (p1)

(a) Tree Q-resolution refutation with indicated dependencies on leafs.

p′0 ⊥
p′2ēu1�0

1

p′4

ēu1�0
1 ∨ eu1�0,u2�0

4

p′5

ēu1�0,u2�0
4

p′6 eu1�0
1

p′8

eu1�0
1 ∨ eu2�1,u3�1

4
p′9

eu1�0
1 ∨ ēu2�1,u3�1

4

(b) ∀Exp+Res refutation with the ∀-expansion tree with branches {u1�0}, {u2�0, u3�0}
and {u1�0}, {u2�1, u3�1}

Figure 5: An example of corresponding proofs on the prefix ∀u1∃e1∀u2u3∃e4.

Consider the clause u1 ∨ ē1 ∨ u2 ∨ u3 ∨ e4. Since the clause contains
all universal variables, it immediately tells us that the expansion tree must
contain the branch u1�0, u2�0, u3�0 since the universal literals of the clause
must be assigned to 0. Any other assignment makes the clause true. Once
this branch is in the expansion tree, the clause ēu1�0,u2�0

4 appears in the
expansion and can be used to replicate the resolution step on the node p2.
The clauses p8 and p9 require u2�1 and u3�1, respectively. Further, we need
to make sure that after the expansion, e4 has the same annotation in both
clauses so that the resolution step on p7 can be replicated. Hence, there must
be a branch containing the assignments u2�1, u3�1. However, clauses p8 and
p9 do not give us any hint of how e1 should be expanded. For such we look
at the resolution step on p1 on the variable e1. The clause u1 ∨ ē1 becomes
ēu1�0
1 in the ∀Exp+Res refutation. This means that both p8 and p9 must also

be expanded with u1�0 so that the resolution step can be replicated.
This example motivates the following approach. For each resolution of

clauses x ∨ C1 and x̄ ∨ C2, we need to make sure that the corresponding
clauses in the ∀Exp+Res refutation are expanded so that that the variable
x is annotated by the same assignment. The literals x and x̄ can appear

12

in the Q-resolution tree π only if they were introduced by some of its leafs.
Consequently, the corresponding leafs of the resolution tree π′ must contain
the same copy of x. So if there are two leafs pi and pj that introduce x
into the resolution step, we mark down that these leafs must be expanded
so that all universal variables with level < lv(x) are expanded the same. In
our example, p4 and p5 represent such two leafs due to resolution p3. The
nodes p8, p9 are linked due to p7. The leafs p4, p8, p9 are linked due to the
resolution on e1 in node p1. These dependencies are shown in Figure 5(a) in
dashed lines. Note that the requirements intersect. For instance, the clause
e1 ∨ ū2 ∨ e4 is required to be expanded by u3�1 as well as by u1�0. What
we will need to prove is that no such requirements contradict.

This observation motivates the construction. In the first phase of the
construction, we identify sets of leafs of π where a certain existential variable
must be substituted by the same fresh copy. In the second phase we construct
a ∀-expansion tree T that will respect these sets. The ∀-expansion tree T
will provide us with the leafs of π′; the resolution steps of π′ will correspond
to the Q-resolution steps of π. The following definition introduces the con-
cept of a “resolution quadruple”, which serves to record the aforementioned
dependencies on leafs.

Definition 4 (resolution quadruple). Consider a resolution step in π on
some variable x corresponding to nodes p1 and p2 with the Q-resolvent node r.
Let C1, C2, and Cr be the clauses labeling p1, p2, and r, respectively. Hence,
Cr = C1 ∪C2r{x, x̄} (recall that ∀-reduction is modeled as a separate step).

Let U be the set of universal literals l ∈ C1 ∪C2 such that lv(l) < lv(x).
Let L be the set of leafs p of π such that there is a path from p to either p1
or p2 for which all clauses on the path contain the variable x (including the
clause labeling p).

The resolution quadruple, corresponding to this resolution step, is the
quadruple (r, x, U, L). We writeQπ for the set of all the resolution quadruples
corresponding to the resolutions of π.

In the following text we refer to resolution quadruples simply as quadru-
ples (see Examples 5 and 6 for examples of quadruples).

Consider any two leafs p1, p2 of π s.t. p1, p2 ∈ L for some (r, x, U, L) ∈ Qπ.
Once we ensure that x is replaced with the same fresh copy in the clauses
labeling p1 and p2, the plain resolution refutation π′ is easy to construct. For
such construction we assume a mapping M that for each leaf-clause C in π

13

prescribes a path P of an expansion tree. Using the operator E , we construct
a clause C ′ = E (P,C), which will be a leaf of π′ corresponding to C. Like
so we construct all leafs of π′. The rest of π′ is constructed by replaying the
Q-resolution steps of π as plain-resolution steps. This is formalized in the
following proposition. However, the proposition does not show that such T
and M exist, which will be shown in the rest of the section.

Proposition 1. Let T be a ∀-expansion tree of Φ and let M be a total map-
ping from the leafs of π to paths of T . If the following conditions C 1– C 3

hold for T and M , then there is a resolution refutation π′ of E (T ,Φ) linear
in size of π.

(C 1) If p is a leaf of π, then M(p) is a path from the root to some leaf in T .

(C 2) If p is a leaf of π labeled by a clause C, and M(p) = P , then P assigns
to 0 all universal literals of C.

(C 3) If leafs p1, p2 of π appear in the same L for some quadruple (r, x, U, L) ∈
Qπ, M(p1) = P1, and M(p2) = P2, then P1 and P2 assign the same
values to all universal variables with level l < lv(x).

Proof. We construct π′ from π in the leaf-to-root direction; during this
construction we mark each node of p′ in π′ as corresponding with some node
p in π. The construction follows the following rules Rl, Rr, Ru.

(Rl) For each leaf p in π labeled with C create a leaf p′ ∈ π′ labeled with
E (M(p), C); mark p and p′ as corresponding.

(Rr) Let p1, p2, and pr be nodes that form a resolution step in π over
some variable x. That is, C1 and C2 label the nodes p1 and p2, respectively;
x ∈ C1, x̄ ∈ C2. Consider the corresponding nodes p′1, p

′
2, labeled by C ′1, C

′
2,

respectively. If there is a variable xP s.t. xP ∈ C ′1 and x̄P ∈ C ′2, create a node
r′ and label it with the clause C ′1 ∪C ′2 r {xP , x̄P}; mark r′ as corresponding
to r. (Later we show that there always is such a literal xP .)

(Ru) Let p1 and pr be nodes representing a ∀-reduction step. That is, p1
is labeled by some clause C1 and pr is labeled by Cr, which is obtained from
C1 by ∀-reduction. If p1 corresponds to p′1 mark pr and p′1 also corresponding.

By induction on resolution depth, we show that the above construction
results in a valid resolution tree π′. Additionally we prove, that there is a
bijection between the existential literals of corresponding clauses. That is,
if C contains an existential literal x, the corresponding clause C ′ contains

14

p4 ⊥
p3 u1 ∨ u2

p2

u1 ∨ e
p1

u2 ∨ ē

(a) Q-resolution

T
u1�0,
u2�0

(b) ∀-expansion tree

p3 ⊥
p2
eu1�0,u2�0

p1
ēu1�0,u2�0

(c) plain resolution

Figure 6: From Q-resolution refutation to ∀Exp+Res refutation

a literal xP for some P ; analogously for literals x̄. The consequence of this
bijection is that the root of π′ must be labeled with the empty clause since
the root of π is.

Rule Rl is well-defined due to conditions (C 1) and (C 2); it establishes
the induction hypothesis due to definition of E .

For rule Rr, from induction hypothesis there exists P1 and P2 s.t. xP1 ∈ C ′1
and xP2 ∈ C ′2. Since C ′1 and C ′2 were obtained by valid resolution steps, there
must be a path in π′ from some leaf p′l1 to p′1 where all clauses contain the
literal xP1 ; analogously there a is path in π′ from some leaf p′l2 to p′2 where all
clauses contain the literal x̄P2 . Both paths correspond to some paths from pl1
to p1 and pl2 to p2 in π. Hence, pl1 , pl2 ∈ L for some (r, x, U, L) ∈ Qπ. Due
to condition (C 3), the variable x must be substituted with the same copy
in those leafs and therefore also P1 = P2. Because xP1 ∈ C ′1 and x̄P1 ∈ C ′2,
the resolution step on C ′1 and C ′2 is possible. It remains to be shown that
the resolution step does not introduce more than one copy of some literal.
Assume that there are literals yR1 and yR2 in C ′1 and C ′2, respectively. From
induction hypothesis, y ∈ C1 and y ∈ C2. Consequently, there are some leafs
py1 , py2 of π s.t. y appears in all clauses on the paths from py1 to p1 and
from py2 to p2. Because π is a refutation proof, y gets eventually resolved
away. Therefore there is some (ry, y, Uy, Ly) ∈ Qπ for which py1 , py2 ∈ Ly and
therefore R1 = R2 from condition (C 3).

Rule Ru preserves the induction hypothesis as universal reduction does
not modify the set of existential literals. �

Example 5. Consider ∀u1u2∃e. (u1∨e)∧(u2∨ē) with the Q-resolution refuta-
tion in Figure 6(a), which induces a single quadruple (p3, e, {u1, u2}, {p1, p2}).
To obtain a ∀Exp+Res refutation, generate the single-branch tree T in Fig-
ure 6(b) and mapping M with M(p1) = M(p2) = [u1�0, u2�0] yielding the
∀-expansion eu1�0,u2�0∧ ēu1�0,u2�0 with the corresponding resolution tree Fig-
ure 6(c). Observe that conditions C 1– C 3 from Proposition 1 are fulfilled.

15

Clauses participating in the Q-resolution step are expanded so that e is re-
placed with the same copy. The universal literals u1, u2 are assigned to 0 by
the expansion. Consequently, this Q-resolution step can be reproduced in a
plain resolution refutation (Figure 6(c)). Note that universal reduction steps
are unnecessary in the resulting plain resolution refutation since expansions
remove all universal literals.

4.1. Construction of T and M

Proposition 1 gives us conditions C 1– C 3 on a ∀-expansion tree T and
a mapping M so that any T and M satisfying these conditions enable us
to construct the desired plain-resolution refutation π′ for E (T ,Φ) from a Q-
resolution refutation π. This subsection shows that such T and M can be
constructed for any given tree Q-resolution refutation π. In the following we
use some auxiliary concepts introduced by the following definition.

Definition 5. For a quadruple q = (r, x, U, L) ∈ Qπ we say that q is at
level lv(x) and we say that a leaf p of π is in q iff p ∈ L.

Recall that if there exists a quadruple (r, x, U, L) ∈ Qπ, the clauses label-
ing the nodes in L must be expanded so that x is replaced with the same copy
in all of them. Further, the assignment used for the expansion must assign
to 0 the universal literals in those clauses. This brings about the following
question: If some leaf p of π is in two different quadruples q1, q2 ∈ Qπ, how
do we ensure that these conditions are not conflicting? We will be able to
show that they are not conflicting but for such we will need the assumption
that the Q-resolution graph π is a tree.

We say that (r, x, U, L), (r′, x′, U ′, L′) ∈ Qπ are connected iff L∩L′ 6= ∅.
We say that leafs p1, p2 of π share level k iff there exists a sequence (with
possible repetitions) of quadruples q1, . . . , qn ⊆ Qπ, s.t. p1 is in q1; p2 is in qn;
each qi in the sequence has a level ≥ k; and each two adjacent quadruples
are connected. If two leafs p1 and p2 share level k, we write p1 ∼k p2.

In the following, we group leafs of π by the relation ∼k. Let us first make
a couple of observations about this relation.

Observation 2. For any k ∈ N the relation ∼k is an equivalence relation
on the leafs of π.

Observation 3. Let p1, p2 be leafs of π. If p1 ∼k p2, then p1 ∼l p2 for
any l ≤ k. In other words, the equivalence relation ∼k+1 is finer than the
equivalence relation ∼k.

16

Let us look more closely at leafs of π that share some level k. Recall that
the given formula Φ has the prefix ∀U1 ∃ E2 . . . ∀U2N−1 ∃ E2N . Consider two
connected quadruples (r, x, U, L), (r′, x′, U ′, L′) ∈ Qπ, both at some level ≥ k,
i.e. lv(x) ≥ k and lv(x′) ≥ k. Our objective is to build such mapping M that
for any two nodes p1, p2 ∈ L, the paths M(p1) and M(p2) share the prefix
of length lv(x)/2 corresponding to assignments to variables U1 U2 . . .U lv(x)−1;
this ensures that x is renamed to the same fresh copy in clauses of the leafs L.
The same holds for leafs in L′. Since the quadruples are connected, there is
some leaf p that belongs to both L and L′, i.e. p ∈ L∩L′. Further, since
both x and x′ are at a level greater or equal to k, by transitivity, all leafs
in L∪L′ must be mapped to such paths of the ∀-expansion tree T so that
they share their prefixes of length k/2, i.e. the prefix that prescribes values to
universal variables with lower quantification levels than k. This immediately
generalizes to sequences of connected quadruples. If two leafs p1, p2 of π
share level k = 2l, then M(p1) and M(p2) must have a common prefix of
length l, corresponding to assignments to variables U1 U2 . . .Uk−1. Further,
the assignments M(p1), M(p2) must be such that the universal literals with
levels < k in the corresponding clauses are all assigned to 0.

This observation motivates Algorithm 1, which is represented as a recur-
sive function. The recursion is initiated by the call Build(1, 2N + 1, Lall)
where Lall is the set of leafs of π. After this initial call terminates, any
root-to-leaf paths with the same labeling in the returned tree are merged
to obtain the required T . The function Build returns T ′, a subtree of the
tree T being constructed, and a mapping M ′ that maps the given leafs L to
paths of T ′. The labeling of root-to-leaf paths in T ′ are total assignments to
variables Uk,Uk+2, . . . ,U2N−1, where k is an odd natural number, i.e. k goes
over universal quantification levels.

For the base case of the recursion, i.e. k = 2N + 1, the function creates
a single-node tree T ′ and maps all given leafs L to an empty path starting
and ending in the root of T ′.

For the inductive case, the function partitions the given leafs L of π by
the relation ∼k+1. From the conditions on T , clauses labeling leafs that
share level k + 1 must be expanded such that the universal literals in these
clauses with level ≤ k are assigned to 0. The function Build when invoked as
Build(k, S, L), creates assignments to the universal variables at level k. The
algorithm visits each partition ρ of the relation ∼k+1 and collects quadruples
that contain one of the leafs in ρ (line 11). Subsequently, it collects all
universal literals at level k that appear in these quadruples and computes

17

Algorithm 1: Expansion tree construction from Qπ
1 Function Build (k, StopLev, L)

in : StopLev..base-case level, k ≤ StopLev..current level, L..subset of
leafs of π

out: a pair (T ′,M ′), where T ′ is an expansion tree for universal
variables with level ≥ k, M ′ is a mapping from leafs in L to
root-to-leaf paths in T ′

2 begin
3 if k = StopLev then
4 T ′ ← create a tree with a single node, the root r
5 M ′ ← map all nodes in L to the empty path starting in r
6 return (T ′,M ′)

7 T ′ ← a tree with the root node r
8 M ′ ← empty mapping
9 Ξ← partition nodes L by the relation ∼k+1

10 foreach ρ ∈ Ξ do
11 Qρ ← {q ∈ Qπ | there exists p ∈ ρ in q, q is at level > k}
12 Uρ ← {l | (p, e, U,A) ∈ Qρ, l ∈ U, lv(l) = k}
13 τρ ← {u�0 | u ∈ Uρ}∪ {u�1 | u /∈ Uρ, lv(u) = k}
14 (T ρ,Mρ)← Build(k + 2, StopLev, ρ)
15 connect r to the root of T ρ with an edge labeled with τρ
16 if Mρ maps a leaf p ∈ L to τ , map p to τρ ∪ τ in M ′

17 return (T ′,M ′)

an assignment τρ which assigns these literals to 0 and other literals assigns
arbitrarily (line 13). Subsequently, a recursive call on the nodes ρ produces
a subtree T ρ. This subtree is integrated into T ′ by connecting it to the
root with an edge labeled by τρ (line 15). The assignment Mρ (from L
to T ρ) constructed by the recursive call is augmented by τρ and copied to M ′

(line 16).

Example 6. Consider the Q-resolution proof π in Figure 7 with the prefix
∀u1∃e2∀u3∃e4. This tree yields the quadruples depicted on the right hand
side of the figure. For k = 1, all leafs share level 1 + 1 and are put into a
single partition ρ = {p1, p2, p3, p4} labeled with [u1�0]. The recursive calls
are invoked with k = 3. Based on sharing of level 3 + 1, ρ is split into

18

p9 ⊥
p8 u1 ∨ ū3

p4 ē4p7

u1 ∨ ū3 ∨ e4

p3 ē2 ∨ ū3 ∨ e4p6u1 ∨ e2
p5u1 ∨ e2 ∨ u3

p2 u3 ∨ e4p1u1 ∨ e2 ∨ u3 ∨ ē4

(p8, e4, {u1, ū3}, {p3, p4})
(p7, e2, {u1}, {p1, p3})

(p5, e4, {u1, u3}, {p1, p2})

Figure 7: Example Q-resolution and pertaining quadruples Qπ

{p1, p2} and {p3, p4}, which are labeled [u3�0] and [u3�1], respectively. The
resulting mapping is M(p1) = M(p2) = [u1�0, u3�0] and M(p3) = M(p4) =
[u1�0, u3�1].

Let us now focus on the correctness of Algorithm 1. The algorithm is
terminating because the set of quadruples Qπ is finite. It needs to be shown
that the algorithm constructs mapping M and the tree T satisfying the
conditions (C 1)–(C 3) of Proposition 1. Observe that the assignment τρ is
constructed so that it sets to 0 all the literals in Uρ. This assignment is
then used to annotate the pertaining edge of the ∀-expansion tree being
constructed. However, for this property to be true, we need to show that
the set of literals Uρ (line 12) does not contain complementary literals—as
otherwise such assignment would not exist. For now we assume that this
holds and show it later in order to first focus on the overall workings of the
algorithm.

The first condition (C 1) requires that the mapping M assigns to any leaf-
node p a path in the constructed expansion tree. Since we are assuming that
π has no empty clauses in leafs and all input clauses are ∀-reduced, there
must exist a quadruple q ∈ Qπ with p in it. At each level k, quadruples
are partitioned so eventually there will be one and only one path P in T
s.t. M(p) = P , where P has the length N . Thus satisfying condition (C 1).
(Observe that the recursive sub-calls construct mappings M ′ to shorter paths,
ignoring levels < k.)

Condition (C 2) requires that if a leaf-node p of π is labeled by a clause C,
then the assignment M(p) assigns all universal literals of C to 0. If C contains
some universal literal l with lv(l) = k, l must be blocked by some existential
literal b ∈ C with lv(b) > k. This literal b is eventually resolved away and
therefore there must be a quadruple qb = (r, var(b), Ub, Lb) ∈ Qπ s.t. p ∈ Lb.
Since b blocks l on a path from p to some child of r, it also holds that l ∈ Ub.

19

Hence, once the function Build is invoked at level k on a set of leafs L such
that p ∈ L, the quadruple qb will be put in a set Qρ, defined on line 11,
for the ρ for which p ∈ ρ. Subsequently, l will be placed in the set Uρ and
assigned to 0 by the assignment τρ constructed on line 13. The algorithm
places p into a subtree prepended by an edge labeled with τρ thus satisfying
condition (C 2).

The condition (C 3) requires that if leafs p1 and p2 appear in some quadru-
ple q = (r, x, U, L), the assignments M(p1), M(p2) assign the same values
to all universal literals with level < lv(x) (this ensures that x will be re-
placed with the same copy by E). Since both p1 and p2 are in q, they are
connected at lv(x) and therefore automatically they are connected at all lev-
els ≤ lv(x) (Observation 3). In terms of the algorithm, this means that when
the algorithm partitions leafs according to ∼k+1, the leafs p1 and p2 will
be put in the same partition ρ for all levels k < lv(x). And therefore, the
paths M(p1) and M(p2) will assign the same values to all universal variables
with level < lv(x) thus satisfying condition (C 3).

As we have established that Algorithm 1 satisfies conditions (C 1)− (C 3)
of Proposition 1, the tree T and the mapping M provide us with a ∀Exp+Res
refutation of the considered formula Φ as long as T is a valid expansion tree.
For such we need to show that the set Uρ constructed on line 12 does not
contain complementary literals. This will be shown in Lemma 6. However,
before we reach this lemma, a series of auxiliary lemmas need to be derived.

The following proves hinge on the simple observation that for a quadru-
ple (r, x, U, L) ∈ Qπ the set U cannot contain complementary literals because
Q-resolution does not enable resolving on clauses with more than one com-
plementary literal, and, the set U is defined as the set of universal literals
with level < lv(x) from the union C1 ∪C2 in the resolution step of C1∨x and
C2 ∨ x̄.

Observation 4. For any (r, x, U, L) ∈ Qπ, the literals U are noncontradic-
tory.

Roughly speaking, in the following we show that for the quadruples
grouped in the set Qρ, constructed on line 11, there is one quadruple qr ∈ Qρ

that encompasses all the other quadruples in Qρ, i.e. qr corresponds to a res-
olution step that dominates all the other resolution steps. Further, we show
that the set Ur in the quadruple qr contains all relevant universal literals
that appear in Qρ, i.e. the set Uρ constructed on line 12. Observation 4 will
enable us to conclude that Uρ is not contradictory.

20

ri

r′

ri−1

pc

(a) ri dom. r′

r′

ri−1
ri

pc

(b) ri−1 dom. ri

r′

ri

ri−1

pc

(c) ri dom. ri−1

Figure 8: Illustration for the proof of Lemma 3.

We begin by a simple lemma that states that if two quadruples are con-
nected, one of them must correspond to a resolution step dominated by the
other one.

Lemma 1. If any two quadruples (r1, x1, U1, L1), (r2, x2, U2, L2) ∈ Qπ are
connected, then r1 dominates r2, i.e. r2 is in a subtree of r1, or r2 domi-
nates r1.

Proof. Since the quadruples are connected, there is some leaf pc of π s.t.
pc ∈ L1 and pc ∈ L2. At the same time, there is a path from pc to both r1
and r2. If neither r1 dominated r2 nor r2 dominated r1 there would be an
undirected cycle from the root of π to r1, pc, r2, and back to the root. This
would be a contradiction with the assumption that π is a tree. �

Lemma 2. Consider any two quadruples (r1, x1, U1, L1), (r2, x2, U2, L2) ∈
Qπ such that r1 dominates r2 and r2 dominates some pl ∈ L1. Then all the
clauses on the path from r2 to r1, except for r1, contain a literal b ∈ {x1, x̄1}.

Proof. Since the leaf pl is dominated by both r1 and r2, there is a path from
pl through r2, r1, and ending in the root of π. Since pl ∈ L1, from definition
of the quadruples, there is a literal b ∈ x1, x̄1 that appears everywhere on the
path except for the node r1. �

The following lemma shows that for any sequence of connected quadruples
that are all at some level ≥ k there exists one that dominates all in the
sequence. Further, its set U contains all relevant universal literals in the
sequence.

21

Lemma 3. Consider a sequence of quadruples γ = q1, . . . , qn, such that each
qi ∈ Qπ in the sequence has a level ≥ k, and, each two adjacent quadruples
are connected. Then, there is a quadruple (r, x, U, L) ∈ γ such that for any
quadruple (rj, xj, Uj, Lj) ∈ γ the node r dominates rj, and, each clause on the
path from rj to r, except for r, contains some existential literal with level ≥ k.

Proof. Proof by induction on the length of prefix of γ. For the base
case choose (r, x, U, L) as q1. For the inductive case consider i > 1 and
q′ = (r′, x′, U ′, L′) from the induction hypothesis such that q′ satisfies the
condition for q1, . . . , qi−1. Since adjacent quadruples are connected, for qi =
(ri, xi, Ui, Li) and qi−1 = (ri−1, xi−1, Ui−1, Li−1) there is a leaf pc ∈ Li−1 ∩Li.
Split on the following cases.

If qi is equal to any of the qj for j < i, choose (r, x, U, L) to be q′.
If ri dominates r′ (Figure 8(a)) then invoke Lemma 2 whose preconditions

are satisfied because ri dominates r′ and from the induction hypothesis r′

dominates pc (recall that pc ∈ Li−1 ∩Li). Hence there is a path from r′ to
one of the antecedents of ri containing the literal b ∈ {xi, x̄i}. Note that b
does not appear in ri but it does appear in r′. From induction hypothesis,
for any rj, j < i there is a path from rj to some antecedent of r′ where each
clause is blocked by some literal with level ≥ k. Concatenating the path from
rj to r′ with the path r′ to ri satisfies the condition for j. Choose (r, x, U, L)
to be qi.

From Lemma 1, either ri is dominated by ri−1 or ri−1 is dominated by ri.
Hence we need to consider only these two remaining cases. If ri−1 domi-
nates ri (Figure 8(b)), then from Lemma 2 there is a bi−1 ∈ {xi−1, x̄i−1} that
appears on the path from ri to one of the antecedents of ri−1. From induction
hypothesis, there is a path from ri−1 to r′, excluding r′, that contains some
existential literals with level ≥ k. Concatenating this path to the path from
ri to ri−1 gives us a path satisfying the required condition for the node ri.

If ri−1 is dominated by ri (Figure 8(c)) and ri does not dominate r′, then
r′ must dominate ri otherwise there would be an unoriented cycle from the
root of π to r′, ri−1, ri, and back to the root. From the induction hypothesis,
each clause on the path from ri−1 to r′ contains some existential literal with
level ≥ k. Since r′ dominates ri, which in turn dominates ri−1, the path from
ri to r′ is a suffix of the path from ri−1 to r′ and therefore also satisfies the
required condition. Choose (r, x, U, L) to be q′. �

Before we can apply the results derived so far, we have to make a simple
but very important observation and that is that any set ρ considered on

22

line 10 is an equivalence class of ∼k+1.

Lemma 4. For any call Build(k, S, L), any set ρ considered on line 10 is
an equivalence class of ∼k+1 on the leafs of π.

Proof. Observe that ρ is a subset of an equivalence class of ∼k+1 because
it is constructed by partitioning the given leafs L by ∼k+1.

Proof by induction on k. For k = 1, the function Build is called with L
being the whole set of leafs of π. Hence, any constructed set ρ is an equiva-
lence class of ∼1+1.

For the induction step, consider the recursive call Build(k + 2, S, ρk)
for k ≥ 1. The set ρk is partitioned according to ∼k+3. From induction
hypothesis, ρk is an equivalence class of ∼k+1. Due to Observation 3, ∼k+1

is coarser than ∼k+3 and therefore any constructed ρ is an equivalence class
of ∼k+3. �

Remark 4. Lemma 4 provides an interesting insight into Algorithm 1. As
any relation ∼k+1 is finer than the relation ∼k, one can imagine the equiva-
lence classes forming a tree where the equivalence classes of ∼k+1 are children
of the classes of ∼k. The workings of Algorithm 1 can be seen as a traversal
of this tree.

Algorithm 1 defines a set Qk
ρ, which is parameterized by the set ρ, for

which we know that it is an equivalence class of ∼k+1 due to Lemma 4. The
following lemma shows that Qk

ρ can be organized in a sequence of connected
quadruples. In turn, this will enable us to apply Lemma 3 on the set Qk

ρ.

Lemma 5. Consider ρ an equivalence class of ∼k+1 for some odd num-
ber k > 0. Define Qk

ρ ⊆ Qπ as follows.

Qk
ρ = {(r, x, U, L) ∈ Qπ | p ∈ ρ, p ∈ L, lv(x) > k}

Then for any qa, qb ∈ Qk
ρ there is a sequence of quadruples q1, . . . , qm where

qa = q1, qb = qm, each qi is at a level > k and qi ∈ Qk
ρ, and each two adjacent

qi,qi+1 ∈ Qk
ρ are connected.

Proof. From definition of Qk
ρ, there are leafs pa, pb ∈ ρ s.t. pa ∈ qa, pb ∈ qb.

Since ρ is an equivalence class of ∼k+1, there is a sequence of connected
quadruples s1, . . . , sn such that pa is in s1 and pb is in sn, and each quadruple
in the sequence is at a level > k.

23

Let us denote each si as (ri, xi, Ui, Li). Recall that all Li are nonempty.
For each i pick an arbitrary node pi ∈ Li. Because all the quadruples si in
the sequence are connected to one another, pa ∼k+1 pi. Consequently, pi ∈ ρ
and therefore si ∈ Qk

ρ.
Since qa and s1 are connected because of pa and qb and qb are connected

because of pb, constructing the sequence qa, s1, . . . , sn, qb yields the required
sequence. �

Finally, we can prove the crucial lemma, which shows that the set Uρ
constructed in Algorithm 1 does not contain any complementary literals and
therefore provides us with a well-defined assignment τρ.

Lemma 6. Let k, ρ, and Qk
ρ be defined as in Lemma 5. Define a set of

literals Uk
ρ as Uk

ρ =
{
l | (r, x, U, L) ∈ Qk

ρ, lv(l) = k, l ∈ U
}

. The set Uk
ρ does

not contain complementary literals.

Proof. Lemma 5 gives us that Qk
ρ can be organized into a sequence γ,

where each two adjacent quadruples are connected and each qi ∈ γ is at a
level > k. From Lemma 3 there is a quadruple (rd, xd, Ud, Ld) ∈ γ s.t. for
any quadruple (rj, xj, Uj, Lj) ∈ γ the node rd dominates rj and each of the
clauses on the path from rj to rd, except for rd, contains some existential
literal with level > k. Hence, no universal literals with level l ≤ k can be
∀-reduced on a path from rj to rd in π. Therefore necessarily, Ud contains
all literals Uj. Consequently, Uk

ρ ⊆ Ud. From Observation 4, the set Ud is
noncontradictory and therefore Uk

ρ is also noncontradictory. �

This last lemma concludes the proof of the correctness of Algorithm 1 as
it guarantees that the assignment τρ (line 13) is well-defined.

Algorithm 1 operates in time polynomial to the size of π because the
size of the set Qπ is linear to the size of π and partitioning by ∼k+1 can be
computed in polynomial time. This fact, together with Proposition 1 lets us
derive the following.

Theorem 2. For any tree Q-resolution refutation π there exists a ∀Exp+Res
refutation (T , πT) s.t. both T and πT are polynomial in size of π. This
∀Exp+Res refutation can be constructed in time polynomial to π. Hence,
∀Exp+Res p-simulates tree Q-resolution.

24

xτ x̄τ

⊥

u ∨ x u ∨ x̄

u

⊥
(a) Successful

xτ ∨ yµ x̄τ ∨ ȳρ

ȳρ ∨ yµ

x ∨ ū ∨ y x̄ ∨ u ∨ ȳ

u ∨ ū ∨ y ∨ ȳ

(b) Unsuccessful

Figure 9: Reconstruction examples.

Remark 5. Note that the correctness proof of Algorithm 1 hinges on Obser-
vation 4, which tells us that the set of literals U in any quadruple is non-
contradictory. Recall that this set is constructed by collecting from the resol-
vent universal literals with lower levels than the variable being resolved on.
Hence, if we consider a modification of Q-resolution that would enable con-
tradictory universal literals in resolvent if their quantification level is higher
than the level of the variable resolved on, our proof would still hold. Such
extensions of Q-resolution are known and are commonly referred to as long-
distance resolution [11, 29].

5. Simulating Restricted ∀Exp+Res by Q-Resolution

A straightforward idea how to obtain a Q-resolution refutation from a
∀Exp+Res refutation is to revert the substitutions made by the expansion
operator E . In particular, any variable xτ appearing in the given ∀Exp+Res
refutation would be replaced with its original x and universal literals would
be added as in the original clauses of the matrix. This is illustrated by Fig-
ure 9(a) where xτ is replaced with x and the literal u is inserted to the leaf
clauses and it is universally reduced at the first opportunity. The reason why
this fails in the general case is due to the Q-resolution’s restriction disallow-
ing resolving clauses with multiple complementary literals (see Remark 1).
What might happen is illustrated by Figure 9(b). Two clauses that are re-
solved on in a ∀Exp+Res refutation, may contain literals ȳρ and yµ where
τ 6= µ. Here yρ and yµ are distinct variables and therefore the resolvent is
not tautologous. However, removing the superscript results in a tautology.
Similarly, a tautology may arise because of universal literals that are inserted

25

⊥
e1 ¬e1

¬eu1�1,u2�1
2¬eu1�0,u2�0

2e1 ∨ eu1�0,u2�0
2 ¬e1 ∨ eu1�1,u2�1

2

Figure 10: An example of a level-ordered refutation on the prefix ∃e1∀u1u2∃e2.

into the leaf clauses (literals u and ū in the example).1

As illustrated by Figure 9, constructing Q-resolution by inverting the E
operation, works only in some cases. This section identifies a certain fragment
of ∀Exp+Res where it does work. This fragment restricts ∀Exp+Res by
allowing resolutions only in a certain order. In particular, it allows only
resolutions that follow the order of the quantifier prefix (“inside out”); such
refutation will be called level-ordered.

Definition 6 (level-ordered). Let (T , π) be a ∀Exp+Res refutation of a
QCNF Φ. We say that (T , π) is level-ordered iff the following holds. Let
xP ∨C1 and x̄P ∨C2 be some clauses resolved in π on xP , then lv(y) ≤ lv(x)
for any yP1 ∈ var(C1 ∨ C2).

Example 7. Consider again the formula ∃e1∀u1u2∃e2. (e1 ∨ u1 ∨ u2 ∨ e2) ∧
(¬e1∨¬u1∨¬u2∨e2)∧¬e2 from Example 4. The previously shown ∀Exp+Res
refutation in Figure 4 is not level-ordered because e1 is resolved over before
eu1�1,u2�1
2 and eu1�0,u2�0

2 . Figure 10 shows an alternative resolution proof,
based on the same expansion. This refutation is level-ordered since any eτ2 is
resolved away before e1.

Note that Definition 6 does not impose any order on variables within
the same variable block. In particular, any refutation on a single-level or
two-level formula (∃ E , ∀U ∃ E) is level-ordered.

We first observe that in a level-ordered ∀Exp+Res refutation, “branches
don’t mix”, i.e. if a clause contains two variables xP1

1 and xP2
2 , the path P1

must be a prefix of P2, or the other way around.

1 While tautologies are always disabled in Q-resolution, tautologies due to universal lit-
erals could be considered “worse” because they would lead to unsoundness due to universal
reduction, e.g. the clause ū ∨ u is ∀-reduced to ⊥.

26

Lemma 7. Let (T , π) be a level-ordered ∀Exp+Res refutation of a QCNF Φ.
Let C be some clause in π and xP1

1 ,xP2
2 ∈ var(C). If lv(x1) ≤ lv(x2), then the

path P1 is a prefix of the path P2.

Proof. By induction on the number of resolution steps that led to C. The
condition is true for the leafs of π from the definition of E . For the induction
step consider clauses C1∨ x̄Pr and C2∨xPr with the resolvent C = C1∨C2. If
C is empty or unit, the condition is trivially satisfied. Let xP1

1 ,xP2
2 ∈ var(C)

with lv(x1) ≤ lv(x2). Because π is level-ordered, lv(x1) ≤ lv(xr) and lv(x2) ≤
lv(xr), from which the induction hypothesis gives that both paths P1 and
P2 are prefixes of the path P . Since lv(x1) ≤ lv(x2), then |P1| ≤ |P2| from
definition of E . Hence the path P1 is a prefix of the path P2. �

Lemma 8. Let (T , π) be a level-ordered ∀Exp+Res refutation of a QCNF Φ.
Let C be a clause in π and xP1,xP2 ∈ var(C), then P1 = P2.

Proof. Immediate consequence of Lemma 7. �

The following theorem shows that for level-ordered ∀Exp+Res refutation,
Q-resolution refutations can be obtained by “removing superscripts”.

Theorem 3. Let (T , π) be a level-ordered ∀Exp+Res refutation of Φ = P . φ.
Then a Q-resolution refutation of Φ can be constructed in polynomial time
with respect to |(T , π)|. Hence, Q-resolution p-simulates level-ordered ∀Exp+Res.

Proof. This proof follows a similar construction as was done for construct-
ing ∀Exp+Res refutations from Q-resolution refutations in Proposition 1 but
in the opposite direction.

Construct a Q-resolution refutation π′ as follows. For each leaf p in π
labeled with a clause C, there exists a path P from the root to some leaf in T
and a clause C ′ ∈ φ such that E (P,C ′) = C. Replace C with C ′. Whenever
there is a resolution on some variable xP in π, perform resolution on x in π′.
Add ∀-reduction steps after each resolution step whenever possible.

To show that π′ is a valid Q-resolution proof, we prove the following.
From construction of π′, each leaf or a ∀-reduced clause C ′ in π′ corresponds
to some clause C in π and the following conditions are satisfied. (1) An
existential literal l′ with var(l′) = x is in C ′ iff there is a literal l ∈ C
with the same polarity as l′ and with var(l) = xP for some path P of T .

27

(2) Let xP ∈ var(C), be such that lv(x) ≥ lv(y) for all yP
′ ∈ var(C). Then

for any universal literal l′ ∈ C ′, P (l′) = 0.
Proof by induction on the number of resolution steps that led to C ′.

The conditions are immediately satisfied for the leaf clauses by the definition
of E . For the induction step consider clauses C ′1 and C ′2 being resolved on
some variable xr in π′. From construction of π′, there exist corresponding
clauses C1 and C2 in π resolved on some variable xPr . Assume WLOG xPr ∈
C1 and x̄Pr ∈ C2. First we show that the Q-resolution step is valid for
C ′1 and C ′2; second we show that the induction hypothesis is preserved by
this Q-resolution step. From induction hypothesis, xr ∈ C ′1 and x̄r ∈ C ′2.
Therefore C ′1 and C ′2 can be resolved on xr provided that there is no other
complementary literals in them. For contradiction, assume there are two
complementary literals y ∈ C ′1 and ȳ ∈ C ′2, where xr 6= y.

First assume that y is existential. From induction hypothesis there are
literals yR1 ∈ C1 and ȳR2 ∈ C2. Since C1 and C2 contain only one pair
of complementary literals (xPr and x̄Pr), it must be that R1 6= R2. This
is a contradiction with Lemma 8 because their resolvent would contain the
variables yR1 and yR2 .

Now assume that y is universal. The contradiction derives from the in-
duction hypothesis that P assigns 0 to all universal literals in C ′1 and C ′2.
In particular, it assigns 0 to both the literals y and ȳ, which is a contradic-
tion as an assignments can give only a single value to a variable. (Note that
lv(y) < lv(xr) as otherwise y would be ∀-reduced.)

Now we show that conditions (1) and (2) are preserved by resolution
steps. Resolving C ′1 and C ′2 yields the clause C ′u = C ′1 ∪C ′2 r {xr, x̄r}, which
is subsequently ∀-reduced to C ′. The clause C ′ corresponds to C = C1 ∪C2r
{xPr , x̄Pr } in π.

To show condition (1) we need to find a corresponding literal for each
existential literal l′ ∈ C ′ and conversely, a corresponding literal for each
literal l ∈ C. Let l′ ∈ C ′ be an existential literal where var(l′) = xl. It holds
that xl 6= xr and l′ belongs to one of the clauses C ′1, C

′
2. From induction

hypothesis, there is a literal l in the corresponding C1 or C2 s.t. var(l) = xRl
for some R. Hence, l is in C. For the converse, consider a literal l ∈ C where
var(l) = xRl . Then xl 6= xr due to Lemma 8 and because both xPr and x̄Pr are
removed in the resolution step. Since l belongs to one of C1 or C2, there is a
corresponding l′ in the corresponding C ′1 or C ′2 from induction hypothesis.

The condition (2) holds trivially for an empty C ′. If C ′ is nonempty,
C is also nonempty and there is a variable zR ∈ var(C) s.t. lv(z) ≥ lv(y)

28

DN−2

DN−2 ∨ eN

DN−2 ∨ eN ∨ ūN

DN−2 ∨ ūN ∨ c̄2N eN ∨ c2N

ūN ∨ c2N−1DN−2 ∨ c̄2N−1 ∨ c̄2N

DN−2 ∨ ēN

DN−2 ∨ ēN ∨ uN

DN−2 ∨ uN ∨ c̄2N−1ēN ∨ c2N−1

uN ∨ c2N

Figure 11: Q-resolution proof fragment (where Dn−2 = c̄1 ∨ · · · ∨ c̄2n−3 ∨ c̄2n−2)

for all yR
′ ∈ var(C). It must be that R is a prefix of the path P due to

Lemma 7 (recall that the resolution is on xP). From induction hypothesis, P
assigns 0 to all universal literals in C ′1 ∪C ′2. Hence R assigns 0 to all universal
literals from C ′1 ∪C ′2 with level l < lv(z); all the other universal literals are
∀-reduced. �

6. ∀Exp+Res Does Not Simulate Q-resolution

Section 4 shows that ∀Exp+Res p-simulates Q-resolution when Q-resolution
is restricted to tree refutations. This section shows that this result is “tight”,
i.e. once a Q-resolution takes general non-tree DAG form, it is not p-simulated
by ∀Exp+Res. For such we construct the following formula parameterized
by a natural number n.2

∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n.∧
i∈1..n (ēi ∨ c2i−1) ∧ (ūi ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i) ∧(∨
i∈1..2n c̄i

) (2)

Observe that (2) has size linear in n. In particular, it has 4n+1 clauses and
4n variables. Each of the quadruples of clauses encodes the implications (ei∨
ui)→ c2i−1 and (ēi∨ ūi)→ c2i. This means that for either of the values of ei,
the variable ui can be set so that both c2i−1 and c2i must be true. This leads
to a contradiction due to the last clause

∨
i∈1..2n c̄i. First we show that (2)

has a short Q-resolution refutation.

2See http://sat.inesc-id.pt/~mikolas/expansion13/ for a formula generator.

29

http://sat.inesc-id.pt/~mikolas/expansion13/

Proposition 2. Formula (2) has a Q-resolution refutation comprising linear
number of resolution steps w.r.t. n.

Proof (sketch). Starting from the clause
∨
i∈1..2n c̄i, the literals c̄i are

gradually resolved away from the highest to the lowest level. Figure 11 shows
how the variables c2n−1, c2n are resolved away. Subsequently, the variables
c2(n−1)−1, c2(n−1) are resolved away in an analogous fashion. This process
continues until the empty clause is obtained. �

In the second half of this section we show that there are no short ∀Exp+Res
refutations of (2). Moreover, we show that any ∀Exp+Res refutation requires
a full expansion of the formula.

Proposition 3. Any ∀Exp+Res refutation of (2) is exponential in size in n.

Proof. Let us look at the expansion of the first universal variable, i.e. the
variable u1. We show that both of the values are needed in the expansion.
Expanding u1 yields the two following subformulas, one for u1�1 and one for
u1�0 (for now other variables are left unexpanded).

∃e2∀u2∃c3c4 . . . ∃en∀un∃c2n−1c2n.
(ē1 ∨ cu1�1

1) ∧ (cu1�1
1) ∧ (e1 ∨ cu1�1

2) ∧∧
i∈2..n (ēi ∨ c2i−1) ∧ (ūi ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i) ∧(
c̄u1�1
1 ∨ c̄u1�1

2 ∨
∨
i∈3..2n c̄i

) (3)

∃e2∀u2∃c3c4 . . . ∃en∀un∃c2n−1c2n.
(ē1 ∨ cu1�0

1) ∧ (cu1�0
2) ∧ (e1 ∨ cu1�0

2) ∧∧
i∈2..n (ēi ∨ c2i−1) ∧ (ūi ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i) ∧(
c̄u1�0
1 ∨ c̄u1�0

2 ∨
∨
i∈3..2n c̄i

) (4)

The original formula (2) is equivalent to ∃e1cu1�0
1 cu1�0

2 cu1�1
1 cu1�1

2 . (4)∧(3).
Or equivalently, (2) is false iff (4) ∧ (3) is unsatisfiable.

The subformula (3) is satisfiable because e1 can be set to 1, cu1�1
2 to 0

and the rest of the existential variables to 1. Similarly, the subformula (4)
is satisfiable when e1 is set to 1. Since both formulas (3) and (4) are satis-
fiable, both of them are needed to show unsatisfiability. Consequently, any
∀Exp+Res refutation must expand the variable u1 in both of its values.

Consider expansions φ1 and φ2 of (4) and (3), respectively, such that
φ1 ∧ φ2 is unsatisfiable. The only variable φ1 and φ2 share is e1 because

30

a1

b1

a1

bN

aN

b1

aN

bN

Figure 12: Completion principle

universal variables are expanded away and all existential variables are labeled
with u1�1 and u1�0, respectively. From Craig’s interpolation theorem [30],
there is an interpolant I using only variables common to φ1 and φ2, i.e. e1,
and it holds that φ1 ⇒ I and φ2 ⇒ ¬I. Equivalently, φ1 ∧¬I and φ2 ∧ I are
unsatisfiable. Since φ1 ∧ e1 is satisfiable, I must be e1 and φ1 ∧ ē1 must be
unsatisfiable. Further, φ1∧ ē1 is weaker than (3)∧ ē1, which can be rewritten
as follows.

(cu1�1
1) ∧ (cu1�1

2) ∧
∃e2∀u2∃c3c4 . . . ∃en∀un∃c2n−1c2n.∧
i∈2..n (ēi ∨ c2n−1) ∧ (ūi ∨ c2n−1) ∧ (ei ∨ c2n) ∧ (ui ∨ c2n) ∧(∨
i∈3..2n c̄i

) (5)

Since cu1�1
1 , cu1�1

2 appear in only the first part of (5), the second part
of the formula has to be false (i.e. unsatisfiable after full expansion). The
second part of (5) is in the same form as the initial formula (2) just with
4 fewer variables (the variables e1, u1, c1, and c2). Hence, by renaming we
obtain a formula of the form (2) for n − 1. Repeating the same arguments
as above, (5) must be fully expanded in order to ensure unsatisfiability.

Following the same argument for (4) ∧ e0 shows that the proof needs
to expand each variable in both polarities at all depths. Thus yielding an
exponential expansion of the given formula. �

Hence, Proposition 3 and Proposition 2 give us an exponential separation
between Q-resolution and ∀Exp+Res.

Theorem 4. ∀Exp+Res does not p-simulate Q-resolution.

7. Level-ordered Q-resolution does not p-simulate ∀Exp+Res

This section aims to show certain strength of ∀Exp+Res, which sheds
some light on the fact expansion-based solvers perform on certain instances

31

better than DPLL-based solvers [31]. DPLL-based solvers assign values to
variables from left to right in the order of the prefix with the exception of
values obtained by unit propagation. However, if there is no unit propagation
that “goes over levels”, the generated proofs follow the prefix of the formula,
inside-out.3 Hence, we introduce the following restriction on Q-resolution.

Definition 7. Let π be a Q-resolution refutation of a QCNF Φ. We say that
π is level-ordered iff the following holds. Let x∨C1 and x̄∨C2 be some clauses
resolved in π, then lv(y) ≤ lv(x) for any existential variable y ∈ var(C1∨C2).

As in level-ordered ∀Exp+Res refutation (see Definition 6), any Q-resolution
is level-ordered for prefixes ∃ E and ∀U ∃ E .

It is well-known that proof may grow exponentially for plain resolution
when a certain order is imposed [32]. Hence, one could reuse one such formula
and impose a certain order by inserting dummy universal quantifiers (as many
as there are original variables) and thus show a separation between level-
ordered Q-resolution and general ∀Exp+Res. As this is a very convoluted
example, it is not very interesting. We show, instead, that ∀Exp+Res is
already more powerful than level-ordered Q-resolution for formulas with only
3 levels of quantification.

Our construction derives from a principle which we name completion prin-
ciple. We consider two sets A = {a1, . . . , an}, B = {b1, . . . , bn} and their
cross-product A×B. Let us visualize the cross-product as in Figure 12. The
following game is played. In the first round, the ∃-player deletes one and
only one cell from each column. In the second round, the ∀-player chooses
one of the two rows. The ∀-player wins if the chosen row contains either the
complete set A or the set B. Observe that there is a winning strategy for
the ∀-player. If the ∃-player wants to make sure that the bottom row (the bi
row) does not contain the complete set B, it must delete at least one element
from each of the n copies of B. Hence, for the j-th copy of B there is an
element aj that was not deleted and thus forming the complete set A. Hence,
the winning strategy for the ∀-player is to look at the bottom row and see if

3If a solver were to propagate across levels on the formula studied here, there would
have to be a clause of the form C = Cx ∨ l, with Cx being literals in the 1st level and
lv(l) = 3 (with z /∈ var(C)). No such clause is in the original formula and it can be proven
by induction that no such clause can be derived by Q-resolution and therefore, it is never
learned.

32

it contains a complete copy of B. If it does, the ∀-player selects the bottom
row and otherwise he selects the top row.

Let us construct a formula based on the completion principle. For each
column i we introduce a variable xi that determines which cell is deleted
by the ∃-player in the first round. For the ∀-player we introduce a single
universal variable z that determines the selected row. Further, we add a
clauses that make sure that whenever one of the sets A or B is complete, the
formula becomes false.

We construct the formula CRn as follows. The prefix is the following.
∃x(1,1) . . . x(n,n)∀z∃a1 . . . anb1 . . . bn The matrix consists of the conjunction of
the two following parts.

xij ∨ z ∨ ai, i, j ∈ 1..N (6)

x̄ij ∨ z̄ ∨ bj, i, j ∈ 1..N (7)∨
i∈1..N

āi (8)∨
i∈1..N

b̄i (9)

The first two types of clauses (6) and (7) represent the completion prin-
ciple. The last two types of clauses (8) and (9) disables setting all ai and b1
to true, respectively. Hence, the whole formula CRn is false because once z
is set according to the strategy outlined above, the variables A∪B must
be set such that variables from one of the sets A and B will be all true.
Consequently, one of the clauses (8) and (9) must be falsified.

First we show that CRn has short refutation in ∀Exp+Res.

Proposition 4. CRn has a ∀Exp+Res refutation polynomial in size in n

Proof (sketch). Expand z in both values. The expansion yields the
clauses (x(i,j) ∨ az�0

i) ∧ (x̄(i,j) ∨ bz�1
i), from which we derive the clauses

az�0
i ∨ bz�1

j for i, j ∈ 1..n. (n2 resolution steps). From clauses (8) and (9) we
obtain Ca =

∨
i∈1..n ā

z�0
i and Cb =

∨
i∈1..n b̄

z�1
i .

For all j ∈ 1..n, using the clauses az�0
i ∨ bz�1

j for i ∈ 1..n and the clause
Ca derive the unit clause bz�1

j . (n2 resolution steps) Together with the unit
clauses bi, the clause Cb leads to the empty clause. (n resolution steps) �

We will show that the formula CRn does not have short refutations in
level-ordered Q-resolution.

33

Lemma 9. Let π be a level-ordered Q-resolution refutation of CRn. Let C be
a clause in π such that it does not contain any ai or bi variables and let πC
be a DAG rooted in C, i.e. πC is a proof of C. The proof πC contains one of
the clauses (8), (9).

Proof. Construct a path P that starts at C and goes to some leaf of πC . The
path P is constructed so that āi (resp. b̄i) is followed whenever ai (resp. bi)
is resolved on. Since all axiom clauses (6) and (7) contain ai or bi positively,
one of (8), (9) must be at the end of P . �

Lemma 10. Let P be a path from the root of π that contains clauses with xij
variables only and is maximal in that respect, i.e. P cannot be extended by
a clause that would have only xij variables. Let C be the last clause on the
path P . The clause C contains a variable xij for each i ∈ 1..N .

Proof. Note that P must exists because at least ⊥ satisfies the condition
that it contains only xij variables. Let D1 and D2 be the antecedents of C
and let πC be the derivation of C. (Note that the antecedents must exists
because all the axiom clauses contain ai,bi variables.) From the construction
of P , the clauses D1 and D2 contain some variable y with y = ai or y = bi for
some i ∈ 1..N and C does not contain this variable. Therefore, the resolution
step of D1 and D2 is over the variable y. Due to the order condition on the
resolution steps in π, the derivation πC does not contain any resolution steps
over the xij variables.

From Lemma 9 there is one of (8), (9) in πC . W.L.O.G. let (8) be in πC .
The clause (8) introduces āi for each i ∈ 1..N . Since C does not contain
any āi, all these must have been resolved away. As the only clauses con-
taining the positive literals ai are clauses of type (6), a variable xij must be
introduced for each i ∈ 1..N . Since no xij variables could have been resolved
away in πC , all the introduced xij literals must appear also in C. �

Proposition 5. The refutation π is exponential in N .

Proof. Pick an assignment τ to all variables xij. Construct a path P as
follows. Start from P = ⊥. If the end of P is derived by a resolution step over
some variable xij, extend P with the antecedent that contains the literal l
s.t. τ(l) = 0 and var(l) = xij. If the end of P is derived by a resolution over
some ai, bi variable, stop. If there is a ∀-reduction step, simply extend P .

34

Due to Lemma 10, the path P ends with a clause Cτ that contains N different
variables xij and τ(Cτ) = 0.

There are 2N∗N different assignments τ to the xij variables and each
clause Cτ covers at most 2N∗N−N assignments. Hence there must be at
least 2N∗N/2N∗N−N = 2N clauses Cτ altogether. �

Corollary 1. Level-ordered Q-resolution does not p-simulate ∀Exp+Res even
with bounded number of quantification levels.

Remark 6. We should note that real conflict-driven DPLL solvers indeed
produce exponential refutations of CRn. In contrast, expansion-based solver
refute the formula quickly.4

8. Conclusions and Future Work

This article introduces and studies a proof system ∀Exp+Res aimed at
refuting false QCNFs based on a combination of two techniques: expansion
of universal variables and propositional resolution. In order to mitigate the
exponential blowup of expansion, we introduce partial expansions, which
permit considering only certain polarities of the variable being expanded.

The application of expansions for producing a propositional formula is
an attractive means of solving QBF as it enables the use of modern SAT
technology. Indeed, a number of QBF solvers tackle a given formula by
the combination of expansion and SAT solving. The solvers QUBOS [14],
Nenofex [16], Quantor [15] expand universal variables from inner- to outermost
levels. However, these expansions are possibly interleaved with operations
for removal of existential quantifiers. (Nevertheless, Quantor has an option
that forces it to expand universal variables only.) It is the subject of future
work to develop proof systems that would characterize these solvers.

The solver sKizzo [33] expands all universal quantifiers as is done in
∀Exp+Res (even though the process is called Skolemization) but it does
not apply partial expansions. In contrast, the solver RAReQS [28, 17] con-
structs a partial expansion, which is gradually being augmented (refined)
until it becomes sufficient. Hence, out of the mentioned solvers, the work-
ings of RAReQS are closest to ∀Exp+Res as it is the only one considering

4See http://sat.inesc-id.pt/~mikolas/expansion13/ for a formula generator and
also proofs generated from a DPLL QBF solver.

35

http://sat.inesc-id.pt/~mikolas/expansion13/

partial expansions. It should be noted that there is a price for the use of
partial expansions as the solver “wastes” effort on partial expansions that
are insufficient to show falsity.5

The formalization of ∀Exp+Res enables us to further our understanding
of the difference between expansion-based QBF solvers and DPLL solvers,
whose responses can be certified by Q-resolution. On the positive side, the ar-
ticle shows that any tree Q-resolution refutation is p-simulated by ∀Exp+Res
(Section 4). This result is shown to be “tight”, i.e. non-tree Q-resolution can-
not be p-simulated by ∀Exp+Res (Section 6). In the opposite direction, the
article shows that Q-resolution can p-simulate ∀Exp+Res if the underlying
propositional resolution refutation follows a certain order of variables (Sec-
tion 5). It is the subject of future work to show whether or not this result is
tight.

To show an advantage of expansion-based solving over DPLL solving, we
consider a restriction of Q-resolution, which requires variables to be resolved
inside out with the respect to the prefix (Section 7). We show that once this
restriction is imposed, Q-resolution does not p-simulate ∀Exp+Res. What
makes our result particularly interesting is that we show that such separation
already happens for formulas with only 3 quantification levels. Effectively
this means that the existential variables of the formula are split into two
groups (the 1st and the 3rd quantification level) and it is required that vari-
ables from the second group are resolved before the variables from the first
group. Such restriction already gives an exponential advantage to ∀Exp+Res
over Q-resolution. Hence, this result is different from the standard separation
result for DPLL propositional resolution, where a total order on the variables
is required [32], and the separation result for regular propositional resolution,
where variables may not repeat [34]. To show the last result, we introduced a
principle which we call “completion principle”, which takes advantage of the
fact that QBF can be seen as a game between ∀-player and ∃-player. To our
best knowledge, no such principles were introduced in the context of QBF.

This article opens a number of avenues for future research. It is open
whether or not ∀Exp+Res can be p-simulated by Q-resolution. On the
other hand, as it was shown that ∀Exp+Res does not p-simulate non-tree
Q-resolution, a natural question to ask is how can this gap be bridged? For

5The solver is also constructing a partial expansion of the negation of the formula for
the case when the formula is true.

36

further understanding of the workings of QBF solvers, modifications of Q-
resolution and ∀Exp+Res should be considered (we have already touched
upon long-distance Q-resolution in Remark 5). Last but not least, the intro-
duction of the completion principle motivates investigation of QBF classes of
formulas with underlying principles that lead to interesting behavior of the
proof systems in question.

Acknowledgments.

We would like to thank Uwe Egly and Will Klieber for various help-
ful conversations on QBFs. We would also like to thank the anonymous
reviewers for their stimulating feedback. This work is partially supported
by SFI PI grant BEACON (09/IN.1/I2618), FCT grants ATTEST (CMU-
PT/ELE/0009/2009) and POLARIS (PTDC/EIA-CCO/123051/2010), and
multiannual PIDDAC program funds (PEst-OE/EEI/LA0021/2011).

[1] S. Oliva, On the complexity of resolution-based proof systems, Ph.D.
thesis, Departament de Llenguatges i Sistemes Informàtics Universitat
Politècnica de Catalunya (Mar. 2013).

[2] M. Alekhnovich, A. A. Razborov, Satisfiability, branch-width and
Tseitin tautologies, Computational Complexity 20 (4) (2011) 649–678.

[3] S. A. Cook, R. A. Reckhow, The relative efficiency of propositional proof
systems, J. Symb. Log. 44 (1) (1979) 36–50.

[4] J. Kraj́ıček, P. Pudlák, Quantified propositional calculi and fragments of
bounded arithmetic, Mathematical Logic Quarterly 36 (1) (1990) 29–46.

[5] H. K. Büning, M. Karpinski, A. Flögel, Resolution for quantified
Boolean formulas, Inf. Comput. 117 (1) (1995) 12–18.

[6] E. Giunchiglia, M. Narizzano, A. Tacchella, Clause/term resolution and
learning in the evaluation of quantified Boolean formulas, Journal of
Artificial Intelligence Research 26 (1) (2006) 371–416.

[7] U. Egly, On sequent systems and resolution for QBFs, in: Cimatti and
Sebastiani [35], pp. 100–113.

[8] A. Van Gelder, Contributions to the theory of practical quantified
Boolean formula solving, in: M. Milano (Ed.), CP, Vol. 7514, Springer,
2012, pp. 647–663.

37

[9] J. Rintanen, Improvements to the evaluation of quantified Boolean for-
mulae, in: T. Dean (Ed.), IJCAI, Morgan Kaufmann, 1999, pp. 1192–
1197.

[10] M. Cadoli, M. Schaerf, A. Giovanardi, M. Giovanardi, An algorithm to
evaluate quantified Boolean formulae and its experimental evaluation,
J. Autom. Reasoning 28 (2) (2002) 101–142.

[11] L. Zhang, S. Malik, Conflict driven learning in a quantified Boolean
satisfiability solver, in: ICCAD, 2002, pp. 442–449.

[12] F. Lonsing, A. Biere, DepQBF: A dependency-aware QBF solver, JSAT
7 (2-3) (2010) 71–76.

[13] E. Giunchiglia, P. Marin, M. Narizzano, QuBE 7.0 system description,
Journal on Satisfiability, Boolean Modeling and Computation 7 (2010)
83–88.

[14] A. Ayari, D. A. Basin, QUBOS: Deciding quantified Boolean logic us-
ing propositional satisfiability solvers, in: M. Aagaard, J. W. O’Leary
(Eds.), FMCAD, Vol. 2517, Springer, 2002, pp. 187–201.

[15] A. Biere, Resolve and expand, in: SAT, 2004, pp. 238–246.

[16] F. Lonsing, A. Biere, Nenofex: Expanding NNF for QBF solving, in:
H. K. Büning, X. Zhao (Eds.), SAT, Vol. 4996, Springer, 2008, pp. 196–
210.

[17] M. Janota, W. Klieber, J. Marques-Silva, E. M. Clarke, Solving QBF
with counterexample guided refinement, in: Cimatti and Sebastiani [35],
pp. 114–128.

[18] U. Bubeck, H. K. Büning, Bounded universal expansion for preprocess-
ing QBF, in: J. Marques-Silva, K. A. Sakallah (Eds.), SAT, Vol. 4501,
Springer, 2007, pp. 244–257.

[19] U. Bubeck, Model-based transformations for quantified Boolean formu-
las, Ph.D. thesis, University of Paderborn (2010).

[20] M. Janota, J. Marques-Silva, On propositional QBF expansions and
Q-resolution, in: M. Järvisalo, A. Van Gelder (Eds.), SAT, Vol. 7962,
Springer, 2013, pp. 67–82.

38

[21] M. Janota, J. Marques-Silva, ∀Exp+Res does not p-simulate Q-
resolution, International Workshop on Quantified Boolean Formulas
(2013).

[22] H. K. Büning, U. Bubeck, Theory of quantified boolean formulas, in:
A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Sat-
isfiability, Vol. 185 of Frontiers in Artificial Intelligence and Applications,
IOS Press, 2009, pp. 735–760.

[23] M. L. Bonet, J. L. Esteban, N. Galesi, J. Johannsen, Exponential separa-
tions between restricted resolution and cutting planes proof systems, in:
39th Annual Symposium on Foundations of Computer Science, FOCS,
IEEE Computer Society, 1998, pp. 638–647.

[24] G. S. Tseitin, On the complexity of derivations in the propositional
calculus, Studies in Constructive Mathematics and Mathematical Logic
Part II, ed. A.O. Slisenko.

[25] A. Urquhart, The complexity of propositional proofs, Bulletin of the
EATCS 64.

[26] O. Beyersdorff, Disjoint NP-pairs and propositional proof systems,
Ph.D. thesis, Humboldt University, Berlin (2006).

[27] M. Cadoli, M. Schaerf, A. Giovanardi, M. Giovanardi, An algorithm to
evaluate quantified Boolean formulae and its experimental evaluation,
J. Autom. Reasoning 28 (2).

[28] M. Janota, J. Marques-Silva, Abstraction-based algorithm for 2QBF, in:
K. A. Sakallah, L. Simon (Eds.), SAT, Springer, 2011, pp. 230–244.

[29] V. Balabanov, J.-H. R. Jiang, Unified QBF certification and its appli-
cations, Formal Methods in System Design 41 (1) (2012) 45–65.

[30] W. Craig, Linear reasoning. a new form of the Herbrand-Gentzen theo-
rem, J. Symb. Log. 22 (3) (1957) 250–268.

[31] QBF gallery, http://www.kr.tuwien.ac.at/events/

qbfgallery2013/ (2013).

[32] A. Goerdt, Davis-Putnam resolution versus unrestricted resolution,
Ann. Math. Artif. Intell. 6 (1-3) (1992) 169–184.

39

http://www.kr.tuwien.ac.at/events/qbfgallery2013/
http://www.kr.tuwien.ac.at/events/qbfgallery2013/

[33] M. Benedetti, Evaluating QBFs via symbolic Skolemization, in:
F. Baader, A. Voronkov (Eds.), LPAR, Vol. 3452, Springer, 2004, pp.
285–300.

[34] M. Alekhnovich, J. Johannsen, T. Pitassi, A. Urquhart, An exponential
separation between regular and general resolution, Theory of Computing
3 (1) (2007) 81–102.

[35] A. Cimatti, R. Sebastiani (Eds.), Theory and Applications of Satisfia-
bility Testing - SAT 2012 - 15th International Conference, Trento, Italy,
June 17-20, 2012. Proceedings, Vol. 7317, Springer, 2012.

40

	Introduction
	Preliminaries
	Quantified Boolean Formulas
	Q-resolution
	Proof Systems

	Expansion
	Simulating Tree Q-resolution by Exp+Res
	Construction of `39`42`"613A``45`47`"603AT and M

	Simulating Restricted Exp+Res by Q-Resolution
	Exp+Res Does Not Simulate Q-resolution
	Level-ordered Q-resolution does not p-simulate Exp+Res
	Conclusions and Future Work

