
PrideMM: Second Order Model
Checking for Memory
Consistency Models

Simon Cooksey1 Sarah Harris1 Mark Batty1

Radu Grigore1 Mikoláš Janota2

1 University of Kent, Canterbury
2 IST/INESC-ID, University of Lisbon, Portugal

Janota PrideMM 1 / 14



What?

initially x = 0, y = 0
y = 1 x = 1
r1 = x r2 = y

r1 == 0, r2 == 0 allowed?

Study and reason about memory models
Interleaving semantics does not correspond to
the real-world (e.g. optimizer may swap
operations)

Janota PrideMM 2 / 14



Memory Model Types

axiomatic → SAT
Jeffrey-Riely → QBF

toy: does not account for many real-world
concerns
nice: explains some tricky aspects of the Java
behaviour, in a concise&declarative way

. . . and many others, not(?) expressible in
QBF

Janota PrideMM 3 / 14



Axiomatic Models

initially x = 0, y = 0
y = 1 x = 1
r1 = x (value 0) r2 = y (value 0)

r1 == 0, r2 == 0 allowed?

Pick events (instantiate values for memory
read/writes).
Find relations between events such that
certain constraints are satisfied (e.g.
acyclicity).

Janota PrideMM 4 / 14



Event Structures

Init

R x 0
a

R x 1
b

W y 1
c

R y 0
d

W x 1
e

R y 1
f

W x 1
g

Janota PrideMM 5 / 14



Jeffrey–Riely

Axiomatic
Pick potential execution. Check validity by looking
inside a single execution.

JR
Pick potential execution. Check validity by looking
inside but also at other potential executions.

Idea: confluence – an execution is allowed if
picking some alternative would essentially do the
same anyway.

Janota PrideMM 6 / 14



PrideMM: SO model-checking

PrideMM: Expressing memory models in
Second-Order Logic represents a sweet spot:

1 memory models express naturally in SO
2 more expressive than SAT
3 model checking in SO is decidable

Janota PrideMM 7 / 14



PrideMM Architecture

LISA
language

Event
Structure

Finite SO
Structure

SO
Formula

Solver

yes/no

Janota PrideMM 8 / 14



PrideMM: Input & Output

Structure
Universe size and relation/predicate interpretations

{ .size: 1..3
.relations:
a:1 := { (3) (4) }
r:2 := { (1 3) (2 4) } }

Janota PrideMM 9 / 14



PrideMM: Input & Output

Quantification over relations/predicates and FO
variables, references to interpreted symbols

Formula

(?S:1 .
(!x .
~S(x) |
(?y . a(y) & r(y, x))))

Janota PrideMM 10 / 14



Memory Models in PrideMM

Jeffrey-Riely: game like semantics requires ∃∀∃
formulas
Axiomatic: ∃ formulas, Sequential Consistency,
Release-Acquire, C++ (follows Herd7)

Remark:
Some formulations require care, e.g. transitive
closure on relations, acyclicity of relations

Janota PrideMM 11 / 14



Solving

Method 1: convert to quantfied Boolean
formulas (QBF)

1 grounding of FO variables
2 for grounded predicate atom introduce Boolean

variable
Method 2: dedicated solver QFM enabling lazy
grounding (CEGAR)

1 small benefit for small arities
2 overall works better due to native handling of

predicates

Janota PrideMM 12 / 14



Results

Java Causality
Test Cases

Prob. SAT caqe (s) qfun (s) qfm (s)
1 N ⊥ 610 2
2 N ⊥ 23 2
3 Y ⊥ ⊥ 222
4 Y ⊥ 2 5
5 Y ⊥ 78 51
6 N 5 4 1
7 Y ⊥ 280 56
8 N ⊥ 2 2
9 N ⊥ 2 1
10 Y ⊥ 36 10
11 Y ⊥ 598 335
13 Y 1 1 1
14 Y ⊥ 29 33
15 Y ⊥ 512 157
16 N ⊥ ⊥ 12
17 N ⊥ 39 311
18 N ⊥ 359 190
#17 #2 #15 #17

Janota PrideMM 13 / 14



Conclusion

PrideMM memory models via SO
modelchecking
automatic, expressive
Various options in the backend solver, see also
[Janota and Suda, LPAR 18]

Janota PrideMM 14 / 14


