Machine learning of strategies for efficiently solving QBF with abstraction refinement

Ricardo Joel Silva Mikoláš Janota

Instituto Superior Técnico, Universidade de Lisboa, Portugal
Rende, 20 November 2019

Quantified Boolean Formulae

SAT - for a Boolean formula, determine if it is satisfiable

Quantified Boolean Formulae

SAT - for a Boolean formula, determine if it is satisfiable
QBF - for a Quantified Boolean formula, determine if it is true

Quantified Boolean Formulae

SAT - for a Boolean formula, determine if it is satisfiable
QBF - for a Quantified Boolean formula, determine if it is true
Example:

Quantified Boolean Formulae

SAT - for a Boolean formula, determine if it is satisfiable
QBF - for a Quantified Boolean formula, determine if it is true
Example:
$\forall x \exists y .(x \leftrightarrow y)$

Quantified Boolean Formulae

SAT - for a Boolean formula, determine if it is satisfiable
QBF - for a Quantified Boolean formula, determine if it is true
Example:
$\forall x \exists y .(x \leftrightarrow y)$
$\forall x .(x \leftrightarrow 0) \vee(x \leftrightarrow 1)$

Quantified Boolean Formulae

SAT - for a Boolean formula, determine if it is satisfiable
QBF - for a Quantified Boolean formula, determine if it is true
Example:
$\forall x \exists y .(x \leftrightarrow y)$
$\forall x .(x \leftrightarrow 0) \vee(x \leftrightarrow 1)$
$((0 \leftrightarrow 0) \vee(0 \leftrightarrow 1)) \wedge((1 \leftrightarrow 0) \vee(1 \leftrightarrow 1))$
1
QBF is the paradigmatic PSPACE-complete problem

Applications of Quantified Boolean Formulae

- Model checking
- Circuit synthesis

■ Non-monotonic reasoning

- Conformant planning

Games and strategies

■ We consider prenex form: Quantifier-prefix. Matrix Example $\forall x_{1} x_{2} \exists y_{1} y_{2} .\left(\neg x_{1} \vee y_{1}\right) \wedge\left(x_{2} \vee \neg y_{2}\right)$

Games and strategies

■ We consider prenex form: Quantifier-prefix. Matrix Example $\forall x_{1} x_{2} \exists y_{1} y_{2} .\left(\neg x_{1} \vee y_{1}\right) \wedge\left(x_{2} \vee \neg y_{2}\right)$

- A QBF represents a two-player game between \forall and \exists.

Games and strategies

■ We consider prenex form: Quantifier-prefix. Matrix Example $\forall x_{1} x_{2} \exists y_{1} y_{2} .\left(\neg x_{1} \vee y_{1}\right) \wedge\left(x_{2} \vee \neg y_{2}\right)$

- A QBF represents a two-player game between \forall and \exists.
- \forall wins the game if the matrix becomes false.

Games and strategies

■ We consider prenex form: Quantifier-prefix. Matrix Example $\forall x_{1} x_{2} \exists y_{1} y_{2} .\left(\neg x_{1} \vee y_{1}\right) \wedge\left(x_{2} \vee \neg y_{2}\right)$

- A QBF represents a two-player game between \forall and \exists.
- \forall wins the game if the matrix becomes false.
- \exists wins the game if the matrix becomes true.

Games and strategies

■ We consider prenex form: Quantifier-prefix. Matrix Example $\forall x_{1} x_{2} \exists y_{1} y_{2} .\left(\neg x_{1} \vee y_{1}\right) \wedge\left(x_{2} \vee \neg y_{2}\right)$

- A QBF represents a two-player game between \forall and \exists.
- \forall wins the game if the matrix becomes false.
- \exists wins the game if the matrix becomes true.

■ A QBF is false iff there exists a winning strategy for \forall.

Games and strategies

■ We consider prenex form: Quantifier-prefix. Matrix Example $\forall x_{1} x_{2} \exists y_{1} y_{2} .\left(\neg x_{1} \vee y_{1}\right) \wedge\left(x_{2} \vee \neg y_{2}\right)$

- A QBF represents a two-player game between \forall and \exists.
- \forall wins the game if the matrix becomes false.
- \exists wins the game if the matrix becomes true.
- A QBF is false iff there exists a winning strategy for \forall.

■ A QBF is true iff there exists a winning strategy for \exists.

Games and strategies

■ We consider prenex form: Quantifier-prefix. Matrix Example $\forall x_{1} x_{2} \exists y_{1} y_{2} .\left(\neg x_{1} \vee y_{1}\right) \wedge\left(x_{2} \vee \neg y_{2}\right)$

- A QBF represents a two-player game between \forall and \exists.
- \forall wins the game if the matrix becomes false.
- \exists wins the game if the matrix becomes true.
- A QBF is false iff there exists a winning strategy for \forall.

■ A QBF is true iff there exists a winning strategy for \exists.

- Example

$$
\forall u \exists e . u \leftrightarrow e
$$

\section*{Solving QBF: DPLL versus expansion based solvers(f) | TECNCNCO |
| :---: |
| $15 B C A$ |}

Solving by Expansion

$$
\exists x_{1} \ldots x_{m} \forall y_{1} \ldots y_{m} \cdot \phi
$$

Equivalent to:

Solving by Expansion

$$
\exists x_{1} \ldots x_{m} \forall y_{1} \ldots y_{m} \cdot \phi
$$

Equivalent to:

Solving by Expansion

$$
\exists x_{1} \ldots x_{m} \forall y_{1} \ldots y_{m} . \phi
$$

Equivalent to:

■ Now only one type of quantifier: $\exists x_{1} \ldots x_{m}$

Solving by Expansion

$$
\exists x_{1} \ldots x_{m} \forall y_{1} \ldots y_{m} . \phi
$$

Equivalent to:

■ Now only one type of quantifier: $\exists x_{1} \ldots x_{m}$
■ We can call a SAT solver!

Solving by Expansion

$$
\exists x_{1} \ldots x_{m} \forall y_{1} \ldots y_{m} . \phi
$$

Equivalent to:

■ Now only one type of quantifier: $\exists x_{1} \ldots x_{m}$
■ We can call a SAT solver!

Solving by Expansion (contd.)

■ Expanding everything $=$ exponential blow-up

Solving by Expansion (contd.)

- Expanding everything = exponential blow-up
- Do we need to expand everything?

Solving by Expansion (contd.)

- Expanding everything = exponential blow-up
- Do we need to expand everything?

■ Example:

$$
\exists x_{1} x_{2} \forall y_{1} y_{2} \cdot\left(x_{1} \wedge x_{2} \wedge y_{1} \wedge y_{2}\right)
$$

Solving by Expansion (contd.)

- Expanding everything = exponential blow-up
- Do we need to expand everything?

■ Example:

$$
\exists x_{1} x_{2} \forall y_{1} y_{2} \cdot\left(x_{1} \wedge x_{2} \wedge y_{1} \wedge y_{2}\right)
$$

■... sufficient to expand $y_{1}=y_{2}=0$

Solving by Expansion (contd.)

- Expanding everything = exponential blow-up
- Do we need to expand everything?

■ Example:

$$
\exists x_{1} x_{2} \forall y_{1} y_{2} \cdot\left(x_{1} \wedge x_{2} \wedge y_{1} \wedge y_{2}\right)
$$

■ ... sufficient to expand $y_{1}=y_{2}=0$
■ How to come up with the right expansions?

CEGAR paradigm : careful expansion

- Expand the formula gradually, to avoid exponential blow-up.

■ ... means gradually strengthening abstraction of the formula.

CEGAR paradigm : careful expansion

- Expand the formula gradually, to avoid exponential blow-up.

■ ... means gradually strengthening abstraction of the formula.

CEGAR loop
refine $=$ expand more

CEGAR paradigm : careful expansion

- Expand the formula gradually, to avoid exponential blow-up.

■ ... means gradually strengthening abstraction of the formula.

CEGAR loop
refine $=$ expand more
AReQS: CEGAR-based solver for 2-QBF [J. and Silva SAT'11]

CEGAR paradigm : careful expansion

- Expand the formula gradually, to avoid exponential blow-up.

■ ... means gradually strengthening abstraction of the formula.

CEGAR loop
refine $=$ expand more
AReQS: CEGAR-based solver for 2-QBF [J. and Silva SAT'11] RAReQS: generalises AReQS through recursion [J. et al. SAT'12]

Issue with Expansion

Example

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} \cdot \bigvee_{i=1 . . .100}\left(x_{i} \neq y_{i}\right)
$$

Issue with Expansion

Example

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} \cdot \bigvee_{i=1 . . .100}\left(x_{i} \neq y_{i}\right)
$$

Move
Counter-move

Issue with Expansion

Example

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} . \bigvee_{i=1 \ldots 100}\left(x_{i} \neq y_{i}\right)
$$

Move Counter-move
000... 0001

Issue with Expansion

Example

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} . \bigvee_{i=1 \ldots 100}\left(x_{i} \neq y_{i}\right)
$$

Move Counter-move
000... 0001 000... 0001

Issue with Expansion

Example

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} \cdot \bigvee_{i=1 \ldots 100}\left(x_{i} \neq y_{i}\right)
$$

Move Counter-move
000... 0001 000... 0001

000 ... 0010

Issue with Expansion

Example

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} \cdot \bigvee_{i=1 . . .100}\left(x_{i} \neq y_{i}\right)
$$

Move Counter-move
000... 0001 000... 0001
000... 0010 000... 0010

Issue with Expansion

Example
Move Counter-move
000... 0001 000... 0001
000... 0010 000... 0010
000... 0011

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} . \bigvee_{i=1 \ldots 100}\left(x_{i} \neq y_{i}\right)
$$

Issue with Expansion

Example
Move Counter-move
000... 0001 000... 0001
000... 0010 000... 0010
000...0011 000... 0011

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} \cdot \bigvee_{i=1 . . .100}\left(x_{i} \neq y_{i}\right)
$$

Issue with Expansion

Example

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} \cdot \bigvee_{i=1 . . .100}\left(x_{i} \neq y_{i}\right)
$$

Move Counter-move
000... 0001 000... 0001
000... 0010 000... 0010
000...0011 000...0011

Issue with Expansion

Example

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} \cdot \bigvee_{i=1 . . .100}\left(x_{i} \neq y_{i}\right)
$$

Move Counter-move
000... 0001 000... 0001
000... 0010 000... 0010
000...0011 000... 0011

Expansion necessarily exponential

Expansion by Strategies

Example

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} \cdot \bigvee_{i=1 \ldots 100}\left(x_{i} \neq y_{i}\right)
$$

■ has exponential expansion by constants 0/1

Expansion by Strategies

Example

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} \cdot \bigvee_{i=1 \ldots 100}\left(x_{i} \neq y_{i}\right)
$$

■ has exponential expansion by constants $0 / 1$
■ BUT: \forall has a short winning strategy

Expansion by Strategies

Example

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} \cdot \bigvee_{i=1 \ldots 100}\left(x_{i} \neq y_{i}\right)
$$

■ has exponential expansion by constants 0/1

- BUT: \forall has a short winning strategy
- \forall-player wins by playing $y_{i} \triangleq x_{i}$.

Expansion by Strategies

Example

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} \cdot \bigvee_{i=1 \ldots 100}\left(x_{i} \neq y_{i}\right)
$$

- has exponential expansion by constants 0/1
- BUT: \forall has a short winning strategy
- \forall-player wins by playing $y_{i} \triangleq x_{i}$.
- Plug it in gives UNSAT:

$$
\exists x_{1} \ldots x_{100} \cdot \bigvee_{i=1 \ldots 100}\left(x_{i} \neq x_{i}\right)
$$

Expansion by Strategies

Example

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} \cdot \bigvee_{i=1 \ldots 100}\left(x_{i} \neq y_{i}\right)
$$

■ has exponential expansion by constants 0/1

- BUT: \forall has a short winning strategy
- \forall-player wins by playing $y_{i} \triangleq x_{i}$.
- Plug it in gives UNSAT:

$$
\exists x_{1} \ldots x_{100} \cdot \bigvee_{i=1 \ldots 100}\left(x_{i} \neq x_{i}\right)
$$

- $y_{i} \triangleq x_{i}$ is winning strategy for \forall

Expansion by Strategies

Example

$$
\exists x_{1} \ldots x_{100} \forall y_{1} \ldots y_{100} . \bigvee_{i=1 \ldots 100}\left(x_{i} \neq y_{i}\right)
$$

■ has exponential expansion by constants 0/1

- BUT: \forall has a short winning strategy
- \forall-player wins by playing $y_{i} \triangleq x_{i}$.
- Plug it in gives UNSAT:

$$
\exists x_{1} \ldots x_{100} . \bigvee_{i=1 \ldots 100}\left(x_{i} \neq x_{i}\right)
$$

- $y_{i} \triangleq x_{i}$ is winning strategy for \forall

■ QUESTION: So, how do we obtain good strategies?

QFUN : Machine Learning for Strategies

■ QUESTION: So, how do we obtain good strategies?

QFUN : Machine Learning for Strategies

■ QUESTION: So, how do we obtain good strategies?
■ Use machine learning

- repeatedly during the execution of the solver
- on previous moves and counter-moves

QFUN : Machine Learning for Strategies

■ QUESTION: So, how do we obtain good strategies?
■ Use machine learning

- repeatedly during the execution of the solver
- on previous moves and counter-moves
- periodically refine abstraction with the learned strategy

QFUN : Machine Learning for Strategies

■ QUESTION: So, how do we obtain good strategies?
■ Use machine learning

- repeatedly during the execution of the solver
- on previous moves and counter-moves
- periodically refine abstraction with the learned strategy

Example:
Move Counter-move
000... 0001 000... 0001
100... 1000 000... 1000
010...0011 010...0011

QFUN : Machine Learning for Strategies

■ QUESTION: So, how do we obtain good strategies?
■ Use machine learning

- repeatedly during the execution of the solver
- on previous moves and counter-moves
- periodically refine abstraction with the learned strategy

Example:
Move Counter-move
000... 0001 000... 0001
100... 1000 000... 1000
010...0011 010...0011
$y_{i} \triangleq x_{i}$ is learnt from $\ll 2^{n}$ expansions
[J. AAAI'18]

Requirements on ML

■ Learning occurs during the solver's execution, therefore we have a tight time constraint

Requirements on ML

- Learning occurs during the solver's execution, therefore we have a tight time constraint
- We need to learn boolean formulae that can be passed onto the solver

Requirements on ML

- Learning occurs during the solver's execution, therefore we have a tight time constraint
- We need to learn boolean formulae that can be passed onto the solver

■ Our samples are small (especially for ML standards), but the number of variables can be quite large.

Learning Algorithms

Originally: Decision Trees and ID3

Learning Algorithms

Alternative to Decision Trees: Decision Lists

Learning Algorithms

■ k-decision list . . . each rule at most k literals

- k-decision list are PAC-learnable [Rivest '87]

Learning Algorithms

■ k-decision list . . . each rule at most k literals

- k-decision list are PAC-learnable [Rivest '87]

Decision Lists and Rivest ($k=2$)

Learning Algorithms

Greedy3

Learning Algorithms

Grove

Learning Algorithms

Laplace

Learning Algorithms

Simple

Learning Algorithms

CN2

Learning Algorithms

CN2

Learning Algorithms

CN2

Learning Algorithms

Overview

Families of Formulae

Toy

270 instances, consisting of QBF encodings for a number of basic building blocks of circuits

Families of Formulae

Toy

270 instances, consisting of QBF encodings for a number of basic building blocks of circuits

Families of Formulae

126 instances of encodings for generalized buffer specification

Families of Formulae

126 instances of encodings for generalized buffer specification

Families of Formulae

48 instances encoding specifications of a driver for a hard disk controller

Families of Formulae

48 instances encoding specifications of a driver for a hard disk controller

Families of Formulae

mult-matrix

522 QBFs encoding the specifications for circuits that perform a single matrix multiplication, or repeated multiplication with a subset of controllable inputs

Families of Formulae

mult-matrix

522 QBFs encoding the specifications for circuits that perform a single matrix multiplication, or repeated multiplication with a subset of controllable inputs

Conclusions and Future Work

Conclusions

■ Machine learning of strategies during the solving of QBF with counter-example guided abstraction refinement is feasible and enables improvements in the solver's performance.

Conclusions and Future Work

Conclusions

■ Machine learning of strategies during the solving of QBF with counter-example guided abstraction refinement is feasible and enables improvements in the solver's performance.
■ Learning only takes a small fraction of the total solving time, so the crucial point is the quality of the strategies learned.

Conclusions and Future Work

Conclusions

■ Machine learning of strategies during the solving of QBF with counter-example guided abstraction refinement is feasible and enables improvements in the solver's performance.
■ Learning only takes a small fraction of the total solving time, so the crucial point is the quality of the strategies learned.
■ Using beam search to select literals is feasible. More complex learning algorithms might be suitable candidates to improve QFUN.

Conclusions and Future Work

Conclusions

■ Machine learning of strategies during the solving of QBF with counter-example guided abstraction refinement is feasible and enables improvements in the solver's performance.
■ Learning only takes a small fraction of the total solving time, so the crucial point is the quality of the strategies learned.
■ Using beam search to select literals is feasible. More complex learning algorithms might be suitable candidates to improve QFUN.

- For some families of QBF, QFUN with learning is particularly useful, namely the families toy, genbuf, driver and cycle-sched.

Conclusions and Future Work

Future Work

■ Learn strategies for multiple variables at once.

Conclusions and Future Work

Future Work

- Learn strategies for multiple variables at once.
- Implement a look-ahead algorithm

Conclusions and Future Work

Future Work

- Learn strategies for multiple variables at once.
- Implement a look-ahead algorithm
- Dynamic learning intervals

Conclusions and Future Work

Future Work

- Learn strategies for multiple variables at once.
- Implement a look-ahead algorithm
- Dynamic learning intervals

■ Incremental learning

Conclusions and Future Work

Future Work

- Learn strategies for multiple variables at once.
- Implement a look-ahead algorithm
- Dynamic learning intervals
- Incremental learning

■ Improve the analysis of families of QBFs.

Conclusions and Future Work

Future Work

- Learn strategies for multiple variables at once.
- Implement a look-ahead algorithm
- Dynamic learning intervals

■ Incremental learning
■ Improve the analysis of families of QBFs.
■ Parallelism / solver portfolio

