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Quanti�ed Boolean Formulae

SAT - for a Boolean formula, determine if it is satis�able

QBF - for a Quanti�ed Boolean formula, determine if it is true

Example:
∀x∃y.(x ↔ y)
∀x.(x ↔ 0)∨ (x ↔ 1)
((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))
1

QBF is the paradigmatic PSPACE-complete problem
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Applications of Quanti�ed Boolean Formulae

Model checking
Circuit synthesis
Non-monotonic reasoning
Conformant planning

...
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Games and strategies

We consider prenex form: Quanti�er-pre�x.Matrix
Example ∀x1x2∃y1y2. (¬x1 ∨ y1) ∧ (x2 ∨ ¬y2)

A QBF represents a two-player game between ∀ and ∃.
∀ wins the game if the matrix becomes false.
∃ wins the game if the matrix becomes true.
A QBF is false i� there exists a winning strategy for ∀.
A QBF is true i� there exists a winning strategy for ∃.
Example

∀u∃e. u↔ e
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Solving QBF: DPLL versus expansion based solvers

QBF Solving

Other

DPLL-Based

QuBE

depQBF

GhostQ

CirQit
Expansion-

Based

quantor nenofex

sKizzo

Careful
Expansion

AReQS

RAReQS
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Solving by Expansion

∃x1 . . . xm∀y1 . . . ym. φ

Equivalent to:

(∃x1 . . . xm)

y1, . . . , yn−1, yn
∧ φ[ 0, . . . , 0, 0 ]
∧ φ[ 0, . . . , 0, 1 ]
∧ φ[ 0, . . . , 1, 0 ]
∧ φ[ 0, . . . , 1, 1 ]
∧ . . .
∧ φ[ 1, . . . , 1, 1 ]



Now only one type of quanti�er: ∃x1 . . . xm
We can call a SAT solver!
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Solving by Expansion (contd.)

Expanding everything = exponential blow-up

Do we need to expand everything?
Example:

∃x1x2∀y1y2. (x1 ∧ x2 ∧ y1 ∧ y2)

. . . su�cient to expand y1 = y2 = 0
How to come up with the right expansions?
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CEGAR paradigm : careful expansion

Expand the formula gradually, to avoid exponential blow-up.
. . . means gradually strengthening abstraction of the formula.

re�ne = expand more

AReQS: CEGAR-based solver for 2-QBF [J. and Silva SAT’11]
RAReQS: generalises AReQS through recursion [J. et al. SAT’12]
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Issue with Expansion

Example
∃x1 . . . x100∀y1 . . . y100.

∨
i=1...100

(xi 6= yi)

Move Counter-move
000 . . . 0001 000 . . . 0001
000 . . . 0010 000 . . . 0010
000 . . . 0011 000 . . . 0011

...

Expansion necessarily exponential
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Expansion by Strategies

Example
∃x1 . . . x100∀y1 . . . y100.

∨
i=1...100

(xi 6= yi)

has exponential expansion by constants 0/1

BUT: ∀ has a short winning strategy
∀-player wins by playing yi , xi .
Plug it in gives UNSAT:

∃x1 . . . x100.
∨

i=1...100

(xi 6= xi)

yi , xi is winning strategy for ∀
QUESTION: So, how do we obtain good strategies?
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QFUN : Machine Learning for Strategies

QUESTION: So, how do we obtain good strategies?

Use machine learning
I repeatedly during the execution of the solver
I on previous moves and counter-moves

periodically re�ne abstraction with the learned strategy

Example:
Move Counter-move
000 . . . 0001 000 . . . 0001
100 . . . 1000 000 . . . 1000
010 . . . 0011 010 . . . 0011

...
yi , xi is learnt from � 2n expansions
[J. AAAI’18]
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Requirements on ML

Learning occurs during the solver’s execution, therefore we
have a tight time constraint

We need to learn boolean formulae that can be passed onto
the solver
Our samples are small (especially for ML standards), but the
number of variables can be quite large.
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Learning Algorithms

Originally: Decision Trees and ID3
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Learning Algorithms

Alternative to Decision Trees: Decision Lists
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Learning Algorithms

k-decision list . . . each rule at most k literals
k-decision list are PAC-learnable [Rivest ’87]

Decision Lists and Rivest (k = 2)
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Learning Algorithms

Greedy3
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Learning Algorithms
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Learning Algorithms
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Learning Algorithms
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Learning Algorithms
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Learning Algorithms

Overview
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Families of Formulae
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270 instances, consisting of QBF encodings for a number of basic
building blocks of circuits
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Families of Formulae
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126 instances of encodings for generalized bu�er speci�cation

Janota and Silva Machine Learning of strategies for e�ciently solving QBF with abstraction re�nement 23 / 27



Families of Formulae

genbuf

0

100

200

300

400

500

600

20 30 40 50 60 70

C
P
U

ti
m
e
(s
)

instances
No learning

dtree-i64

greedy-i64

grove-i64

laplace-i64

simple-i64

cn2m2-i64

cn2m3-i64

cn2m4-i64

quabs

126 instances of encodings for generalized bu�er speci�cation

Janota and Silva Machine Learning of strategies for e�ciently solving QBF with abstraction re�nement 23 / 27



Families of Formulae
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controller
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Families of Formulae

mult-matrix
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522 QBFs encoding the speci�cations for circuits that perform a
single matrix multiplication, or repeated multiplication with a

subset of controllable inputs
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Conclusions and Future Work

Conclusions
Machine learning of strategies during the solving of QBF with
counter-example guided abstraction re�nement is feasible and
enables improvements in the solver’s performance.

Learning only takes a small fraction of the total solving time,
so the crucial point is the quality of the strategies learned.
Using beam search to select literals is feasible. More complex
learning algorithms might be suitable candidates to improve
QFUN.
For some families of QBF, QFUN with learning is particularly
useful, namely the families toy, genbuf, driver and
cycle-sched.
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Conclusions and Future Work

Future Work
Learn strategies for multiple variables at once.

Implement a look-ahead algorithm
Dynamic learning intervals
Incremental learning
Improve the analysis of families of QBFs.
Parallelism / solver portfolio
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