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Abstract
A typical challenge faced when developing a parametrized solver is to evaluate a set of strategies over

a set of benchmarking problems. When the set of strategies is large, the evaluation is often done with

a restricted time limit and/or on a smaller subset of problems in order to estimate the quality of the

strategies in a reasonable time. Firstly, considering the standard SMT-LIB benchmarks, we ask the question

how much the time evaluation limit and benchmark size can be restricted to still obtain reasonable

performance results. Furthermore, we propose a method to construct a benchmark characteristic subset

which faithfully characterizes all benchmark problems. To achieve this, we collect problem performance

statistics and employ clustering methods. We evaluate the quality of our benchmark characteristic

subsets on the task of the best cover construction, and we compare the results with randomly selected

benchmark subsets. We show that our method achieves smaller relative error than random problem

selection.
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1. Introduction

Optimizing the performance of a Satisfiability Modulo Theories (SMT) solver, like CVC4 [1]

or Z3 [2], on a large set of problems, like the SMT-LIB library [3, 4], is a time-consuming task.

This is because of a large number of problems in SMT-LIB (over 100000). Even with the help of

parallelization, it takes several hours to evaluate a single strategy over all benchmark problems

with a standard time limit (like 60 seconds). The situation gets even worse when more than one

strategy, or a parametrized strategy with different arguments, needs to be evaluated. Then it

is common practice to restrict the evaluation to a subset of problems and/or to decrease the

evaluation time limit. In this paper, we try to address the question how much can the evaluation

be restricted so that the results are still plausible. Furthermore, we propose a method to construct

a small benchmark characteristic subset that would faithfully represent all benchmark problems

for the sake of evaluation.

Within a large problem library, one can expect a large number of syntactically similar problems

or problems with similar performance with respect to many strategies. Identification of similar

problems could help us to speed up the evaluation, as we can select a single representative
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from each similarity class. To identify classes of similar problems, we propose to perform short

evaluation runs of several CVC4 strategies and to collect run-time statistics. Then, problems

with similar statistics might be considered similar. To evaluate this approach, we experiment

with the best cover construction, that is, a selection of strategies with the best performance on

a given set of problems. We construct the best cover on a smaller benchmark subset and we

compare its performance with the optimal cover constructed on all problems. This gives us a

quality measure of problem subset selection.

The paper is structured as follows. Section 2 describes the proposed method of identification

of similar problems based on performance statistics, and how to construct a benchmark charac-

teristic subset. Section 3 describes the best cover construction task which is used for empirical

evaluation of the quality of constructed subsets in Section 4. We conclude in Section 5.

2. Benchmark Characteristic Subsets by Clustering

Restricting the evaluation of a solver to a smaller random subset of all benchmark problems

is a common and effective method used by developers. Considering a large set of benchmark

problems, like the SMT-LIB library [3, 4], one can expect a significantly large number of very

similar or even duplicate problems. Random selection does not take problem similarities into

account and thus can lead to unnecessary and duplicate computations. In this section, we

propose a simple method for selecting a characteristic subset of benchmark problems based

on performance features and clustering algorithms. The desired property of this characteristic

subset is that it faithfully characterizes all benchmark problems. That is, that any development,

like parameter tuning or scheduler construction, performed on this subset yields similar results

as the same development performed on all benchmark problems, but faster.

Clustering algorithms [5] are capable of dividing a set of entities into disjoint subsets, called

clusters, such that similar entities end up in the same cluster. We propose to apply clustering

algorithms to create a benchmark characteristic subset. Bearing in mind that the benchmark

characteristic subset should allow us to avoid duplicate computations, we cluster the benchmark

problems and we create the characteristic subset by selecting one problem from each cluster.

To employ clustering algorithms, the entities, in our case benchmark problems, need to be

represented by numeric feature vectors. We could create the feature vectors from the syntactic

structure of problems, similarly to ENIGMA [6, 7, 8] clause and problem features for first-

order logic, but in this work we propose an alternative to compute the feature vectors from

runtime statistics of short probing solver runs. In particular, we run CVC4 solver on all SMT-LIB

benchmark problems with small abstract resource limit
1
. Independently on whether the problem

is solved or not, we collect the runtime statistics, and we extract selected statistic values (see

Appendix A) to construct the performance feature vectors of the problem. We use only statistic

values which always lead to the same value with repeated runs, in particular, we do not use any

real-time measurements. Moreover, we repeat this process with different CVC4 strategies to

obtain longer and more descriptive feature vectors. Our performance features are similar to

dynamic features found in research literature [9, 10].

1

We run CVC4 with argument –rlimit=10000 to limit the resources (roughly the number of SAT conflicts).



Once the performance feature vectors for all benchmark problems are constructed, we employ

the 𝑘-means [11] clustering algorithm, one of the most common clustering methods. The 𝑘-

means algorithm divides benchmark problems into 𝑘 disjoint clusters, hence we set 𝑘 to the

desired size of the benchmark characteristic subset. Briefly, the 𝑘-means algorithm works as

follows. Firstly, 𝑘 points in the vector space called cluster centroids are selected. Different

variants of the 𝑘-means algorithm use different centroid initialization methods, with random

initialization being one of the common variants. In the next step, all distances between centroids

and feature vectors are computed, and each feature vector is assigned to the closest cluster

centroid. After that, the average vector of the vectors assigned to the same cluster is computed

for each cluster, and the cluster centroid is moved to the computed average. This process is

iterated until the centroids stop moving.

The above gives us the following method for the construction of the benchmark characteristic

set. We construct the performance feature vectors for all benchmark problems by extracting

runtime statistics from short probing solver runs. As different features might have values of

different units, we normalize the vectors by dividing each feature by the standard deviation

across all feature values. Then we employ the 𝑘-means algorithm and construct 𝑘 problem

clusters and their centroids. From each cluster, we select the problem whose performance feature

vector is the closest to the cluster centroid. Thusly selected problems form the benchmark

characteristic subset of size 𝑘.

3. Evaluation Tasks: Greedy and Exact Covers

To evaluate the quality of the benchmark characteristic subsets from Section 2, we consider the

task of the best cover construction. Let 𝑃 be the set of benchmark problems and let 𝑆 be a set

of strategies. Suppose we evaluate all strategies 𝑆 over problems 𝑃 . The coverage of 𝑆 over 𝑃 ,

denoted coverage(S,P), is the count of problems solved by strategies 𝑆.

coverage(S,P) =
⃒⃒⃒ ⋃︁
𝑠∈𝑆
{𝑝 ∈ 𝑃 : strategy 𝑠 solves problem 𝑝}

⃒⃒⃒
The best cover of strategies 𝑆 over 𝑃 of size 𝑛 is the subset of 𝑆0 ⊆ 𝑆 with |𝑆0| ≤ 𝑛 and with

the highest possible coverage(𝑆0, 𝑃 ).
Suppose we construct the best cover 𝑆0 ⊆ 𝑆 based only on a partial evaluation of strategies

𝑆 over a subset 𝑃0 of problems 𝑃 . This is typically done when the set of strategies and the set of

problems are large. We can then compare the performance of the best cover constructed on 𝑃0

with the optimal performance of the best cover constructed with the full evaluation over 𝑃 . The

performance of the two covers should be similar, if 𝑃0 faithfully characterizes 𝑃 . More formally,

let us fix strategies 𝑆 and the cover size 𝑛. Let 𝑆0 be the best cover over 𝑃0 and let 𝑆best be the

best cover over 𝑃 . We will measure the difference between their coverages coverage(𝑆0, 𝑃 ) and

coverage(𝑆best, 𝑃 ) over all problems 𝑃 . We usually do not have all strategies evaluated over all

problems, but for the sake of the evaluation in this paper we shall compute them.

We consider two methods to construct the best covers. First, an approximative but fast method

called greedy cover (Section 3.1). Second, an exact but a bit slower best cover construction using

an ILP solver (Section 3.2).



1 Function greedy(𝑃 , 𝑆, 𝑛)
Input : set of problems 𝑃 , set of strategies 𝑆, size 𝑛
Output :a subset of 𝑆 of size 𝑛 approximating the best cover

2 𝐺← ∅
3 while |𝐺| < 𝑛 and ((∃𝑝 ∈ 𝑃 )(∃𝑠 ∈ 𝑆) : strategy s solves problem p) do
4 for 𝑠 ∈ 𝑆 do // compute the problems solved by each strategy 𝑠 ∈ 𝑆
5 𝑅𝑠 ← {𝑝 ∈ 𝑃 : strategy 𝑠 solves problem 𝑝}
6 𝑔 ← argmax𝑠∈𝑆 (|𝑅𝑠|) // obtain the best strategy on current problems 𝑃
7 𝑃 ← 𝑃 ∖𝑅𝑔 // remove the problems solved by 𝑔 . . .
8 𝐺← 𝐺 ∪ {𝑔}
9 return G

Algorithm 1: Greedy cover algorithm.

3.1. Greedy Cover

The greedy cover algorithm is an approximative method for the construction of the best cover of

strategies 𝑆 over problems 𝑃 of size 𝑛. The algorithm greedy(P,S,n) (see Algorithm 1) proceeds

as follows. It starts with an empty cover 𝐺 and it finds the strategy 𝑔 ∈ 𝑆 which solves most

problems from 𝑃 . The strategy 𝑔 is added to 𝐺 and the problems solved by 𝑔 are removed from

𝑃 . This process is iteratively repeated until 𝐺 reaches the desired size 𝑛 or no strategy can

solve any of the remaining problems.

We will measure the relative error of constructing the greedy cover (of size 𝑛) by a partial

evaluation of strategies 𝑆 over a subset 𝑃0 of all problems 𝑃 using the standard formula below.

The experimental evaluation of greedy cover construction on random subsets and on benchmark

characteristic subsets based on performance features is given in Section 4.

error(𝑃0,n) = 100 ·
⃒⃒⃒
1− coverage(greedy(𝑃0,𝑆,n),P)

coverage(greedy(𝑃 ,𝑆,n),P)

⃒⃒⃒
3.2. Exact Cover

Apart from the approximative greedy cover construction, we also consider an exact best cover

construction method based on the representation of the best cover problem by an Integer Linear

Programming (ILP) formulation. The ILP problems are solved by the Gurobi solver [12].

We consider a maximal set cover formulation, i.e., without taking into account the solving

time. This means that given a set of strategies 𝑆, a set of solved problems 𝑃𝑠 by each strategy

𝑠 ∈ 𝑆, and the size of the cover 𝑛, the goal is to select a set of strategies 𝑆′ ⊆ 𝑆 with |𝑆| = 𝑛 that

maximizes the total number of instances solved, i.e., maximizing the cardinality of

⋃︀
𝑠∈𝑆′ 𝑃𝑠.

We remark that the exact cover maximization is typically only slightly better than the greedy

cover. However, interestingly, Gurobi has proven to be extremely efficient on these problems;

typically we observe solving times around 1 s.



Figure 1: Representation of different logics in SMT-LIB benchmark problems (left) and visualization of
problem similarities based on performance features (right).

4. Experimental Evaluation

In this section, we describe the experimental setup in Section 4.1. We experiment with the

best cover construction of random benchmark subsets in Section 4.2. In Section 4.3, we discuss

reasonable restrictions of the evaluation time limit. Mainly, in Section 4.4, we evaluate the

quality of benchmark characteristic subsets constructed using performance features and the

𝑘-means clustering method introduced in Section 2.

4.1. SMT-LIB Experiments Setup

For our experiments, we consider the quantified fragment of the SMT-LIB library [3, 4]. This

gives us altogether 75814 problems from 21 different logics. We consider 23 different CVC4 [1]

strategies (see Appendix B) and Z3 [2] in the default mode as another strategy. We evaluate all

strategies over all problems with a 60 seconds time limit. Any solver run terminating before the

time limit with the result sat or unsat is considered successful and the problem is considered

solved by the respective strategy. Computing this database of results took around 6 days of real

time.
2

Once we have this large database of results, we can easily compute partial results on

problem subsets or with a smaller time limit.

Figure 1 graphically depicts benchmark problem properties. The bar graph on the left shows

the count of problems from different logics. The plot on the right visualizes the performance

feature vectors of the problems described in Section 2. The plot is produced by dimensionality

reduction to 2 dimensions by the t-SNE [13] algorithm. Each problem is represented by one

point colored with the color of its logic corresponding to the left bar graph. Problems with

similar feature vectors should appear close to each other in the plot. Here we just note that

2

All the experiments are done on a server with 28 hyperthreading Intel Xeon CPU @ 2.3GHz cores and 256 GB

of memory.



Figure 2: Relative error of greedy (left) and exact (right) covers on random subsets.

nearby points tend to have the same color. That is, the problems from one logic have similar

performance feature vectors, which is to be expected.

4.2. Random Benchmark Subsets

In this section, we present an experiment on the best cover construction on randomly selected

subsets of benchmark problems. From all 75814 benchmark problems, we construct random

subsets of different sizes, ranging from 100 up to 75800 with step 100. Moreover, we construct

10 different collections of these subsets to measure the effect of random selection. On every

benchmark subset, we construct the greedy and exact covers of the 14 different strategies, called

validation strategies (see Section 4.1). We construct covers of different sizes (𝑛 ∈ {1, 2, . . . , 10}).
We evaluate the constructed covers on all benchmark problems and we measure the error as

described in Section 3.1 and Section 3.2.

Figure 2 presents the error for the greedy cover (left) and exact cover (right) construction.

For every random subset size, we plot the worst case error (red solid line), and the average error

(dotted line). Given 10 random subset collections and 10 different cover sizes, each value is

computed from 100 relative error values.

We can see that with benchmark subsets bigger than 1000 problems (roughly 1.3% of bench-

mark problems), we obtain less than 2% error even in the worst case. With subsets bigger than

10000, the worst case error drops below 0.5%. From the relatively big difference between the

worst case and the average, we can conclude that the accuracy of the benchmark approximation

by a random subset depends considerably on the coincidence of random selection. In Section 4.4

we show that performance features can help us reduce this dependence by constructing better

benchmark characteristic problems.

4.3. Time Limit Evaluation

In this section, we present basic statistics on the solver runtime. In particular, we are interested

in how many problems are solved with a decreased evaluation time limit. This information can

help developers to set time limits for evaluation experiments.



Figure 3: Number of problems solved in specific time by cvc1 (left) and cvc16 (right).

For each of the 24 considered strategies, we measure how many problems are solved in

the 𝑛-th second, that is, the count of problems solved with runtime between 𝑛 − 1 and 𝑛.

Figure 3 shows the results for two representative strategies, namely, the strategy that solves the

most problems in the first second (left) and the strategy that solves the most problems with

runtime greater than 1 second. The corresponding strategies (cvc1 and cvc16) can be found in

Appendix B.

From Figure 3, we can see that the majority of problems are solved within the first second

of runtime, and this is the case with all evaluated strategies. Note the logarithmic 𝑦-axis in

the figure. We have conducted experiments with greedy cover construction, similar to the

experiments in Section 4.2. The experiments show that the greedy cover constructed with the

evaluation restricted to the time limit of 1 second shows less than 0.25% error, when compared

with greedy covers constructed with the full time limit of 60 seconds. With the time limit of 10
seconds, we reach the error less than 0.15% and with the limit of 30 seconds the error drops

below 0.05%.

4.4. Performance Features Benchmark Characteristics

In this section, we evaluate the quality of benchmark characteristic subsets constructed with

performance features and 𝑘-means clustering from Section 2. We compare the relative error

of the construction of the best covers on benchmark characteristic subsets and on random

benchmark subsets. Out of the 24 strategies considered in this experiment (see Section 4.1),

we use 10 CVC4 strategies to construct the performance features of benchmark problems. We

use only the remaining 14 strategies to construct the best covers to provide an independent

validation set of strategies.

The performance features are computed by short CVC4 runs with limited resources as

described in Section 2. Computing the performance features took less than 2 hours. We

construct benchmark characteristic subsets
3

of different sizes corresponding to the sizes of

3

We use scipy.org’s implementation of 𝑘-means, namely function scipy.cluster.vq.kmeans2 with

parameter minit set to points.



Figure 4: Worst case relative errors when constructing the greedy (left) and the exact (right) cover on
random subsets and on benchmark characteristic subsets (𝑘-means).

random benchmark subsets from Section 4.2. In this case, however, we do not construct 10
different collections but only one subset for each size. On the benchmark characteristic subsets,

we compute both greedy and exact covers of different sizes (𝑛 ∈ {1, 2, . . . , 10}), and we measure

the relative error as in Section 4.2.

Figure 4 presents the worst case relative errors for greedy cover (left) and exact cover (right)

constructions. The red lines correspond to the relative error on random benchmark subsets, that

is, they correspond to the red lines from Figure 2, but this time the results are computed only

on the 14 validation strategies. The blue lines correspond to relative errors on the benchmark

characteristic subsets. We can see that in both cases, the relative errors on the benchmark

characteristic subsets are significantly lower, especially for smaller benchmark subsets. Even

with the smallest subset of size 100, we get almost 2% worst case error. Moreover, from size 600
we obtain the worst case error below 1%. Furthermore, the error on benchmark characteristic

subsets approaches the average error on random subsets (see the dotted lines in Figure 2). This

suggests that the construction of benchmark characteristic subsets is less coincidental than

random selection.

5. Conclusions and Future Work

We propose and evaluate a method of constructing a benchmark characteristic subset that

represents the whole benchmark. We provide empirical evidence that our method, based on

clustering of problem performance feature vectors, gives better results than a random benchmark

sampling. To evaluate our method, we use the task of best cover construction. However, we

believe that our method shall prove useful for many other tasks. Furthermore, we provide an

experimental evaluation of how restricting the benchmark size and evaluation time limits affect

the solver performance. The characteristic subsets of quantified problems from SMT-LIB library

computed using the 𝑘-means clustering method are available for download.

https://github.com/ai4reason/public/blob/master/SMT2021

https://github.com/ai4reason/public/blob/master/SMT2021


Hence SMT users can directly benefit from the results published in this paper by speeding up

their solver evaluation.

As future work, we would like to experiment with different methods of measuring the quality

of benchmark characteristic subsets, other than the best cover construction. Moreover, we

would like to employ different clustering algorithms than 𝑘-means. Finally, we would like to

propose different methods of constructing problem characteristic feature vectors, for example,

extracting features directly from the problem syntax.
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A. CVC4 Statistics Used as Performance Features

We use the following statistic keys, obtained by running CVC4 with option -stats, to construct

problem performance feature vectors.

sat::conflicts
sat::decisions
Instantiate::Instantiations_Total
SharedTermsDatabase::termsCount
resource::PreprocessStep
resource::RewriteStep
resource::resourceUnitsUsed

B. CVC4 Strategies Used in Experiments

The following 23 CVC4 strategies, described as CVC4 command line arguments, are used in the

experiments. The 24th strategy is Z3 in the default mode. The first ten {cvc1, . . . , cvc10} are

used to construct the performance feature vectors of problems. The remaining 14 are used as

validation strategies.
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cvc1 –simplification=none –full-saturate-quant
cvc2 –no-e-matching –full-saturate-quant
cvc3 –relevant-triggers –full-saturate-quant
cvc4 –trigger-sel=max –full-saturate-quant
cvc5 –multi-trigger-when-single –full-saturate-quant
cvc6 –multi-trigger-when-single –multi-trigger-priority –full-saturate-quant
cvc7 –multi-trigger-cache –full-saturate-quant
cvc8 –no-multi-trigger-linear –full-saturate-quant
cvc9 –pre-skolem-quant –full-saturate-quant
cvc10 –inst-when=full –full-saturate-quant
cvc11 –no-e-matching –no-quant-cf –full-saturate-quant
cvc12 –full-saturate-quant –quant-ind
cvc13 –decision=internal –simplification=none –no-inst-no-entail \\

–no-quant-cf –full-saturate-quant
cvc14 –decision=internal –full-saturate-quant
cvc15 –term-db-mode=relevant –full-saturate-quant
cvc16 –fs-interleave –full-saturate-quant
cvc17 –finite-model-find –mbqi=none
cvc18 –finite-model-find –decision=internal
cvc19 –finite-model-find –macros-quant –macros-quant-mode=all
cvc20 –finite-model-find –uf-ss=no-minimal
cvc21 –finite-model-find –fmf-inst-engine
cvc22 –finite-model-find –decision=internal
cvc23 –full-saturate-quant
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