
SAT-based Encodings for Optimal Decision
Trees with Explicit Paths

Mikoláš Janota1,2[0000−0003−3487−784X] and António
Morgado1[0000−0002−5295−1321]

1 INESC-ID/IST, U. de Lisboa, Portugal
2 Czech Technical University in Prague, Czech Republic

Abstract. Decision trees play an important role both in Machine Learn-
ing and Knowledge Representation. They are attractive due to their
immediate interpretability. In the spirit of Occam’s razor, and inter-
pretability, it is desirable to calculate the smallest tree. This, however,
has proven to be a challenging task and greedy approaches are typically
used to learn trees in practice. Nevertheless, recent work showed that
by the use of SAT solvers one may calculate the optimal size tree for
real-world benchmarks. This paper proposes a novel SAT-based encod-
ing that explicitly models paths in the tree, which enables us to control
the tree’s depth as well as size. At the level of individual SAT calls, we
investigate splitting the search space into tree topologies. Our tool out-
performs the existing implementation. But also, the experimental results
show that minimizing the depth first and then minimizing the number
of nodes enables solving a larger set of instances.

1 Introduction

Decision trees play an important role in machine learning either on their own [6]
or in the context of ensembles [5]. Learning decision trees is especially attractive
in the context of interpretable machine learning due to their simplicity. However,
despite this simplicity, minimization of decision trees is well-known to be an NP-
hard problem [16,10]. Yet, smaller trees are likely to generalize better.

To learn trees, suboptimal, greedy algorithms are used in practice. With
the rise of powerful reasoning engines, recent research has tackled the problem
by the use of SAT, CSP, or MILP solvers [38,37,1,27]. Indeed, the state-of-
the-art technology shows that many (NP) hard problems are often successfully
solved. Conversely, such applications drive the reasoning technology by providing
interesting benchmarks.

This paper, follows this line of research and proposes a novel SAT-based
encoding. This encoding enables finding a decision tree conforming to the given
set of examples with a given depth and number of nodes. A minimal tree is found
by iterative calls to a SAT solver while minimizing size and depth.

Focusing not only on size but also on depth of the tree brings about op-
portunities for further analysis. Intuitively, more shallow trees are less likely to

2 Janota and Morgado

over-fit. Indeed, modern packages such as Scikit [30] enable imposing a thresh-
old on the depth, which users have to set manually. Also, a shallow tree is more
likely to be interpretable by a human because less memory is required to keep
track of a single branch.

The problem at hand is of challenging complexity. In practice, we may need
to deal with a high number of features and examples, which brings the search-
space of possible trees into extreme dimensions. Looking for an optimal tree
means not only finding such tree but also proving that no smaller tree exists.

The SAT technology has recently shown a lot of promise in tackling difficult
combinatorial questions, e.g. Erdős’ discrepancy [22] or the Boolean Pythagorean
triples problem [13], among others. Inspired by these results we also investigate
the splitting of search-space based on the topology of the decision tree. The
paper has the following main contributions.

1. It proposes a novel SAT-based encoding for decision trees, along with a
number of optimizations.

2. Compared to existing encoding, rather than representing nodes it represents
paths of the tree. This enables natively controlling not only the tree’s size
but also the tree’s depth.

3. It shows that minimizing depth first and then size enables tackling harder
instances.

4. It shows that search-space splitting by topologies enables tackling harder
instances.

5. The implemented tool outperforms existing work [27]

2 Preliminaries

Standard notions and notation for propositional logic are assumed [36]. A literal
is a Boolean variable (x) or its negation (denoted ¬x); a clause is a disjunc-
tion of literals a cube is a conjunction of literals. A formula is in conjunctive
normal form (CNF) if it is a conjunction of clauses. General Boolean formulas
are also considered constructed by using the standard connectives conjunction
(∧), disjunction (∨), implication (→), bi-implication (↔). State-of-the-art SAT
solvers typically accept input in CNF. Non-CNF formulas are converted to CNF
by standard equisatisfiable clausification methods [31].

Several constraints in the paper also rely on cardinality constraints [34]. These
are also turned into CNF through standard means, the implementation avails of
the cardinality encodings in the tool PySAT [26,18].

2.1 Training Data

Standard setting of supervised learning is assumed [35]. Following notation and
concepts of [27] we expect features to be binary (with values 0, 1). Non-binary
features can be reduced to binary by unary or binary encoding. Analogously,
classes are also binary (positive, negative).

SAT-based Encodings for Optimal Decision Trees with Explicit Paths 3

Examples are defined on a fixed set of features 1..F given as two sets, one
containing the negative examples (E−) and second containing positive examples
(E+). The examples are assumed consistent, i.e. E−∩E+ = ∅. We write E for the
whole set of examples, i.e. E = E− ∪ E+. Each example consists of feature-value
pairs. We write σ(q, f) for the value of a feature f in an example q. We assume
that all the examples are complete, i.e. σ(q) is total on 1..F.

3 SAT-based Optimization of Decision Trees

The objective is to develop a propositional formula whose models are decision
trees congruent with the given set of samples. Such model then is found by a call
to an off-the-shelf SAT solver. As customary, we take the approach of optimizing
by solving a series of decision problems. This means finding a decision tree with
a certain size and diminishing the size until no such tree exists. Alternatively,
other type of search can be used, e.g., binary or progression.

This paper targets two optimization criteria: size and depth. Minimizing any
combination of the two may be potentially be of interest. Section 5 discusses the
exact type of search used in the implementation.

The structure of binary trees guarantees a number of well-known properties.
Any tree with n nodes has (n+1)/2 leaves and (n−1)/2 internal nodes. Further,
n is always odd and the number of leaves is equal to the number of paths going
from the root to a leaf. Our encoding heavily exploits this property:

Rather than modeling nodes of a tree, we model the set of unique paths from the
root to leaves.

The optimization algorithm has two levels. At the first level, search is being
carried out on the tree’s size and depth. At the second level, the decision prob-
lem of finding a tree with such depth and size is solved via a SAT solver. The
SAT solver is used in a black-box fashion, i.e., the problem is encoded into its
propositional form and any off-the-shelf SAT solver may be used to solve it.

In the remainder of this section we focus on the decision problem, which is
invoked with a given number of paths P (controlling size) and maximum allowed
number of steps in a path S (controlling depth).

The steps in a path are numbered in the following way. In the first step, each
path is in the root. In the last step of a path, the path goes from an internal node
to a leaf. This means that if we are looking for a tree with a particular depth
and particular number of nodes we set S and P accordingly. If we are looking
only for a tree with minimal number of nodes but with an arbitrary depth, the
value of S is set to P− 1, which corresponds to the number of internal nodes.

3.1 Path-based Encoding

The encoding we propose models each path from the root to a leaf separately
while imposing relations between them that guarantee that the paths form a
binary tree. Throughout the paper, we use the convention that for a node labeled

4 Janota and Morgado

Variable Semantics Range

gps Path p at step s goes right=1/left=0 p ∈ 1..P, s ∈ 1..S

tps Path p at step s is terminated p ∈ 1..P, s ∈ 1..S + 1

eps Path p at step s is equal to path p− 1 p ∈ 2..P, s ∈ 1..S + 1

aps,f Path p at step s is assigned feature f p ∈ 1..P, s ∈ 1..S, f ∈ 1..F

mp
q Path p matches an example q p ∈ 1..P, q ∈ E

mp
f,v Path p matches on value v for feature f p ∈ 1..P, f ∈ 1..F, v ∈ {0, 1}

cp Path p is classified as positive p ∈ 1..P
Table 1. Variables used in the encoding

by a feature f , the left child corresponds to the value 0 of f and the right child
corresponds to the value 1 of f .

To model the tree, introduce a matrix of variables, where each row represents
a path and each column represents a step in the path. The first row (the first
path) is a path that only goes to the left—it is the leftmost path in the tree.
Analogously, the last row (the last path) is a path that only goes to the right—it
is the rightmost path in the tree. In general, the paths are ordered in the way
they would be obtained by running DFS that goes to the left first.

Each path corresponds to a sequence of 0’s and 1’s so that 0 is a step to the
left and 1 is a step to the right. Then, we consider these paths in a lexicographic
order. Each path is represented by a sequence of variables, one for each step,
where the variable represents whether the path goes left or right in that step.
Additionally, for each step we need to remember whether the path has already
terminated and which prefix is shared with the previous path.

Table 1 summarizes the main variables of the encoding. The direction of each
step s in a path p is determined by the variable gps . What is somewhat unusual
about this encoding is that paths may share prefixes. To that effect, the variable
eps represents that the path p in step s is in the same node as the preceding path
p − 1. The semantics of the variables eps is defined inductively. All paths share
the root and therefore ep1 must be always true. In further steps, paths p and p−1
remain equal as long as both paths take steps in the same direction.

ep1, p ∈ 2..P (1)

eps+1 ↔
(
(gps ↔ gp−1s) ∧ eps

)
, p ∈ 2..P, s ∈ 1..S (2)

Since it is unknown beforehand how many steps are in either path, the vari-
ables tps determine whether the path has already terminated or not. Observe
that the variables tps go up to step S + 1, whereas the variables gps go only to
step S. This is because the gps variables correspond to edges in the path while
termination is tracked for nodes (as well as equality). A terminated path remains
terminated and cannot terminate if it is still equal to the previous one. Any path

SAT-based Encodings for Optimal Decision Trees with Explicit Paths 5

f1

f2

T F

f3

T F

0

0 1

1

0 1

(a) example tree

gps s

p 1 2

1 0 0
2 0 1
3 1 0
4 1 1

(b) step
direction

tps s

p 1 2 3

1 0 0 1
2 0 0 1
3 0 0 1
4 0 0 1

(c) termination

eps s

p 1 2 3

2 1 1 0
3 1 0 0
4 1 1 0

(d) equality

Fig. 1. Assignment to the variables determining the tree’s topology

must be terminated after the last step.

tps → tps+1, p ∈ 1..P, s ∈ 1..S (3)

tps → ¬eps , p ∈ 2..P, s ∈ 1..S + 1 (4)

tpS+1, p ∈ 1..P (5)

Example 1. Figure 1 shows a binary tree along with the values of the topology
variables (gps , tps , and eps). The tree is comprising 4 leaves, therefore 4 paths.
In this simple example each path makes two steps and then it terminates. The
second path shares everything with the first one except for the leaf. The third
path only shares the root with the second path. The last path shares everything
with the third path, except for the leaf. Observe that since this is a full binary
tree, the gps variables represent the binary numbers from 0 to 3.

Now it is necessary to ensure that the paths are lexicographically ordered.
The first path always goes left and the last one always goes right. If a path p in
step s is in the same node as path p− 1, the path p can go left only if p− 1 also
went left (otherwise they would cross).

¬g1s ∧ gPs , s ∈ 1..S (6)

eps → (gp−1s → gps), p ∈ 2..P, s ∈ 1..S + 1 (7)

The lexicographic order alone does not guarantee a correct topology. Since
the tree is binary, any path must adhere to the following pattern. For a certain
number of steps it shares the prefix with the preceding path until it breaks off.
Once it breaks off, it has to go only to the left (or terminate). At the same time,
the preceding path can only go right after the break-off point (or terminate).
Otherwise, there would be a gap in the tree.

(¬tps ∧ ¬eps)→ ¬gps , p ∈ 2..P, s ∈ 1..S (8)

(¬tps ∧ ¬eps)→ gp−1s , p ∈ 2..P, s ∈ 1..S (9)

6 Janota and Morgado

R

A

B

E

C

F

0 1

1 0

1 0

Fig. 2. Two consecutive paths R–E and R–F diverging in node A.

Figure 2 illustrates these constraints. Consider the blue path, R → A →
B → E and the red path, R→ A→ C → F , where the blue one is lexicograph-
ically smaller. The paths diverge in node A—blue goes left, the red goes right.
Afterwards, the blue path may only go right or terminate. In contrast, the red
path may only go left or terminate. The reason why this has to be the case is
that for the red one to follow blue in our ordering, the blue one has to contain
the last path for the subtree rooted in B while the red one has to contain the
first path for the subtree rooted in C.

Assigning Features and their Semantics The encoding of semantics of the
training data is similar to the one in [27] but with two major differences:

1. Here classification is only per path, while in [27] it is per node because any
node can potentially be a leaf, which means semantics of the examples in
our approach need only to be repeated (n+ 2)/2 times rather than n times.

2. Our encoding introduces explicit variables to track whether a given training
example is matched for a given path, this is useful for one of the optimizations
(see Section 3.2).

We make sure that each step is assigned exactly one feature and that no
feature appears more than once on any path.

∑
f∈1..F

aps,f = 1, p ∈ 1..P, s ∈ 1..S (10)

∑
p∈1..P,s∈1..S

aps,f ≤ 1, f ∈ 1..F (11)

Recall that an example is seen as a set of feature-value pairs. We say that
a feature-value pair f, v is matched on a path if the path makes a step in the
direction of v in the node that is assigned the feature f . An example is matched
if all its feature-value pairs are matched. These two concepts are modeled by the
variables mp

f,v and mp
q , respectively. Observe that f, v is also matched on any

path that does not contain f at all. Finally, once a path matches any positive
example, it must be classified as positive and the other way around.

SAT-based Encodings for Optimal Decision Trees with Explicit Paths 7

mp
f,0 ↔

∧
s∈1..S

(¬tps ∧ a
p
s,f → ¬g

p
s) p ∈ 1..P, f ∈ 1..F (12)

mp
f,1 ↔

∧
s∈1..S

(¬tps ∧ a
p
s,f → gps) p ∈ 1..P, f ∈ 1..F (13)

mp
q ↔

∧
f∈1..F

mp
f,σ(q,f) p ∈ 1..P, q ∈ E (14)

mp
q → cp q ∈ E+, p ∈ 1..P (15)

mp
q → ¬cp q ∈ E−, p ∈ 1..P (16)

Summary of the encoding. The constraints (1)–(16) are parameterized by natural
numbers P and S and their satisfying assignments represent a sequence of P paths
in a binary tree from the root to a leaf, where each path has at most S edges. The
paths are lexicographically ordered, starting from the leftmost path and ending
in the rightmost one. Additionally, the encoding ensures that there are no gaps
between paths and therefore these represent the whole binary tree. Each node
in a path is labeled by a feature in a way that shared prefixes among paths are
labeled by the same features. Each path is assigned a classification class that
must be congruent with the training examples given on the input.

3.2 Path encoding Optimizations

The encoding described above permits constructing any decision tree conforming
to the given set of examples. However, certain optimizations can be made if we
assume that we are not interested in superfluous nodes.

Enforcing example matching We make sure that any path (equivalently any
leaf), matches at least one of the given examples. If it does not, its classification
does not come from the examples and may therefore be arbitrary, which means it
can be removed from any tree without violating the classification of the examples.
At the formula level, additional constraints are added.∨

q∈E
mp
q p ∈ 1..P (17)

Pure features Features with the same value in all the examples can be ignored
as they never permit distinguishing between two examples of a different class.
This is done at the preprocessing level, so the encoder never sees them.

Quasi-pure features A feature may appear with a fixed value v within all the
examples of one of the classes c. If such feature is assigned with the direction v,
then the tree can immediately terminate with a leaf classified with c. As such, we

8 Janota and Morgado

n 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

t 1 2 5 14 42 132 429 1,430 4,862 16,796 58,786 208,012 742,900 2,674,440 9,694,845

Table 2. Number of topologies (t) for tree size n ∈ 3..31 (Catalan numbers)

enforce that the child of a node assigned in the direction of the value v is a leaf
classified with the class c. At the formula level, we add the following constraint
for s ∈ 1..S and p ∈ 1..P.

(aps,f ∧ lit(v, gps))→ (tps+1 ∧ lit(c, cp)) where lit(0, x) = ¬x, lit(1, x) = x (18)

Path lower bounds We propose to use MaxSAT to obtain lower bounds on the
length of a path. The question we ask is what is the shortest possible path that
separates positive and negatives examples. Since the lower bound considers only
one path at a time, the order of features on that path is irrelevant. In preliminary
experiments we have observed rather small lower bounds. However, the bound
can be improved for the leftmost and rightmost branches. This gives us three
types of bounds: for the leftmost and rightmost branches, and for any branch
in between. In any path a feature either does not appear, or appears on a step
that goes left or on a step that goes right. To model this behavior we introduce
two variables for each feature x0f and x1f (similar to the dual rail encoding [25]).
This corresponds to the following hard and soft constraints.

hard: ¬x0f ∨ ¬x1f f ∈ 1..F

hard: ¬x1f/¬x0f f ∈ 1..F, for leftmost/rightmost branch

hard:
∨

f∈1..F

x0f ∧
∨

f∈1..F

x1f for general branch

hard: mp
q ↔

∧
f∈1..F

¬x1−σ(q,f) p ∈ 1..P, q ∈ E

hard:
∧
q∈E+

¬mp
q ∨

∧
q∈E−

¬mp
q

soft: ¬xvf f ∈ 1..F, v ∈ {0, 1}

4 Search-space Splitting by Topologies

Upon initial experiments, we observed that the SAT solver may struggle even on
decision trees of modest size, e.g. 9 nodes. This is somewhat surprising because
the number of topologies does not initially grow that much; see Table 2.

This suggests splitting the search space into individual topologies and call the
SAT solver for each one of them separately. Like so, the SAT solver only needs to
find the labeling of the tree. Intuitively this should be an easier problem because
the SAT solver only needs to deal with one type of decisions.

SAT-based Encodings for Optimal Decision Trees with Explicit Paths 9

This approach is not generally viable because eventually the number of
topologies is too large. To which we propose the following approach. The upper
part of the topology is fixed—until a certain depth—and the rest is left for the
SAT solver to complete. This gives rise to topology templates. Each topology
template is a tree, where each leaf is an actual leaf (�) of the topology or an
incomplete subtree (4).

Algorithm 1: Topology enumeration, with � - leaf, 4 - subtree

1 Function TE (n, d) begin
2 if n = 1 then return {�} // leaf

3 if d = 0 then return {4} // incomplete subtree

4 if d = 1 then
5 if n = 3 then return { tree (�, �) }
6 else if n = 5 then return { tree (4, �), tree (�, 4) }
7 else return { tree (�, 4), tree (4, �), tree (4, 4) }
8 return {tree(l, r) | l ∈ TE(i, d− 1), r ∈ TE(n− i− 1, d− 1), i ∈ 1..n− 1}

Algorithm 1 recursively enumerates incomplete topologies on n nodes with
the cut-off parameter d. In order to avoid repetitions in enumeration, certain
cases need to be treated separately. If the cut-off parameter reaches 1, the chil-
dren of the current node will either be leaves (�) or incomplete subtrees (4).
This, in general gives three scenarios where either the left or the right child is a
leaf and the second child is a subtree, or both are subtrees. However, in the case
of n = 3, n = 5 the scenarios are different. Observe that because of the cut-off
parameter, the generated topology template may have less than n nodes.

We study topology enumeration both for our encoding as well as the en-
coding of Narodytska et al. [27]. A given topology template in the encoding of
Narodytska et al. is enforced by a cube corresponding to the child relation and
the information whether a node is a leaf or not. An important property of our
generation procedure is that the cut-off parameter is equal on all branches. This
means that numbering the topology template by BFS gives the same numbers
as a BFS on any topology corresponding to it. Since the encoding of mindt relies
on BFS, this property lets us directly translate the relation into a cube.

Our path-based encoding does not allow easily encoding a topology template
because the number of paths in an incomplete subtree (4) is unknown. To this

Algorithm 2: Topology enumeration with cardinalities

1 Function TE# (n, d) begin
2 if n = 1 then return {�} // leaf

3 if d = 0 then return {#n} // incomplete subtree of size n

4 return {tree(l, r) | l ∈ TE#(i, d− 1), r ∈ TE#(n− i− 1, d− 1), i ∈ 1..n− 1}

10 Janota and Morgado

Algorithm 3: Measuring difference between topologies

1 Function TDiff (t1, t2, w) begin
2 if |t1| = 0 then return w|t2|
3 else if |t2| = 0 then return w|t1|
4 else return TDiff(t1.left, t2.left, w∆) + TDiff(t1.right, t2.right, w∆)

effect, we introduce a variation on the topology template where the leaves of the
topology template are actual leaves (�) or an incomplete subtree with a given
cardinality (#k). These topology templates can be easily enumerated as shown
by Algorithm 2. Observe that the number of these topology templates may be
larger than in the previous version. Such topology template is encoded into
our path-based model in a straightforward fashion. Each path in the topology
template fixes the direction in prefixes in a certain number of paths. The number
of these paths corresponds to the #k node at the end of the path. Any path
terminating in � corresponds exactly to one path in the path-based model.

4.1 Topology Enumeration

A cube describing a topology template can either be encoded into assumptions
to enable incremental SAT solving [7] or appended as a set of unit clauses.
We observed that in our case incremental solving does not pay off for hard
instances. However, at the same time, if a large number of topology templates
need to be examined, initializing a new SAT solver for each one of them is too
costly. Therefore, the implementation employs both modes, incremental and non-
incremental, depending on the number of topology templates to be examined.

Another point of interest is the order in which the topology templates are ex-
amined. In the case of non-incremental SAT solving and unsatisfiable instances,
the order does not matter because all formulas need to be solved independently
of one another. Hence, the order plays mainly a role in the case of satisfiable
instances. The order heuristics we propose is the following.

We start with the assumption that we already have a suboptimal solution
to the problem from a greedy (fast) algorithm. We would like to first focus on
topologies that are similar to the topology of this suboptimal solution. In order
to do so, we need some notion of difference between topologies (and topology
templates). For this purpose we define a simple function that recursively com-
pares the two topologies and accumulates a penalty once they are different.
Additionally, subtrees with lower depth are accounted with less weight.

Algorithm 3 shows the function. If one of the given trees is empty, the penalty
is the size of the other tree weighted by the factor w. Otherwise, the penalties
are calculated as a sum of the left and the right subtrees, respectively. As the
recursion descends, the weight is gradually decayed by the factor ∆ ∈ (0, 1]. In
the implementation we chose the ad-hoc value of 0.75.

When partitioning the search space, the topology templates are enumerated
in the increasing order of the difference from the suboptimal solution.

SAT-based Encodings for Optimal Decision Trees with Explicit Paths 11

5 Experimental Evaluation

The tool was implemented on top of the PySAT package [18], which interfaces
with a number of modern SAT solvers and provides a number of implementations
of cardinality encodings. We used the CaDiCaL solver [3] and the k-Cardinality
Modulo Totalizer [26]. This configuration was chosen after some careful prelimi-
nary experiments. We show that this configuration performs significantly better
than the configuration used in the evaluation of Narodytska et al.

Our preliminary experiments also informed other ad-hoc choices that had to
be made as the search and encodings can be configured in a large number of
ways. An alternative would be to employ automated parameter tuning in the
spirit of ParamILS [15]; we leave this as future work.

The SAT solver is used in a non-incremental fashion, i.e., every decision
problem is solved independently of the other ones. The exception is topology
enumeration: if the number of topologies is larger than 500, the incremental
mode is employed (see Section 4).

A suboptimal greedy solution is obtained by the popular modern machine
learning library Scikit-learn [30], which also enables a seamless integration with
the Python implementation. The greedy solution is used in two scenarios: 1) to
obtain an upper bound on the number of nodes in the solution 2) to inform the
ordering of topologies during enumeration (see Section 4).

The experiments were performed on servers with Intel(R) Xeon(R) CPU
at 2.60GHz, 24 cores, 64GB RAM, while always running 4 tasks in parallel.
The time limit was set to 1000 seconds and the memory limit to 3 GB. The
experimental results report on the following search modes:

(1) binary search on the number of nodes with no restriction on the depth with-
out topology enumeration (with sklearn upper-bound)

(2) linearly increasing the number of nodes with no restriction on the depth with
topology enumeration (linear UNSAT-SAT search)

(3) linearly increasing depth and linearly increasing number of nodes for each
considered depth

Searches (1) and (2) find the smallest tree just as in [27]. The search (3) finds
the smallest tree in the lexicographic ordering of the pair depth-size.

The evaluation was carried out on the benchmarks used in [27], kindly pro-
vided by Narodytska. These benchmarks were originally obtained by sampling a
large set of instances [29], with sampling percentages of 20%, and 50% (we have
used the same exact sampled benchmarks as Narodytska et al). The reader is
referred to [27] for the details of the sampling procedure.

We compare our tools with the state-of-the-art tool mindt [27]. Our tool is
run in the following configurations. The configuration dtfinder corresponds to
the search (1), i.e. size minimization via binary search and path-based encoding.
The configuration dtfinder-DT1 is the same type of search but with encoding
of Narodytska et al. The suffix -T in a configuration indicates topology-based

12 Janota and Morgado

% 0.2 0.5

nf./ns. 447/136 473/357

#I 754 709

#nd depth cpu-time #slv #nd depth cpu-time #slv

mindt 6 3 58 394 5 3 52 249

dtfinder-DT1 7 3 14 457 6 3 43 337

dtfinder-DT1-T 7 3 28 473 7 3 41 345

dtfinder-DT1-T-O 7 3 27 473 7 3 39 345

dtfinder 7 3 14 458 7 3 60 339

dtfinder-T 7 3 29 470 7 3 42 342

dtfinder-T-O 7 3 30 471 7 3 39 341

d-dtfinder 8 3 65 519 7 3 73 352

d-dtfinder-T-O 8 3 49 486 7 3 57 345

vbs 8 – 69 528 7 – 46 355

Table 3. Results on all the benchmarks divided by the percentage of random sampling.

search (search (2)). The suffix -T-O topology-based is search with heuristic order-
ing. The configuration d-dtfinder corresponds to the search (3), i.e. depth-size
minimization.

0

5

10

15

20

25

30

35

40

45

50

55

60

11 13 15 17 19 21 23 25 29

 mindt

 dtfinder-DT1

 dtfinder-DT1-T-O

 dtfinder

 dtfinder-T-O

 ddtfinder

 ddtfinder-T-O

Fig. 3. Distribution of the sizes of calculated optimal trees

Table 3 summarizes results for all the considered benchmarks and tools. The
first row (%) shows the percentage of random samplings used to construct the
instance, the second row the average number of features (nf.) and samples (ns.).
The third row (#I) shows the number of benchmarks in that category. The
remaining rows are grouped according to the tool they represent.

For each of the tools we present four values: the average number of nodes
discovered (#nd); the average depth of the tree reported (depth); the average

SAT-based Encodings for Optimal Decision Trees with Explicit Paths 13

0 1

0 1 0 1

0 1

0 1 0 1

0 1 0 1

0 1

1 0

0 1

0 1

0 1 0 1

F T

T F

T F F T T F

T

F T T F

1

2 3

6 7

8 9

12 13

18 19

20 24 25

(a) d-dtfinder

0 1

0 1

1 0

1 0

0 1

0 1

1 0

0 1

1 0

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

T

T F

F

F F T

T

T F

F

F

T

T F

T F

T F

1

2 35

3 26

4

5

6 19

7 16

8

10

11

21

27 32

29

(b) sklearn

Fig. 4. postoperative-patient-data-un 1-un with 50% sampling

CPU time taken in solved instances (cpu-time); and the number of instances
solved (#slv).

Figure 3 shows a histogram of the sizes of the optimal trees per solver. The
vertical axis shows the number of solved instances and the horizontal groups the
solvers according to the number of nodes of the reported decision trees. More
detailed overview of the data can be found here on the authors’ website [20].

Table 3 enables the following conclusions. Our implementation (dtfinder)
outperforms the tool by Narodytska et al. (mindt) in all cases. This is also the
case for their encoding; We attribute this to the choice of cardinality encoding
and the SAT solver. We used k-Cardinality Modulo Totalizer and CaDiCaL while
mindt uses sequential counter and glucose-0.3.

Comparing dtfinder with d-dtfinder, we can see that d-dtfinder is faster
to compute a minimum depth solution than dtfinder is to compute a minimum
size solution and even more interestingly, again solves even more instances.

The topology search-space splitting is beneficial in all encodings except for
depth minimization. Both our encoding and encoding of Narodytska et al. solves
more instances with topology enumeration. Not always this helps the average
CPU time; however, it went from 60s to 39s in path-based encoding for the 0.5
instances. The ordering of topologies enables a minor speed-up but overall the
effect is small.

The distribution of sizes of solved instances (Figure 3) shows that the hard-
ness of an instance grows drastically with the size. While depth minimization is
able to solve a handful of instances of size 29, the path-based encoding solves
just 1, our implementation of Narodytska et al. none and, surprisingly mindt 1.
This can be attributed to the number of topologies (see Table 2).

Overall, focusing on minimizing depth first is computationally advantageous,
yet yielding decision trees of good quality. We illustrate this on a particular
instance. Figure 4 shows decision trees calculated by our approach minimizing
depth first (d-dtfinder) and calculated by the greedy approach (sklearn). The

14 Janota and Morgado

optimal tree gives depth 6 and size 29, the greedy approach gives depth 11 and
size 37. In contrast, the other approaches timeout on this instance in 1000 s.

6 Related Work

Greedy algorithms for learning decision trees based on recursive splitting are
well-known [6,32,33]; see also [8] for an overview.

Various notions of optimality of decision trees appear in the literature. Some
approaches focus on finding a tree with a fixed depth but with the best accu-
racy [38,37,1]. These approaches assume a full (perfectly balanced) binary tree
of the fixed depth whose accuracy is to be optimized. While the problem is still
very hard, it is in some sense easier because the topology is fixed and only the
labeling needs to be calculated. However, combinations of these approaches in
our approach is an interesting line of research.

Another approach is taken by [14], which optimizes a linear combination of
accuracy and size. However, this approach is based on brute force search and in
our experiments we were only able to synthesize trees with a handful of features
while the considered benchmarks contain hundreds of features.

Closest to our work is [27], which uses SAT encoding to construct a size-
optimal decision tree for a given set of consistent samples. In contrast to our
work, individual nodes and their children relation are modeled explicitly. This
means that a path from the root to a leaf is implicit. In principle, one could also
restrict the depth of these implicit paths by adding additional counters or some
other form of cardinality constraints. This is bound to be less efficient. Further,
our encoding is closer to the idea of a tree. If the tree is modeled through
nodes, it must be ensured that is in fact a tree via cardinality constraints—
ensuring that each node has one and only one parent (except for the root) and
that each internal node has two children. These cardinality constraints are not
needed in our encoding. Since in our case, classes are per path rather than node
we save half of the semantic constraint (see Section 3.1). It is interesting to
compare how symmetries are broken in [27], where restrictions are imposed on
the possible children nodes. In our approach paths are ordered lexicographically
rather than in an arbitrary order. This order lets us single out the leftmost in
the rightmost branches, which turned out to be useful in lower-bounding the
depth (Section 3.2). We remark that lexicographic order is a popular means of
breaking symmetries in general graphs, cf. [12].

Earlier work for minimization of decision tree using Constraint Programming
(CP) exists [2]. It was shown in [27], that the approach by Narodytska et al.
strictly outperforms the approach of Bessiere at al. this is most likely to be
attributed to the fact that the CP encoding is asymptotically much larger.

Synthesis by calls to a SAT/SMT solver has seen increased interest in the
recent years, cf. [21,19,28]. Haaswi et al. used topology enumeration to synthe-
size Boolean circuits [9]. The general idea is analogous to our approach (see
Section 4). However, the set of possible topologies is partitioned differently. The
possible topologies are DAGs, whereas they are trees in our case. Topologies in

SAT-based Encodings for Optimal Decision Trees with Explicit Paths 15

their approach belong to the same partition if they have the same number of
nodes at each level (levels are obtained by BFS). This approach is unlikely to
give good partitioning for binary trees and is more expensive to encode than our
approach. Further, in our approach, the enumeration of topologies simply goes
over all possible topologies if the number of nodes is small.

The well-known technique of cube-and-conquer (CnC) splits the search-space
by a lookahead solver [17,11]. The lookahead solver is run with a bound, which
yields cubes to be decided by a traditional CDCL solver. Compared to our ap-
proach, CnC is much more general since it is applicable to any SAT instance, and,
the lookahead solver is less likely to generate cubes that will be decided trivially.
The downside is that CnC may not come up with a splitting as a human would.
Further, the lookahead solver can be very costly. In our preliminary experiments,
CnC performs much more poorly than a plain SAT solver on our instances. The
order in which cubes are decided is also investigated by Heule et al. [11].

7 Conclusions and Future Work

This paper proposes a novel SAT-based encoding for decision trees, which enables
natively controlling both the tree’s size and depth. We also study search-space
splitting by topology enumeration. Our implementation outperforms existing
work of [27] but also enables a finer control due to the explicit representation
of paths of the tree. This finer control lets us optimize practically interesting
instances that had been out of reach.

The proposed approaches open a number of avenues for future research. The
solving itself could be further improved by better splitting, parallelization, and
combining with cube-and-conquer [11]. While some preprocessing of the exam-
ples was already used in our optimization techniques (Section 3.2), further in-
spection could be used to draw more information from them, e.g. introduction
of extended variables in the spirit of [23]. The proposed techniques could also be
integrated into more expressive approaches, e.g. SMT-based synthesis [21].

At the application level, we are investigating the integration of our tool with
some greedy approaches, e.g. ensembles, where only limited depth is considered.
Or, consider a hybrid between a greedy approach and an exact approach where
an exact approach is invoked on smaller sub-problems. It would be interesting
to investigate whether trees with a smaller depth are really easier to understand
and interpret, and, what is the trade-off between depth and size. Our approach
provides the means to exactly quantify these metrics.

The experimental evaluation shows that SAT solvers poorly handle a search-
space with many topologies. We believe that this represents an important chal-
lenge for the SAT community.

Acknowledgements This work was supported by national funds through FCT,
Fundação para a Ciência e a Tecnologia, under project UIDB/50021/2020, the
project INFOCOS with reference PTDC/CCI-COM/32378/2017. The results
were supported by the Ministry of Education, Youth and Sports within the ded-
icated program ERC CZ under the project POSTMAN with reference LL1902.

16 Janota and Morgado

References

1. Bertsimas, D., Dunn, J.: Optimal classification trees. Machine Learning 106(7),
1039–1082 (2017). https://doi.org/10.1007/s10994-017-5633-9

2. Bessiere, C., Hebrard, E., O’Sullivan, B.: Minimising decision tree size as combina-
torial optimisation. In: Principles and Practice of Constraint Programming - CP.
pp. 173–187 (2009). https://doi.org/10.1007/978-3-642-04244-7 16

3. Biere, A.: CaDiCaL, Lingeling, PLingeling, Treengeling and YalSAT entering the
SAT competition 2017 (2017)

4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

5. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001).
https://doi.org/10.1023/A:1010933404324

6. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth (1984)

7. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003). https://doi.org/10.1016/S1571-
0661(05)82542-3

8. Fürnkranz, J.: Decision Tree, pp. 330–335. Springer US, Boston, MA (2017).
https://doi.org/10.1007/978-1-4899-7687-1 66

9. Haaswijk, W., Mishchenko, A., Soeken, M., Micheli, G.D.: SAT based
exact synthesis using DAG topology families. In: Proceedings of the
55th Annual Design Automation Conference, DAC. pp. 53:1–53:6 (2018).
https://doi.org/10.1145/3195970.3196111

10. Hancock, T.R., Jiang, T., Li, M., Tromp, J.: Lower bounds on learn-
ing decision lists and trees. Inf. Comput. 126(2), 114–122 (1996).
https://doi.org/10.1006/inco.1996.0040

11. Heule, M., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guiding
CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.)
Hardware and Software: Verification and Testing - 7th International Haifa Verifi-
cation Conference, HVC, Revised Selected Papers. vol. 7261, pp. 50–65. Springer
(2011). https://doi.org/10.1007/978-3-642-34188-5 8

12. Heule, M.J.H.: Optimal symmetry breaking for graph problems. Mathematics
in Computer Science 13(4), 533–548 (2019). https://doi.org/10.1007/s11786-019-
00397-5

13. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean-
Pythagorean triples problem via cube-and-conquer. In: Theory and Applications
of Satisfiability Testing (SAT) (2016). https://doi.org/10.1007/978-3-319-40970-
2 15

14. Hu, X., Rudin, C., Seltzer, M.: Optimal sparse decision trees. In: Neural
Information Processing Systems NeurIPS (2019), http://papers.nips.cc/paper/
8947-optimal-sparse-decision-trees

15. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36,
267–306 (2009)

16. Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is NP-
complete. Inf. Process. Lett. 5(1), 15–17 (1976). https://doi.org/10.1016/0020-
0190(76)90095-8

17. Hyvärinen, A.E.J., Junttila, T.A., Niemelä, I.: Partitioning SAT instances for dis-
tributed solving. In: Logic for Programming, Artificial Intelligence, and Reasoning

https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1007/978-3-642-04244-7_16
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1007/978-1-4899-7687-1_66
https://doi.org/10.1145/3195970.3196111
https://doi.org/10.1006/inco.1996.0040
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/s11786-019-00397-5
https://doi.org/10.1007/s11786-019-00397-5
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
http://papers.nips.cc/paper/8947-optimal-sparse-decision-trees
http://papers.nips.cc/paper/8947-optimal-sparse-decision-trees
https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1016/0020-0190(76)90095-8

SAT-based Encodings for Optimal Decision Trees with Explicit Paths 17

- 17th International Conference, LPAR-17. vol. 6397, pp. 372–386. Springer (2010).
https://doi.org/10.1007/978-3-642-16242-8 27

18. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A python toolkit for pro-
totyping with SAT oracles. In: Theory and Applications of Satisfiability Testing -
SAT. pp. 428–437 (2018). https://doi.org/10.1007/978-3-319-94144-8 26

19. Ignatiev, A., Pereira, F., Narodytska, N., Marques-Silva, J.: A SAT-based approach
to learn explainable decision sets. In: International Joint Conference on Automated
Reasoning (IJCAR) (2018). https://doi.org/10.1007/978-3-319-94205-6 41

20. Janota, M., Morgado, A.: (2020), http://sat.inesc-id.pt/%7Emikolas/dectrees
21. Kolb, S., Teso, S., Passerini, A., Raedt, L.D.: Learning SMT(LRA) constraints

using SMT solvers. In: Lang [24]. https://doi.org/10.24963/ijcai.2018/323, http:
//www.ijcai.org/proceedings/2018/

22. Konev, B., Lisitsa, A.: Computer-aided proof of Erdős discrepancy properties. Ar-
tif. Intell. 224, 103–118 (2015). https://doi.org/10.1016/j.artint.2015.03.004

23. Lagniez, J., Biere, A.: Factoring out assumptions to speed up MUS extraction.
In: Theory and Applications of Satisfiability Testing - SAT. pp. 276–292 (2013).
https://doi.org/10.1007/978-3-642-39071-5 21

24. Lang, J. (ed.): Proceedings of the Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence, IJCAI 2018. ijcai.org (2018), http://www.ijcai.org/
proceedings/2018/

25. Manquinho, V.M., Flores, P.F., Silva, J.P.M., Oliveira, A.L.: Prime impli-
cant computation using satisfiability algorithms. In: 9th International Con-
ference on Tools with Artificial Intelligence ICTAI. pp. 232–239 (1997).
https://doi.org/10.1109/TAI.1997.632261

26. Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: Robust core-guided MaxSAT
solving. JSAT 9, 129–134 (2015)

27. Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J.: Learn-
ing optimal decision trees with SAT. In: Lang [24], pp. 1362–1368.
https://doi.org/10.24963/ijcai.2018/189, http://www.ijcai.org/proceedings/2018/

28. Narodytska, N., Shrotri, A.A., Meel, K.S., Ignatiev, A., Marques-Silva, J.: Assess-
ing heuristic machine learning explanations with model counting. In: Janota, M.,
Lynce, I. (eds.) Theory and Applications of Satisfiability Testing - SAT - 22nd.
Springer (2019). https://doi.org/10.1007/978-3-030-24258-9 19

29. Olson, R.S., Cava, W.G.L., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.:
PMLB: a large benchmark suite for machine learning evaluation and compari-
son. BioData Mining 10(1), 36:1–36:13 (2017). https://doi.org/10.1186/s13040-
017-0154-4

30. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Ma-
chine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011), https:
//scikit-learn.org/

31. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2(3), 293–304 (1986)

32. Quinlan, J.R.: Induction of decision trees. Machine learning 1(1), 81–106 (1986)
33. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
34. Roussel, O., Manquinho, V.M.: Pseudo-boolean and cardinality constraints. In:

Biere et al. [4], pp. 695–733. https://doi.org/10.3233/978-1-58603-929-5-695
35. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Prentice Hall

(2010)

https://doi.org/10.1007/978-3-642-16242-8_27
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94205-6_41
http://sat.inesc-id.pt/%7Emikolas/dectrees
https://doi.org/10.24963/ijcai.2018/323
http://www.ijcai.org/proceedings/2018/
http://www.ijcai.org/proceedings/2018/
https://doi.org/10.1016/j.artint.2015.03.004
https://doi.org/10.1007/978-3-642-39071-5_21
http://www.ijcai.org/proceedings/2018/
http://www.ijcai.org/proceedings/2018/
https://doi.org/10.1109/TAI.1997.632261
https://doi.org/10.24963/ijcai.2018/189
http://www.ijcai.org/proceedings/2018/
https://doi.org/10.1007/978-3-030-24258-9_19
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1186/s13040-017-0154-4
https://scikit-learn.org/
https://scikit-learn.org/
https://doi.org/10.3233/978-1-58603-929-5-695

18 Janota and Morgado

36. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Biere et al. [4], pp. 131–153. https://doi.org/10.3233/978-1-58603-929-5-131

37. Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C., Schaus, P.: Learning optimal
decision trees using constraint programming. In: 31st Benelux Conference on Arti-
ficial Intelligence (BNAIC) (2019), http://ceur-ws.org/Vol-2491/abstract109.pdf

38. Verwer, S., Zhang, Y.: Learning optimal classification trees using a bi-
nary linear program formulation. In: The Thirty-Third AAAI Conference
on Artificial Intelligence, (AAAI). pp. 1625–1632. AAAI Press (2019).
https://doi.org/10.1609/aaai.v33i01.33011624, https://www.aaai.org/Library/
AAAI/aaai19contents.php

https://doi.org/10.3233/978-1-58603-929-5-131
http://ceur-ws.org/Vol-2491/abstract109.pdf
https://doi.org/10.1609/aaai.v33i01.33011624
https://www.aaai.org/Library/AAAI/aaai19contents.php
https://www.aaai.org/Library/AAAI/aaai19contents.php

	SAT-based Encodings for Optimal Decision Trees with Explicit Paths

