Circuit-based Search Space Pruning in QBF

Mikoláš Janota

IST/INESC-ID,
University of Lisbon, Portugal
fif técnico
LISBOA
inesc id

Oxford, 10 July 2018, SAT

CQESTO

■ Solver for quantified Boolean formulas

- In prenex, non-CNF form
- Operates directly on a circuit representation

■ Uses SAT in a black-box fashion

CQESTO

■ Solver for quantified Boolean formulas

- In prenex, non-CNF form
- Operates directly on a circuit representation

■ Uses SAT in a black-box fashion
Remarks:
■ Generalization of the CNF-based QESTO [Janota and Marques-Silva, 2015] CAQE [Rabe and Tentrup, 2015]
■ Similar ideas implemented in Z3 for SMT [Bjørner and Janota, 2015] and QBF QuAbS [Tentrup, 2016]

Why Circuits?

- Known: CNF can be harmful for solving QBF [Ansótegui et al., 2005, Zhang, 2006, Janota and Marques-Silva, 2017]
- Intuition:

We reason about formula and its negation. But, after Tseitin transformation, we do not have the negation!

QBF as Two-player Games

- A QBF is a game between \forall and \exists

QBF as Two-player Games

- A QBF is a game between \forall and \exists
- \forall wins if the matrix becomes false

QBF as Two-player Games

- A QBF is a game between \forall and \exists
- \forall wins if the matrix becomes false
- \exists wins if the matrix becomes true

QBF as Two-player Games

- A QBF is a game between \forall and \exists
- \forall wins if the matrix becomes false
- \exists wins if the matrix becomes true
- QBF is false iff
there exists a winning strategy for \forall

QBF as Two-player Games

- A QBF is a game between \forall and \exists
- \forall wins if the matrix becomes false
- \exists wins if the matrix becomes true
- QBF is false iff there exists a winning strategy for \forall
- QBF is true iff
there exists a winning strategy for \exists

QBF as Two-player Games

- A QBF is a game between \forall and \exists

■ \forall wins if the matrix becomes false

- \exists wins if the matrix becomes true
- QBF is false iff
there exists a winning strategy for \forall
- QBF is true iff
there exists a winning strategy for \exists
Example

$$
\forall u \exists e .(u \leftrightarrow e)
$$

\exists-player wins by playing $e \triangleq u$

CQESTO: Architecture

$$
\begin{aligned}
& \exists X_{1} \rightarrow \forall X_{2} \rightarrow \forall X_{n-1} \rightarrow \exists X_{n} \\
& \alpha_{1} \\
& \alpha_{2} \\
& \alpha_{n-1} \\
& \alpha_{n}
\end{aligned}
$$

- Propositional α_{i} for each level

■ α_{i} restricts moves at position i
■ Initially $\quad \alpha_{n-1}=\neg$ matrix

$$
\begin{aligned}
& \alpha_{n}=\text { matrix } \\
& \alpha_{i}=\text { true }
\end{aligned}
$$

CQESTO: Algorithm

$$
\begin{array}{ccccc|}
\hline \exists X_{1} \\
\alpha_{1} & \alpha_{2} & \alpha_{i} & \alpha_{n-1} & \alpha_{n}
\end{array}
$$

■ Assign values to X_{i} by calling SAT on α_{i}

- If α_{i} unsatisfiable, fix earlier mistake (strengthen previous α_{i})
■ If α_{1} or α_{2} unsatisfiable, the formula is proven (STOP)

CQESTO: Algorithm

$$
\begin{aligned}
& \sigma_{1} \\
& \exists X_{1} \rightarrow \forall X_{2} \cdots \quad \exists X_{i} \cdots \forall X_{n-1} \rightarrow \exists X_{n} \\
& \alpha_{1} \quad \alpha_{2} \\
& \alpha_{i} \\
& \alpha_{n-1} \\
& \alpha_{n}
\end{aligned}
$$

■ Assign values to X_{i} by calling SAT on α_{i}

- If α_{i} unsatisfiable, fix earlier mistake (strengthen previous α_{i})
■ If α_{1} or α_{2} unsatisfiable, the formula is proven (STOP)

CQESTO: Algorithm

$$
\begin{aligned}
& \sigma_{1} \quad \sigma_{2} \\
& \begin{array}{ccccc|}
\hline \exists X_{1} \\
\hline \alpha_{1} & \alpha_{2} & \alpha_{i} & \alpha_{n-1} & \alpha_{n}
\end{array}
\end{aligned}
$$

■ Assign values to X_{i} by calling SAT on α_{i}
■ If α_{i} unsatisfiable, fix earlier mistake (strengthen previous α_{i})
■ If α_{1} or α_{2} unsatisfiable, the formula is proven (STOP)

CQESTO: Algorithm

$$
\begin{array}{ccccc}
\sigma_{1} & \sigma_{2} \\
\\
\cline { 1 - 3 } & \rightarrow X_{1} \\
\alpha_{1} & \alpha_{2} & & \alpha_{i} & \alpha_{n-1}
\end{array} \alpha_{n}
$$

■ Assign values to X_{i} by calling SAT on α_{i}

- If α_{i} unsatisfiable, fix earlier mistake (strengthen previous α_{i})
■ If α_{1} or α_{2} unsatisfiable, the formula is proven (STOP)

CQESTO: Algorithm

■ Assign values to X_{i} by calling SAT on α_{i}

- If α_{i} unsatisfiable, fix earlier mistake (strengthen previous α_{i})
- If α_{1} or α_{2} unsatisfiable, the formula is proven (STOP)

Loss Resolution (Conflicts)

$$
\cdots \underbrace{\begin{array}{c}
\sigma_{k-2} \\
\exists X_{k-2} \\
\alpha_{k-2}
\end{array} \alpha_{k-1}^{\sigma_{k-1}} \rightarrow X_{k-1} \longrightarrow \forall X_{k}}_{\text {strengthen }}
$$

II Identify reason R for failure in α_{k}.
■ Eliminate variables X_{k} from R
3 Eliminate variables X_{k-1} from R
4 Strengthen α_{k-2}

Reason (example)

$$
(x \vee y) \rightarrow(z \wedge \neg z)=\neg((x \vee y) \wedge(z \vee \neg z))
$$

Reason (example)

$$
(x \vee y) \rightarrow(z \wedge \neg z)=\neg((x \vee y) \wedge(z \vee \neg z))
$$

Reason (example)

$$
(x \vee y) \rightarrow(z \wedge \neg z)=\neg((x \vee y) \wedge(z \vee \neg z))
$$

1 For $x=1, y=0$ propagate: $x \vee y=1$
■ Give the gate a name α and use UNSAT cores to get the reason
3 Reason is $\alpha=x \vee y$

Eliminate X_{k-1} : plug in σ_{k-1}

$$
\text { ■ } \exists x_{1} x_{2} \forall y \exists z .\left(x_{1} \wedge z\right) \wedge\left(x_{2} \vee y\right)
$$

Eliminate X_{k-1} : plug in σ_{k-1}

$$
\begin{aligned}
& \text { (1) } \exists x_{1} x_{2} \forall y \exists z . ~\left(x_{1} \wedge z\right) \wedge\left(x_{2} \vee y\right) \\
& \text { (1) } \sigma_{1}=\left\{x_{1}, \neg x_{2}\right\}, \sigma_{2}=\{\neg y\} .
\end{aligned}
$$

Eliminate X_{k-1} : plug in σ_{k-1}

$$
\begin{aligned}
& 1 \text { I } \exists x_{1} x_{2} \forall y \exists z .\left(x_{1} \wedge z\right) \wedge\left(x_{2} \vee y\right) \\
& \text { 2 } \sigma_{1}=\left\{x_{1}, \neg x_{2}\right\}, \sigma_{2}=\{\neg y\} . \\
& \text { 3 propagation } x_{1} \text { and } \neg\left(x_{2} \vee y\right) .
\end{aligned}
$$

Eliminate X_{k-1} : plug in σ_{k-1}

$$
\begin{aligned}
& 11 \exists x_{1} x_{2} \forall y \exists z .\left(x_{1} \wedge z\right) \wedge\left(x_{2} \vee y\right) \\
& \text { 2 } \sigma_{1}=\left\{x_{1}, \neg x_{2}\right\}, \sigma_{2}=\{\neg y\} . \\
& \text { 3 propagation } x_{1} \text { and } \neg\left(x_{2} \vee y\right) \text {. } \\
& \text { 4 core } \neg\left(x_{2} \vee y\right) \text {. }
\end{aligned}
$$

Eliminate X_{k-1} : plug in σ_{k-1}

■ $\exists x_{1} x_{2} \forall y \exists z$. $\left(x_{1} \wedge z\right) \wedge\left(x_{2} \vee y\right)$
(2) $\sigma_{1}=\left\{x_{1}, \neg x_{2}\right\}, \sigma_{2}=\{\neg y\}$.

3 propagation x_{1} and $\neg\left(x_{2} \vee y\right)$.
4 core $\neg\left(x_{2} \vee y\right)$.
5 negating \& substitute σ_{2} :

$$
\xi_{f}=\left.\left(x_{2} \vee y\right)\right|_{\{\neg y\}}=x_{2}
$$

Eliminate X_{k-1} : plug in σ_{k-1}

(1) $\exists x_{1} x_{2} \forall y \exists z$. $\left(x_{1} \wedge z\right) \wedge\left(x_{2} \vee y\right)$
(2) $\sigma_{1}=\left\{x_{1}, \neg x_{2}\right\}, \sigma_{2}=\{\neg y\}$.

3 propagation x_{1} and $\neg\left(x_{2} \vee y\right)$.
4 core $\neg\left(x_{2} \vee y\right)$.
5 negating \& substitute σ_{2} :

$$
\xi_{f}=\left.\left(x_{2} \vee y\right)\right|_{\{\neg y\}}=x_{2}
$$

б strengthening $\alpha_{1} \leftarrow \alpha_{1} \wedge x_{2}$.

Eliminate X_{k}

Idea:
$\|$ a formula $(x \wedge \phi) \vee(\neg x \wedge \psi)$

Eliminate X_{k}

Idea:
II a formula $(x \wedge \phi) \vee(\neg x \wedge \psi)$
■ can be weakened by replacing x with 1

Eliminate X_{k}

Idea:
II a formula $(x \wedge \phi) \vee(\neg x \wedge \psi)$
[can be weakened by replacing x with 1
3 can be weakened by replacing $\neg x$ by 0

Eliminate X_{k}

Idea:
II a formula $(x \wedge \phi) \vee(\neg x \wedge \psi)$
[can be weakened by replacing x with 1
3 can be weakened by replacing $\neg x$ by 0
$4 \ldots \phi \vee \psi$

Eliminate X_{k}

Idea:
II a formula $(x \wedge \phi) \vee(\neg x \wedge \psi)$
[can be weakened by replacing x with 1
3 can be weakened by replacing $\neg x$ by 0
$4 \ldots \phi \vee \psi$

Eliminate X_{k}

Idea:
11 a formula $(x \wedge \phi) \vee(\neg x \wedge \psi)$
$\boxed{2}$ can be weakened by replacing x with 1
3 can be weakened by replacing $\neg x$ by 0
$4 \ldots \phi \vee \psi$
In general:
1 Replace positive occurrences by 1

Eliminate X_{k}

Idea:
11 a formula $(x \wedge \phi) \vee(\neg x \wedge \psi)$
■ can be weakened by replacing x with 1
3 can be weakened by replacing $\neg x$ by 0
$4 \ldots \phi \vee \psi$
In general:
\square Replace positive occurrences by 1
』 Replace negative occurrences by 0

Loss Resolution (Conflicts): Recap

$$
\sigma_{k-2} \quad \sigma_{k-1}
$$

1 Reason: propagation \& SAT cores
« Eliminate X_{k-1} : substitution of σ_{k-1}
3 Eliminate X_{k} : syntactic-based weakening
4 Strengthen α_{k-2} (or some $i \leq k-2$)

Experimental Evaluation

Summary and Future Work

■ CQESTO works directly on circuit representation

Summary and Future Work

- CQESTO works directly on circuit representation
■ Flat architecture (as opposed to RAReQS)

Summary and Future Work

- CQESTO works directly on circuit representation
- Flat architecture (as opposed to RAReQS)

■ Conflict resolution by operations on circuit

Summary and Future Work

- CQESTO works directly on circuit representation
- Flat architecture (as opposed to RAReQS)
- Conflict resolution by operations on circuit

■ Exact relation to other solvers?
QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]

Summary and Future Work

- CQESTO works directly on circuit representation
- Flat architecture (as opposed to RAReQS)
- Conflict resolution by operations on circuit
- Exact relation to other solvers? QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]
- Identified: reason, eliminate opponent variables, eliminate player's variables

Summary and Future Work

- CQESTO works directly on circuit representation
- Flat architecture (as opposed to RAReQS)
- Conflict resolution by operations on circuit
- Exact relation to other solvers? QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]
- Identified: reason, eliminate opponent variables, eliminate player's variables
- How are the identified processes realized in other solvers?

Summary and Future Work

- CQESTO works directly on circuit representation
- Flat architecture (as opposed to RAReQS)
- Conflict resolution by operations on circuit
- Exact relation to other solvers? QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]
- Identified: reason, eliminate opponent variables, eliminate player's variables
- How are the identified processes realized in other solvers?
- Different ways of realizing processes?
: Ansótegui, C., Gomes, C. P., and Selman, B. (2005).

The Achilles' heel of QBF.
In National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference (AAAI), pages 275-281.
: Bjørner, N. and Janota, M. (2015).
Playing with quantified satisfaction.
In International Conferences on Logic for
Programming LPAR-20, Short Presentations,
volume 35, pages 15-27. EasyChair.
国 Janota, M. and Marques-Silva, J. (2015). Solving QBF by clause selection.

In International Joint Conference on Artificial Intelligence（IJCAI）．

目 Janota，M．and Marques－Silva，J．（2017）． An Achilles＇heel of term－resolution． In Conference on Artificial Intelligence（EPIA）， pages 670－680．

囯 Rabe，M．N．and Tentrup，L．（2015）． CAQE：A certifying QBF solver． In Formal Methods in Computer－Aided Design， FMCAD，pages 136－143．

囯 Tentrup，L．（2016）．
Non－prenex QBF solving using abstraction．

In Theory and Applications of Satisfiability Testing (SAT), pages 393-401.

固 Tu, K., Hsu, T., and Jiang, J. R. (2015).
QELL: QBF reasoning with extended clause learning and levelized SAT solving. In Theory and Applications of Satisfiability Testing - (SAT), pages 343-359.

圊 Zhang, L. (2006).
Solving QBF by combining conjunctive and disjunctive normal forms.
In National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference (AAAI).

