
Circuit-based
Search Space Pruning in QBF

Mikoláš Janota

IST/INESC-ID,
University of Lisbon, Portugal

Oxford, 10 July 2018, SAT

Janota CQESTO 1 / 13



CQESTO

Solver for quantified Boolean formulas
In prenex, non-CNF form
Operates directly on a circuit representation
Uses SAT in a black-box fashion

Remarks:
Generalization of the CNF-based
QESTO [Janota and Marques-Silva, 2015]
CAQE [Rabe and Tentrup, 2015]
Similar ideas implemented in Z3 for
SMT [Bjørner and Janota, 2015]
and QBF QuAbS [Tentrup, 2016]

Janota CQESTO 2 / 13



CQESTO

Solver for quantified Boolean formulas
In prenex, non-CNF form
Operates directly on a circuit representation
Uses SAT in a black-box fashion

Remarks:
Generalization of the CNF-based
QESTO [Janota and Marques-Silva, 2015]
CAQE [Rabe and Tentrup, 2015]
Similar ideas implemented in Z3 for
SMT [Bjørner and Janota, 2015]
and QBF QuAbS [Tentrup, 2016]

Janota CQESTO 2 / 13



Why Circuits?

Known: CNF can be harmful for solving QBF
[Ansótegui et al., 2005, Zhang, 2006,
Janota and Marques-Silva, 2017]
Intuition:
We reason about formula and its negation.
But, after Tseitin transformation,
we do not have the negation!

Janota CQESTO 3 / 13



QBF as Two-player Games

A QBF is a game between ∀ and ∃

∀ wins if the matrix becomes false
∃ wins if the matrix becomes true
QBF is false iff
there exists a winning strategy for ∀
QBF is true iff
there exists a winning strategy for ∃
Example

∀u∃e. (u↔ e)

∃-player wins by playing e , u

Janota CQESTO 4 / 13



QBF as Two-player Games

A QBF is a game between ∀ and ∃
∀ wins if the matrix becomes false

∃ wins if the matrix becomes true
QBF is false iff
there exists a winning strategy for ∀
QBF is true iff
there exists a winning strategy for ∃
Example

∀u∃e. (u↔ e)

∃-player wins by playing e , u

Janota CQESTO 4 / 13



QBF as Two-player Games

A QBF is a game between ∀ and ∃
∀ wins if the matrix becomes false
∃ wins if the matrix becomes true

QBF is false iff
there exists a winning strategy for ∀
QBF is true iff
there exists a winning strategy for ∃
Example

∀u∃e. (u↔ e)

∃-player wins by playing e , u

Janota CQESTO 4 / 13



QBF as Two-player Games

A QBF is a game between ∀ and ∃
∀ wins if the matrix becomes false
∃ wins if the matrix becomes true
QBF is false iff
there exists a winning strategy for ∀

QBF is true iff
there exists a winning strategy for ∃
Example

∀u∃e. (u↔ e)

∃-player wins by playing e , u

Janota CQESTO 4 / 13



QBF as Two-player Games

A QBF is a game between ∀ and ∃
∀ wins if the matrix becomes false
∃ wins if the matrix becomes true
QBF is false iff
there exists a winning strategy for ∀
QBF is true iff
there exists a winning strategy for ∃

Example
∀u∃e. (u↔ e)

∃-player wins by playing e , u

Janota CQESTO 4 / 13



QBF as Two-player Games

A QBF is a game between ∀ and ∃
∀ wins if the matrix becomes false
∃ wins if the matrix becomes true
QBF is false iff
there exists a winning strategy for ∀
QBF is true iff
there exists a winning strategy for ∃
Example

∀u∃e. (u↔ e)

∃-player wins by playing e , u
Janota CQESTO 4 / 13



CQESTO: Architecture

∃X1 ∀X2 ∀Xn−1 ∃Xn
α1 α2 αn−1 αn

Propositional αi for each level
αi restricts moves at position i
Initially αn−1 = ¬matrix

αn = matrix
αi = true

Janota CQESTO 5 / 13



CQESTO: Algorithm

∃X1 ∀X2 ∀Xn−1 ∃Xn∃Xi
α1 α2 αn−1 αnαi

Assign values to Xi by calling SAT on αi
If αi unsatisfiable, fix earlier mistake
(strengthen previous αi′)
If α1 or α2 unsatisfiable, the formula is proven
(STOP)

Janota CQESTO 6 / 13



CQESTO: Algorithm

∃X1 ∀X2 ∀Xn−1 ∃Xn∃Xi
α1 α2 αn−1 αnαi

σ1

Assign values to Xi by calling SAT on αi
If αi unsatisfiable, fix earlier mistake
(strengthen previous αi′)
If α1 or α2 unsatisfiable, the formula is proven
(STOP)

Janota CQESTO 6 / 13



CQESTO: Algorithm

∃X1 ∀X2 ∀Xn−1 ∃Xn∃Xi
α1 α2 αn−1 αnαi

σ1 σ2

Assign values to Xi by calling SAT on αi
If αi unsatisfiable, fix earlier mistake
(strengthen previous αi′)
If α1 or α2 unsatisfiable, the formula is proven
(STOP)

Janota CQESTO 6 / 13



CQESTO: Algorithm

∃X1 ∀X2 ∀Xn−1 ∃Xn∃Xi
α1 α2 αn−1 αnαi

σ1 σ2

∃Xi

Assign values to Xi by calling SAT on αi
If αi unsatisfiable, fix earlier mistake
(strengthen previous αi′)
If α1 or α2 unsatisfiable, the formula is proven
(STOP)

Janota CQESTO 6 / 13



CQESTO: Algorithm

∃X1 ∀X2 ∀Xn−1 ∃Xn∃Xi
α1 α2 αn−1 αnαi

σ1 σ2

∃Xi

strengthen

Assign values to Xi by calling SAT on αi
If αi unsatisfiable, fix earlier mistake
(strengthen previous αi′)
If α1 or α2 unsatisfiable, the formula is proven
(STOP)

Janota CQESTO 6 / 13



Loss Resolution (Conflicts)

∃Xk−2 ∀Xk−1 ∃Xk
αk−2 αk−1 αk

σk−2 σk−1

strengthen

1 Identify reason R for failure in αk.
2 Eliminate variables Xk from R
3 Eliminate variables Xk−1 from R
4 Strengthen αk−2

Janota CQESTO 7 / 13



Reason (example)
(x ∨ y)→ (z ∧ ¬z) = ¬((x ∨ y) ∧ (z ∨ ¬z))

x

y
z

z

1 For x = 1, y = 0 propagate: x ∨ y = 1

2 Give the gate a name α and use UNSAT cores
to get the reason

3 Reason is α = x ∨ y

Janota CQESTO 8 / 13



Reason (example)
(x ∨ y)→ (z ∧ ¬z) = ¬((x ∨ y) ∧ (z ∨ ¬z))

x

y
z

z

1 For x = 1, y = 0 propagate: x ∨ y = 1

2 Give the gate a name α and use UNSAT cores
to get the reason

3 Reason is α = x ∨ y

Janota CQESTO 8 / 13



Reason (example)
(x ∨ y)→ (z ∧ ¬z) = ¬((x ∨ y) ∧ (z ∨ ¬z))

x

y
z

z

1 For x = 1, y = 0 propagate: x ∨ y = 1

2 Give the gate a name α and use UNSAT cores
to get the reason

3 Reason is α = x ∨ y
Janota CQESTO 8 / 13



Eliminate Xk−1: plug in σk−1

1 ∃x1x2∀y∃z. (x1 ∧ z) ∧ (x2 ∨ y)

2 σ1 = {x1,¬x2}, σ2 = {¬y}.
3 propagation x1 and ¬(x2 ∨ y).
4 core ¬(x2 ∨ y).
5 negating & substitute σ2:
ξf = (x2 ∨ y)|{¬y} = x2

6 strengthening α1 ← α1 ∧ x2.

Janota CQESTO 9 / 13



Eliminate Xk−1: plug in σk−1

1 ∃x1x2∀y∃z. (x1 ∧ z) ∧ (x2 ∨ y)
2 σ1 = {x1,¬x2}, σ2 = {¬y}.

3 propagation x1 and ¬(x2 ∨ y).
4 core ¬(x2 ∨ y).
5 negating & substitute σ2:
ξf = (x2 ∨ y)|{¬y} = x2

6 strengthening α1 ← α1 ∧ x2.

Janota CQESTO 9 / 13



Eliminate Xk−1: plug in σk−1

1 ∃x1x2∀y∃z. (x1 ∧ z) ∧ (x2 ∨ y)
2 σ1 = {x1,¬x2}, σ2 = {¬y}.
3 propagation x1 and ¬(x2 ∨ y).

4 core ¬(x2 ∨ y).
5 negating & substitute σ2:
ξf = (x2 ∨ y)|{¬y} = x2

6 strengthening α1 ← α1 ∧ x2.

Janota CQESTO 9 / 13



Eliminate Xk−1: plug in σk−1

1 ∃x1x2∀y∃z. (x1 ∧ z) ∧ (x2 ∨ y)
2 σ1 = {x1,¬x2}, σ2 = {¬y}.
3 propagation x1 and ¬(x2 ∨ y).
4 core ¬(x2 ∨ y).

5 negating & substitute σ2:
ξf = (x2 ∨ y)|{¬y} = x2

6 strengthening α1 ← α1 ∧ x2.

Janota CQESTO 9 / 13



Eliminate Xk−1: plug in σk−1

1 ∃x1x2∀y∃z. (x1 ∧ z) ∧ (x2 ∨ y)
2 σ1 = {x1,¬x2}, σ2 = {¬y}.
3 propagation x1 and ¬(x2 ∨ y).
4 core ¬(x2 ∨ y).
5 negating & substitute σ2:
ξf = (x2 ∨ y)|{¬y} = x2

6 strengthening α1 ← α1 ∧ x2.

Janota CQESTO 9 / 13



Eliminate Xk−1: plug in σk−1

1 ∃x1x2∀y∃z. (x1 ∧ z) ∧ (x2 ∨ y)
2 σ1 = {x1,¬x2}, σ2 = {¬y}.
3 propagation x1 and ¬(x2 ∨ y).
4 core ¬(x2 ∨ y).
5 negating & substitute σ2:
ξf = (x2 ∨ y)|{¬y} = x2

6 strengthening α1 ← α1 ∧ x2.

Janota CQESTO 9 / 13



Eliminate Xk

Idea:
1 a formula (x ∧ ϕ) ∨ (¬x ∧ ψ)

2 can be weakened by replacing x with 1

3 can be weakened by replacing ¬x by 0

4 . . . ϕ ∨ ψ
In general:

1 Replace positive occurrences by 1

2 Replace negative occurrences by 0

Janota CQESTO 10 / 13



Eliminate Xk

Idea:
1 a formula (x ∧ ϕ) ∨ (¬x ∧ ψ)
2 can be weakened by replacing x with 1

3 can be weakened by replacing ¬x by 0

4 . . . ϕ ∨ ψ
In general:

1 Replace positive occurrences by 1

2 Replace negative occurrences by 0

Janota CQESTO 10 / 13



Eliminate Xk

Idea:
1 a formula (x ∧ ϕ) ∨ (¬x ∧ ψ)
2 can be weakened by replacing x with 1

3 can be weakened by replacing ¬x by 0

4 . . . ϕ ∨ ψ
In general:

1 Replace positive occurrences by 1

2 Replace negative occurrences by 0

Janota CQESTO 10 / 13



Eliminate Xk

Idea:
1 a formula (x ∧ ϕ) ∨ (¬x ∧ ψ)
2 can be weakened by replacing x with 1

3 can be weakened by replacing ¬x by 0

4 . . . ϕ ∨ ψ

In general:

1 Replace positive occurrences by 1

2 Replace negative occurrences by 0

Janota CQESTO 10 / 13



Eliminate Xk

Idea:
1 a formula (x ∧ ϕ) ∨ (¬x ∧ ψ)
2 can be weakened by replacing x with 1

3 can be weakened by replacing ¬x by 0

4 . . . ϕ ∨ ψ

In general:

1 Replace positive occurrences by 1

2 Replace negative occurrences by 0

Janota CQESTO 10 / 13



Eliminate Xk

Idea:
1 a formula (x ∧ ϕ) ∨ (¬x ∧ ψ)
2 can be weakened by replacing x with 1

3 can be weakened by replacing ¬x by 0

4 . . . ϕ ∨ ψ
In general:

1 Replace positive occurrences by 1

2 Replace negative occurrences by 0

Janota CQESTO 10 / 13



Eliminate Xk

Idea:
1 a formula (x ∧ ϕ) ∨ (¬x ∧ ψ)
2 can be weakened by replacing x with 1

3 can be weakened by replacing ¬x by 0

4 . . . ϕ ∨ ψ
In general:

1 Replace positive occurrences by 1

2 Replace negative occurrences by 0

Janota CQESTO 10 / 13



Loss Resolution (Conflicts): Recap

∃Xk−2 ∀Xk−1 ∃Xk
αk−2 αk−1 αk

σk−2 σk−1

strengthen

1 Reason: propagation & SAT cores
2 Eliminate Xk−1: substitution of σk−1
3 Eliminate Xk: syntactic-based weakening
4 Strengthen αk−2 (or some i ≤ k− 2)

Janota CQESTO 11 / 13



Experimental Evaluation

0

100

200

300

400

500

600

0 20 40 60 80 100 120

CP
U

tim
e

(s
)

number of instances

QFUN
CQESTO
QuAbS

GQ
Qute

Janota CQESTO 12 / 13



Summary and Future Work

CQESTO works directly on circuit
representation

Flat architecture (as opposed to RAReQS)
Conflict resolution by operations on circuit
Exact relation to other solvers?
QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]
Identified: reason, eliminate opponent
variables, eliminate player’s variables
How are the identified processes realized in
other solvers?
Different ways of realizing processes?

Janota CQESTO 13 / 13



Summary and Future Work

CQESTO works directly on circuit
representation
Flat architecture (as opposed to RAReQS)

Conflict resolution by operations on circuit
Exact relation to other solvers?
QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]
Identified: reason, eliminate opponent
variables, eliminate player’s variables
How are the identified processes realized in
other solvers?
Different ways of realizing processes?

Janota CQESTO 13 / 13



Summary and Future Work

CQESTO works directly on circuit
representation
Flat architecture (as opposed to RAReQS)
Conflict resolution by operations on circuit

Exact relation to other solvers?
QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]
Identified: reason, eliminate opponent
variables, eliminate player’s variables
How are the identified processes realized in
other solvers?
Different ways of realizing processes?

Janota CQESTO 13 / 13



Summary and Future Work

CQESTO works directly on circuit
representation
Flat architecture (as opposed to RAReQS)
Conflict resolution by operations on circuit
Exact relation to other solvers?
QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]

Identified: reason, eliminate opponent
variables, eliminate player’s variables
How are the identified processes realized in
other solvers?
Different ways of realizing processes?

Janota CQESTO 13 / 13



Summary and Future Work

CQESTO works directly on circuit
representation
Flat architecture (as opposed to RAReQS)
Conflict resolution by operations on circuit
Exact relation to other solvers?
QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]
Identified: reason, eliminate opponent
variables, eliminate player’s variables

How are the identified processes realized in
other solvers?
Different ways of realizing processes?

Janota CQESTO 13 / 13



Summary and Future Work

CQESTO works directly on circuit
representation
Flat architecture (as opposed to RAReQS)
Conflict resolution by operations on circuit
Exact relation to other solvers?
QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]
Identified: reason, eliminate opponent
variables, eliminate player’s variables
How are the identified processes realized in
other solvers?

Different ways of realizing processes?

Janota CQESTO 13 / 13



Summary and Future Work

CQESTO works directly on circuit
representation
Flat architecture (as opposed to RAReQS)
Conflict resolution by operations on circuit
Exact relation to other solvers?
QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]
Identified: reason, eliminate opponent
variables, eliminate player’s variables
How are the identified processes realized in
other solvers?
Different ways of realizing processes?

Janota CQESTO 13 / 13



Ansótegui, C., Gomes, C. P., and Selman, B.
(2005).
The Achilles’ heel of QBF.
In National Conference on Artificial Intelligence
and the Seventeenth Innovative Applications of
Artificial Intelligence Conference (AAAI), pages
275–281.

Bjørner, N. and Janota, M. (2015).
Playing with quantified satisfaction.
In International Conferences on Logic for
Programming LPAR-20, Short Presentations,
volume 35, pages 15–27. EasyChair.

Janota, M. and Marques-Silva, J. (2015).
Solving QBF by clause selection.

Janota CQESTO 13 / 13



In International Joint Conference on Artificial
Intelligence (IJCAI).

Janota, M. and Marques-Silva, J. (2017).
An Achilles’ heel of term-resolution.
In Conference on Artificial Intelligence (EPIA),
pages 670–680.

Rabe, M. N. and Tentrup, L. (2015).
CAQE: A certifying QBF solver.
In Formal Methods in Computer-Aided Design,
FMCAD, pages 136–143.

Tentrup, L. (2016).
Non-prenex QBF solving using abstraction.

Janota CQESTO 13 / 13



In Theory and Applications of Satisfiability Testing
(SAT), pages 393–401.

Tu, K., Hsu, T., and Jiang, J. R. (2015).
QELL: QBF reasoning with extended clause
learning and levelized SAT solving.
In Theory and Applications of Satisfiability Testing
- (SAT), pages 343–359.

Zhang, L. (2006).
Solving QBF by combining conjunctive and
disjunctive normal forms.
In National Conference on Artificial Intelligence
and the Eighteenth Innovative Applications of
Artificial Intelligence Conference (AAAI).

Janota CQESTO 13 / 13


