Circuit-based Search Space Pruning in QBF

Mikoláš Janota

IST/INESC-ID, University of Lisbon, Portugal

Oxford, 10 July 2018, SAT

CQESTO

- Solver for quantified Boolean formulas
- In prenex, non-CNF form
- Operates directly on a circuit representation
- Uses SAT in a black-box fashion

CQESTO

- Solver for quantified Boolean formulas
- In prenex, non-CNF form
- Operates directly on a circuit representation
- Uses SAT in a black-box fashion

Remarks:

- Generalization of the CNF-based QESTO [Janota and Marques-Silva, 2015]
 CAQE [Rabe and Tentrup, 2015]
- Similar ideas implemented in Z3 for SMT [Bjørner and Janota, 2015] and QBF QuAbS [Tentrup, 2016]

- Known: CNF can be harmful for solving QBF [Ansótegui et al., 2005, Zhang, 2006, Janota and Marques-Silva, 2017]
- Intuition:

We reason about formula and its negation. But, after Tseitin transformation, we do not have the negation!

• A QBF is a game between \forall and \exists

- A QBF is a game between \forall and \exists
- \blacksquare \forall wins if the matrix becomes false

- A QBF is a game between \forall and \exists
- \forall wins if the matrix becomes false
- \blacksquare \exists wins if the matrix becomes true

- A QBF is a game between \forall and \exists
- \forall wins if the matrix becomes false
- \blacksquare \exists wins if the matrix becomes true
- QBF is false iff there exists a winning strategy for ∀

- A QBF is a game between \forall and \exists
- \forall wins if the matrix becomes false
- \blacksquare \exists wins if the matrix becomes true
- QBF is false iff there exists a winning strategy for ∀
- QBF is true iff there exists a winning strategy for ∃

- A QBF is a game between \forall and \exists
- \forall wins if the matrix becomes false
- \blacksquare \exists wins if the matrix becomes true
- QBF is false iff there exists a winning strategy for ∀
- QBF is true iff there exists a winning strategy for ∃ Example

 $\forall u \exists e. (u \leftrightarrow e)$

 \exists -player wins by playing $e \triangleq u$

CQESTO: Architecture

 Propositional α_i for each level
 α_i restricts moves at position i
 Initially α_{n-1} = ¬matrix α_n = matrix α_i = true

- Assign values to X_i by calling SAT on α_i
- If α_i unsatisfiable, fix earlier mistake (strengthen previous α_i)
- If α_1 or α_2 unsatisfiable, the formula is proven (STOP)

- Assign values to X_i by calling SAT on α_i
- If α_i unsatisfiable, fix earlier mistake (strengthen previous α_i)
- If α_1 or α_2 unsatisfiable, the formula is proven (STOP)

- Assign values to X_i by calling SAT on α_i
- If α_i unsatisfiable, fix earlier mistake (strengthen previous α_i)
- If α_1 or α_2 unsatisfiable, the formula is proven (STOP)

- Assign values to X_i by calling SAT on α_i
- If α_i unsatisfiable, fix earlier mistake (strengthen previous α_i)
- If α_1 or α_2 unsatisfiable, the formula is proven (STOP)

- Assign values to X_i by calling SAT on α_i
- If α_i unsatisfiable, fix earlier mistake (strengthen previous α_i)
- If α_1 or α_2 unsatisfiable, the formula is proven (STOP)

Loss Resolution (Conflicts)

- **1** Identify reason *R* for failure in α_k .
- **2** Eliminate variables X_k from R
- **B** Eliminate variables X_{k-1} from R
- 4 Strengthen α_{k-2}

Janota

Reason (example)

 $(x \lor y) \to (z \land \neg z) = \neg((x \lor y) \land (z \lor \neg z))$

Reason (example)

 $(x \lor y) \to (z \land \neg z) = \neg((x \lor y) \land (z \lor \neg z))$

Reason (example)

 $(x \lor y) \to (z \land \neg z) = \neg((x \lor y) \land (z \lor \neg z))$

- **1** For x = 1, y = 0 propagate: $x \lor y = 1$
- 2 Give the gate a name α and use UNSAT cores to get the reason
- **B** Reason is $\alpha = x \lor y$

Janota

$\blacksquare \exists x_1 x_2 \forall y \exists z. \ (x_1 \land z) \land (x_2 \lor y)$

1 $\exists x_1 x_2 \forall y \exists z. (x_1 \land z) \land (x_2 \lor y)$ **2** $\sigma_1 = \{x_1, \neg x_2\}, \sigma_2 = \{\neg y\}.$

1 $\exists x_1 x_2 \forall y \exists z. (x_1 \land z) \land (x_2 \lor y)$ 2 $\sigma_1 = \{x_1, \neg x_2\}, \sigma_2 = \{\neg y\}.$ 3 propagation x_1 and $\neg (x_2 \lor y).$

1 $\exists x_1 x_2 \forall y \exists z. (x_1 \land z) \land (x_2 \lor y)$ 2 $\sigma_1 = \{x_1, \neg x_2\}, \sigma_2 = \{\neg y\}.$ 3 propagation x_1 and $\neg (x_2 \lor y).$ 4 core $\neg (x_2 \lor y).$

- $\exists x_1 x_2 \forall y \exists z. \ (x_1 \land z) \land (x_2 \lor y)$
- **2** $\sigma_1 = \{x_1, \neg x_2\}, \sigma_2 = \{\neg y\}.$
- **B** propagation x_1 and $\neg(x_2 \lor y)$.
- 4 core $\neg(x_2 \lor y)$.
- **5** negating & substitute σ_2 : $\xi_f = (x_2 \lor y)|_{\{\neg y\}} = x_2$

- $\exists x_1 x_2 \forall y \exists z. \ (x_1 \land z) \land (x_2 \lor y)$
- 2 $\sigma_1 = \{x_1, \neg x_2\}, \sigma_2 = \{\neg y\}.$
- **B** propagation x_1 and $\neg(x_2 \lor y)$.
- 4 core $\neg(x_2 \lor y)$.
- **5** negating & substitute σ_2 : $\xi_f = (x_2 \lor y)|_{\{\neg y\}} = x_2$
- strengthening $\alpha_1 \leftarrow \alpha_1 \land x_2$.

Idea:

1 a formula $(x \land \phi) \lor (\neg x \land \psi)$

- **1** a formula $(x \land \phi) \lor (\neg x \land \psi)$
- **2** can be weakened by replacing x with 1

- **a** formula $(x \land \phi) \lor (\neg x \land \psi)$
- **2** can be weakened by replacing x with 1
- **B** can be weakened by replacing $\neg x$ by 0

- **a** formula $(x \land \phi) \lor (\neg x \land \psi)$
- **2** can be weakened by replacing x with 1
- 3 can be weakened by replacing ¬x by 0
 4 ... φ ∨ ψ

- **a** formula $(x \land \phi) \lor (\neg x \land \psi)$
- **2** can be weakened by replacing x with 1
- 3 can be weakened by replacing ¬x by 0
 4 ... φ ∨ ψ

ldea:

- **a** formula $(x \land \phi) \lor (\neg x \land \psi)$
- **2** can be weakened by replacing x with 1
- 3 can be weakened by replacing ¬x by 0
 4 ... φ ∨ ψ

In general:

 $\blacksquare Replace positive occurrences by 1$

ldea:

- **a** formula $(x \land \phi) \lor (\neg x \land \psi)$
- **2** can be weakened by replacing x with 1
- 3 can be weakened by replacing ¬x by 0
 4 ... φ ∨ ψ

In general:

- $\blacksquare \ {\sf Replace positive occurrences by } 1$
- Replace negative occurrences by 0

Loss Resolution (Conflicts): Recap

- **Reason:** propagation & SAT cores
- **2** Eliminate X_{k-1} : substitution of σ_{k-1}
- Eliminate X_k: syntactic-based weakening
- **4** Strengthen α_{k-2} (or some $i \leq k-2$)

Janota

Experimental Evaluation

CQESTO works directly on circuit representation

- CQESTO works directly on circuit representation
- Flat architecture (as opposed to RAReQS)

- CQESTO works directly on circuit representation
- Flat architecture (as opposed to RAReQS)
- Conflict resolution by operations on circuit

- CQESTO works directly on circuit representation
- Flat architecture (as opposed to RAReQS)
- Conflict resolution by operations on circuit
- Exact relation to other solvers?
 QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]

- CQESTO works directly on circuit representation
- Flat architecture (as opposed to RAReQS)
- Conflict resolution by operations on circuit
- Exact relation to other solvers?
 QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]
- Identified: reason, eliminate opponent variables, eliminate player's variables

- CQESTO works directly on circuit representation
- Flat architecture (as opposed to RAReQS)
- Conflict resolution by operations on circuit
- Exact relation to other solvers?
 QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]
- Identified: reason, eliminate opponent variables, eliminate player's variables
- How are the identified processes realized in other solvers?

- CQESTO works directly on circuit representation
- Flat architecture (as opposed to RAReQS)
- Conflict resolution by operations on circuit
- Exact relation to other solvers?
 QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]
- Identified: reason, eliminate opponent variables, eliminate player's variables
- How are the identified processes realized in other solvers?
- Different ways of realizing processes?

Janota

Ansótegui, C., Gomes, C. P., and Selman, B. (2005).

The Achilles' heel of QBF.

In National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference (AAAI), pages 275–281.

- Bjørner, N. and Janota, M. (2015).
 Playing with quantified satisfaction.
 In International Conferences on Logic for Programming LPAR-20, Short Presentations, volume 35, pages 15–27. EasyChair.
- Janota, M. and Marques-Silva, J. (2015). Solving QBF by clause selection.

Janota

In International Joint Conference on Artificial Intelligence (IJCAI).

- Janota, M. and Marques-Silva, J. (2017). An Achilles' heel of term-resolution. In Conference on Artificial Intelligence (EPIA), pages 670–680.
- Rabe, M. N. and Tentrup, L. (2015).
 CAQE: A certifying QBF solver.
 In Formal Methods in Computer-Aided Design, FMCAD, pages 136–143.
- Tentrup, L. (2016). Non-prenex QBF solving using abstraction.

In Theory and Applications of Satisfiability Testing (SAT), pages 393–401.

- Tu, K., Hsu, T., and Jiang, J. R. (2015). QELL: QBF reasoning with extended clause learning and levelized SAT solving. In *Theory and Applications of Satisfiability Testing* - (SAT), pages 343–359.
- Zhang, L. (2006).

Solving QBF by combining conjunctive and disjunctive normal forms.

In National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference (AAAI).