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CQESTO

Solver for quantified Boolean formulas
In prenex, non-CNF form
Operates directly on a circuit representation
Uses SAT in a black-box fashion

Remarks:
Generalization of the CNF-based
QESTO [Janota and Marques-Silva, 2015]
CAQE [Rabe and Tentrup, 2015]
Similar ideas implemented in Z3 for
SMT [Bjørner and Janota, 2015]
and QBF QuAbS [Tentrup, 2016]
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Why Circuits?

Known: CNF can be harmful for solving QBF
[Ansótegui et al., 2005, Zhang, 2006,
Janota and Marques-Silva, 2017]
Intuition:
We reason about formula and its negation.
But, after Tseitin transformation,
we do not have the negation!
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QBF as Two-player Games

A QBF is a game between ∀ and ∃

∀ wins if the matrix becomes false
∃ wins if the matrix becomes true
QBF is false iff
there exists a winning strategy for ∀
QBF is true iff
there exists a winning strategy for ∃
Example

∀u∃e. (u↔ e)

∃-player wins by playing e , u
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CQESTO: Architecture

∃X1 ∀X2 ∀Xn−1 ∃Xn
α1 α2 αn−1 αn

Propositional αi for each level
αi restricts moves at position i
Initially αn−1 = ¬matrix

αn = matrix
αi = true
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CQESTO: Algorithm

∃X1 ∀X2 ∀Xn−1 ∃Xn∃Xi
α1 α2 αn−1 αnαi

Assign values to Xi by calling SAT on αi
If αi unsatisfiable, fix earlier mistake
(strengthen previous αi′)
If α1 or α2 unsatisfiable, the formula is proven
(STOP)
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Loss Resolution (Conflicts)

∃Xk−2 ∀Xk−1 ∃Xk
αk−2 αk−1 αk

σk−2 σk−1

strengthen

1 Identify reason R for failure in αk.
2 Eliminate variables Xk from R
3 Eliminate variables Xk−1 from R
4 Strengthen αk−2
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Reason (example)
(x ∨ y)→ (z ∧ ¬z) = ¬((x ∨ y) ∧ (z ∨ ¬z))

x

y
z

z

1 For x = 1, y = 0 propagate: x ∨ y = 1

2 Give the gate a name α and use UNSAT cores
to get the reason

3 Reason is α = x ∨ y
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Eliminate Xk−1: plug in σk−1

1 ∃x1x2∀y∃z. (x1 ∧ z) ∧ (x2 ∨ y)

2 σ1 = {x1,¬x2}, σ2 = {¬y}.
3 propagation x1 and ¬(x2 ∨ y).
4 core ¬(x2 ∨ y).
5 negating & substitute σ2:
ξf = (x2 ∨ y)|{¬y} = x2

6 strengthening α1 ← α1 ∧ x2.
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Eliminate Xk

Idea:
1 a formula (x ∧ ϕ) ∨ (¬x ∧ ψ)

2 can be weakened by replacing x with 1

3 can be weakened by replacing ¬x by 0

4 . . . ϕ ∨ ψ
In general:

1 Replace positive occurrences by 1

2 Replace negative occurrences by 0
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Loss Resolution (Conflicts): Recap

∃Xk−2 ∀Xk−1 ∃Xk
αk−2 αk−1 αk

σk−2 σk−1

strengthen

1 Reason: propagation & SAT cores
2 Eliminate Xk−1: substitution of σk−1
3 Eliminate Xk: syntactic-based weakening
4 Strengthen αk−2 (or some i ≤ k− 2)
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Experimental Evaluation

0

100

200

300

400

500

600

0 20 40 60 80 100 120

CP
U

tim
e

(s
)

number of instances

QFUN
CQESTO
QuAbS

GQ
Qute

Janota CQESTO 12 / 13



Summary and Future Work

CQESTO works directly on circuit
representation

Flat architecture (as opposed to RAReQS)
Conflict resolution by operations on circuit
Exact relation to other solvers?
QELL [Tu et al., 2015] QuAbS [Tentrup, 2016]
Identified: reason, eliminate opponent
variables, eliminate player’s variables
How are the identified processes realized in
other solvers?
Different ways of realizing processes?
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