
Circuit-based Search Space Pruning in QBF

Mikoláš Janota

IST/INESC-ID,
University of Lisbon, Portugal
mikolas.janota@gmail.com

Abstract. This paper describes the algorithm implemented in the QBF
solver CQESTO, which has placed second in the non-CNF track of the
last year’s QBF competition. The algorithm is inspired by the CNF-
based solver QESTO. Just as QESTO, CQESTO invokes a SAT solver
in a black-box fashion. However, it directly operates on the circuit rep-
resentation of the formula. The paper analyzes the individual operations
that the solver performs.

1 Introduction

Since the indisputable success of SAT and SMT, research has been trying to
push the frontiers of automated logic-based solving. Reasoning with quantifiers
represents a nontrivial challenge. Indeed, even in the Boolean case adding quan-
tifiers bumps the complexity class from NP-complete to PSPACE-complete. Yet,
quantifiers enable modeling a number of interesting problems [3].

This paper aims at the advancement of solving with quantifiers in the Boolean
domain (QBF). Using CNF as input causes intrinsic issues in QBF solving [1,15,
28]. Consequently, there have been efforts towards solvers operating directly on
a non-clausal representation [2,8,12,18,25,28]. This line of research is supported
by the circuit-like QBF format QCIR [16].

This paper presents the solver CQESTO, which reads in a circuit-like repre-
sentation of the problem and keeps on solving directly on this representation. For
each quantification level, the solver creates a propositional formula that deter-
mines the possible assignments to the variables of that particular level. If one of
these formulas becomes unsatisfiable, a formula in one of the preceding levels is
to be strengthened. The main focus of this paper is the analysis of the operations
that take place during this strengthening.

CQESTO extends the family of solvers that repeatedly call a SAT solver
(exponentially many times in the worst case). The solver RAReQS [10, 12, 13]
delegates to the SAT solver partial expansions of the QBF. QESTO [14] and
CAQE [23] are CNF siblings of CQESTO. QuAbS [25] is similar to CQESTO
but it operates on a literal abstraction, while CQESTO operates directly on the
circuit. The workings of CQESTO is also similar to algorithms developed for
theories in SMT [4,7, 24].

The principle contributions of the paper are: 1) Description of the algorithm
of the solver CQESTO. 2) Analysis of the operations used in the circuit. 3) Link-
ing these operations to related solvers.

The rest of the paper is organized as follows. Section 2 introduces concepts
and notation used throughout the paper; Section 3 describes the CQESTO al-
gorithm; Section 4 reports on experimental evaluation. Finally, Section 5 sum-
marizes the paper and outlines directions for future work.

2 Preliminaries

Standard concepts from propositional logic are assumed. Propositional formulas
are built from variables, negation (¬), and conjunction (∧). For convenience
we also consider the constants 0, 1 representing false and true, respectively. The
results immediately extend to other connectives, e.g., (φ⇒ ψ) = ¬(φ∧¬ψ), (φ∨
ψ) = ¬(¬φ∧¬ψ). A literal is either a variable or its negation. An assignment is a
mapping from variables to {0, 1}. Assignments are represented as sets of literals,
i.e., {x,¬y} corresponds to {x 7→ 1, y 7→ 0}. For a formula φ and an assignment σ,
the expression φ|σ denotes substitution, i.e., the simultaneous replacement of
variables with their corresponding value. With some abuse of notation, we treat
a set of formulas I and

∧
φ∈I φ interchangeably. The paper makes use of the

well-established notion of subformula polarity. Intuitively, the polarity of a sub-
formula is determined by whether the number of negations above it is odd or
even. Formally, we defined priority as follows.

Definition 1 (polarity [19]). The following rules annotate each occurrence of
a subformula of a formula α with its polarity ∈ {+,−}.

α+ top rule, α is positive
(¬φ)π ¬φ−π negation flips polarity
(φ ∧ ψ)π (φπ ∧ ψπ) conjunction maintains polarity

Quantified Boolean Formulas (QBF). QBFs [17] extend propositional logic by
quantifiers over Boolean variables. Any propositional formula φ is also a QBF
with all variables free. If Φ is a QBF with a free variable x, the formulas ∃x. Φ
and ∀x. Φ are QBFs with x bound, i.e. not free. Note that we disallow expressions
such as ∃x.∃x. x. Whenever possible, we write ∃x1 . . . xk instead of ∃x1 . . . ∃xk;
analogously for ∀. For a QBF Φ = ∀x. Ψ we say that x is universal in Φ and
is existential in ∃x. Ψ . Analogously, a literal l is universal (resp. existential)
if var(l) is universal (resp. existential). Semantically a QBF corresponds to a
compact representation of a propositional formula. In particular, the formula
∀x. Ψ is satisfied by the same truth assignments as Ψ |{¬x} ∧ Ψ |{x} and ∃x. Ψ by
Ψ |{¬x} ∨ Ψ |{x}. Since ∀x∀y. Φ and ∀y∀x. Φ are semantically equivalent, we allow
writing ∀X for a set of variables X; analogously for ∃. A QBF with no free
variables is false (resp. true), iff it is semantically equivalent to the constant 0
(resp. 1).

A QBF is closed if it does not contain any free variables. A QBF is in prenex
form if it is of the form Q1X1 . . . QkXk. φ, where Qi ∈ {∃,∀}, Qi 6= Qi+1, and
φ is propositional. The propositional part φ is called the matrix and the rest
the prefix. For a variable x ∈ Xi we say that x is at level i. Unless specified
otherwise, QBFs are assumed to be closed and in prenex form.

Algorithm 1: QBF solving with circuit-based pruning

input : Q1X1 QnXnQn+1Xn+1. φ, where Xn+1 empty, Qi 6= Qi+1

output : truth value

1 αi ← 1, for i ∈ 1..n− 1 // minimalistic initialization

2 αn ← (Qn = ∃) ?φ : ¬φ
3 αn+1 ← (Qn = ∃) ?¬φ : φ
4 i← 1
5 while true do // invariant 1 ≤ i ≤ n+ 1
6 I ← proj(αi,

⋃
j∈1..i−1 σj)

7 (σi, C)← SAT(I, αi)
8 if σi = ⊥ then
9 if i ≤ 2 then return Qi = ∀ // nowhere to backtrack

10 ξf ← forget(Xi,¬C) // eliminate Xi
11 ξs ← ξf |σi−1 // eliminate Xi−1 by substitution

12 αi−2 ← αi−2 ∧ ξs // strengthen

13 i← i− 2 // backtrack

14 else
15 i← i+ 1 // move on

QBF as Games. A closed and prenex QBF Q1X1 . . . QkXk. φ, represents a two-
player game, c.f. [9,18]. The existential player tries to make the matrix true and
conversely the universal player tries to make it false. Each player assigns a value
only to a variable that belongs to the player and can only assign a variable once
all preceding variables have already been assigned. Hence the two players assign
values to variables following the order of the prefix alternating on a quantifier.
A play is a sequence of assignments σ1, . . . , σn where σi is an assignment to Xi.
Within a play, the ith assignment is referred to as the ith move. The ith move
belongs to player Qi. A QBF Φ is true iff there exists a winning strategy for ∃;
it is false iff there exists a winning strategy for ∀. The game semantics enables
treating ∃ and ∀ symmetrically, i.e. we are concerned with deciding which player
has a winning strategy.

3 CQESTO Algorithm

The algorithm decides a closed, prenex QBF of n quantification levels. For the
sake of uniformity we add a quantification level n+1 with no variables belonging
to the player Qn−1. So the formula being solved is Q1X1 . . . QnXnQn+1Xn+1. φ,
where Xn+1 is empty and Qn 6= Qn+1. Like so it is guaranteed that eventually
either of the player must lose as the play progresses, i.e. there’s no need for
handling especially a play where all blocks up till Qn have value—if this happens,
Qn+1 loses.

The algorithm’s pseudocode is presented as Algorithm 1 and its overall in-
tuition is as follows. For each quantification level i there is a propositional for-

mula αi, which constrains the moves of player Qi. The algorithm builds as-
signments σ1, . . . , σk so that each σi represents the ith move of player Qi. A
SAT solver is used to calculate a new σi from αi. Backtracking occurs when αi
becomes unsatisfiable under the current assignments σ1, . . . , σi−1. Upon back-
tracking, player Qi needs to change some moves that he had made earlier. Hence,
the algorithm strengthens αi−2 and continues from there.1 Note that if i = 1, the
union

⋃
j∈1..i−1 σj is empty and the SAT call is on α1 with empty assumptions.

The algorithm observes the following invariants regarding the constraints αi.

Invariant 1 (syntactic) Each αi only contains variables X1 ∪ · · · ∪Xi.

Invariant 2 (semantic) If player Qi violates αi, the player is bound to lose.
More formally, if for a partial play σ = σ1, . . . , σi it holds that σ � ¬αi then
there is a winning strategy for the opponent from that position.

The invariants are established upon initialization by setting all αi to true
except for αn and αn+1. The constraint αn is set to the matrix or its negation
depending on whether Qi is existential or universal. The constraint αn+1 is set
analogously. Note that since αn+1 = ¬αn, once αn is satisfied by σ1∪· · ·∪σn, the
constraint αi+1 is immediately unsatisfiable since there are no further variables.

The algorithm uses several auxiliary functions. The function SAT models a
SAT call on propositional formulas. The function proj is used to propagate
information into the current αi while the solver is moving forward. The function
forget enables the solver to strengthen previous restrictions upon backtracking.
Let us look at these mechanisms in turn.

3.1 Projection (proj)

The function proj(αi, σ) produces a set of formulas I implied by the assignment
σ = σ1 ∪ . . .∪σi−1 in αi. The motivation for I is akin to the one for 1-UIP [20].
The set I may be envisioned as a cut in the circuit representing the formula αi.
In the context of the algorithm, proj enables generalizing the concrete variable
assignment to subformulas. Rather than finding the move σi by satisfying αi ∧∧
j∈1..i−1 σj , it must satisfy αi ∧ I. Upon backtracking, I is used to strengthen

αi−2. This gives a better strengthening than a particular assignment.
As a motivational example, consider the formula ∃xy∀u∃z. (x∨y)⇒ (z∧¬z)

and the assignment {x,¬y}. In this case, the function proj returns (x ∨ y)
because it is implied by the assignment and keeps forcing a contradiction. This
yields the SAT call on ((x∨y)⇒ (z∧¬z))∧ (x∨y). The formula is unsatisfiable
and the reason is that (x∨y) is true. This lets us conclude that at the first level,
¬(x ∨ y) must be true—the concrete assignment to x and y is not important.

The function proj operates in two phases, first it propagates the assignment σ
in αi and then it collects the most general sub-formulas of αi propagated by σ.
To formalize the definition we introduce an auxiliary concept of propagation
σ `p φ meaning that φ follows from σ by propagation.

1 The implementation enables jumping across multiple levels by backtracking to the
maximum level of variables in the core belonging to Qi.

Definition 2 (`p). For an assignment σ and formula φ, the relation σ `p φ is
defined according to the following rules.

σ `p 1 σ `p ψ ∧ φ, if σ `p ψ and σ `p φ
σ `p l, if l ∈ σ σ `p ¬(ψ ∧ φ), if σ `p ¬ψ or σ `p ¬φ

The function proj operates recursively on subformulas. It first checks if a sub-
formula or its negation is inferred by propagation. If so, it immediately returns
the given subformula or its negation, respectively. Otherwise, it dives into the
subformula’s structure. Subformulas unaffected by the assignment are ignored.
The definition follows (see also Examples 1–3).

Definition 3 (proj). For a formula φ and assignment σ, proj(φ, σ) is defined
by the following equalities.

proj(φ, σ) = {φ} if σ `p φ
proj(φ, σ) = {¬φ} if σ `p ¬φ
proj(ψ ∧ φ, σ) = proj(ψ, σ) ∪ proj(φ, σ) if above does not apply
proj(¬ψ, σ) = proj(ψ, σ) if above does not apply
proj(l, σ) = ∅ if above does not apply

Note that proj is well defined also for an empty σ = ∅. Since we only have
∅ `p 1 the projection proj(φ, ∅) will give the empty set, except for the special
cases proj(1, ∅) = proj(0, ∅) = {1}.

3.2 SAT calls

SAT calls are used to obtain a move σi at position i in a straightforward fashion
(line 7). If the SAT calls deem the query unsatisfiable, it provides a core that
is used to inform backtracking. In a call SAT(I, αi), I is a set of propositional
formulas modeling assumptions. The function returns a pair (σi, C), where σi is
a satisfying assignment to αi ∧ I if such exists and it is ⊥ otherwise. If there is
no satisfying assignment, C ⊆ I is a core, i.e. φ ∧ C is also unsatisfiable. Since
modern SAT solvers typically only accept formulas in CNF, standard translation
from formulas to CNF may be used via fresh variables [26].

3.3 Backtracking

The backtracking mechanism is triggered once the SAT call deems αi ∧ I un-
satisfiable. Only a core C ⊆ I is used, which gives a stronger constraint than
using the whole of I. The SAT call guarantees that αi ∧ C is unsatisfiable—and
therefore losing for player Qi. The objective is to derive a strengthening for αi−2.
To that end we remove the sets of variables Xi and Xi−1 from the core C.

Variables Xi−1 are removed by substituting the opponent’s move σi−1. The
intuition is that the opponent can always play that same move σi−1 in the future.
In another words, player Qi must account for any move of the opponent and
in this case Qi prepares for σi−1. This is best illustrated by an example that
already does not contain any of the variables Xi — so we only need to worry
about Xi−1.

Example 1. Consider ∃x1x2∀y∃z. (x1 ∧ z) ∧ (x2 ∨ y) with σ1 = {x1,¬x2}, σ2 =
{¬y}. Propagation gives σ1∪σ2 `p x1 and σ1∪σ2 `p ¬(x2∨y). SAT gives the core
C = ¬(x2 ∨ y). Negating the core and substituting σ2 gives ξf = (x2 ∨ y)|{¬y} =
x2 leading to the strengthening α1 ← α1 ∧ x2.

The removal of the variables Xi relies on their polarity (see Definition 1).
Each positive occurrence of a variable is replaced by 1 and each negative occur-
rence by 0. This operation guarantees that the resulting formula is weaker than
the derived core (see Lemma 2 for justification).

Definition 4 (forget). For a set of variables X and a formula φ, the trans-
formation forget(X,φ) is defined as follows. The definition uses an auxiliary
function pol(ψ,X, c) where ψ is a formula and c ∈ {0, 1} a constant. The con-
stant c is determined by the polarity of ψ within φ (see Definition 1). If ψ is
annotated positively (ψ+), c is 1; if ψ is annotated negatively (ψ−), c is 0.

forget(X,φ) = pol(φ,X, 1)
pol(x,X, c) = c, if x ∈ X pol(φ ∧ ψ,X, c) = pol(φ,X, c) ∧ pol(ψ,X, c)
pol(x,X, c) = x, if x /∈ X pol(¬φ,X, c) = ¬pol(φ,X,¬c)

Example 2. Consider ∃x1x2∀y∃z. (x1 ∧ z) ∧ (x2 ∨ y) and σ1 = {¬x1, x2}, σ2 =
{¬y}. By propagation obtain σ1∪σ2 `p ¬(x1∧z) and σ1∪σ2 `p (x2∨y). Yielding
core C = ¬(x1 ∧ z). Negating the core gives (x1 ∧ z), applying forget({z}, (x1 ∧
z)) = x1. Hence we obtain the strengthening step α1 ← α1 ∧ x1.

We conclude by an example where both Xi, Xi−1 are removed at the same time.

Example 3. ∃x1x2x3∀y∃zw.
(
(x1 ∧ x2 ∨ w) ⇒ ¬z

)
∧
(
(x3 ∧ y ∨ ¬w) ⇒ z

)
for

σ1 = {x1, x2, x3}, σ2 = {y} obtain σ1 ∪ σ2 `p (x1 ∧ x2 ∨ w) and σ1 ∪ σ2 `p
(x3 ∧ y ∨ ¬w). SAT giving the core C = {(x1 ∧ x2 ∨ w), (x3 ∧ y ∨ ¬w)}. Negate:
¬(x1∧x2∨w)∨¬(x3∧y∨¬w); apply forget: ¬(x1∧x2)∨¬(x3∧y); substitute
{y}: ¬(x1 ∧ x2) ∨ ¬x3.

3.4 Discussion

CQESTO hinges on two operations: projection and forgetting. Arguably, any
backtracking QBF solver must perform these operations in some form, while
observing the properties outlined in the following section (Section 3.5). Here I
remark that the implementation of CQESTO enables deviations from the cur-
rent presentation. In particular, Invariant 1 may not be strictly observed: upon
initialization all αi are initialized with the original (negated) matrix. Like so,
downstream variables also appear in αi.

Several QBF solvers are characterized by repeated SAT calls. RAReQS [10,
12,13] performs a heavy-handed expansion of quantifiers requiring recursive calls:
this may turn unwieldy in formulas with many quantification levels. The opera-
tion forget in RAReQS corresponds to the creation of new copies of the vari-
ables in the refinement. QELL [27] can be seen as a variant of RAReQS where
variables are removed by greedy elimination.

Both QESTO [14] and CAQE [23] can be seen as specializations of CQESTO
for CNF input. A similar approach has also been used in SMT [4].

QuAbS [25] is similar to CQESTO but with some important differences.
Conceptually, CQESTO directly works on the given circuit. In contrast, QuAbS
encodes the circuit into clauses and then it operates on the literals representing
subformulas. The representing literals are effectively Tseitin variables (accom-
modating for semantics of quantification).2 In this sense, CQESTO is more flex-
ible because QuAbS loses the information about the circuit upon translation to
clauses. Observe that for instance that Examples 1 and 2 operate on the same
formula but proj gives different sub-formulas.

One important consequence of this flexibility is that CQESTO calls the SAT
solver with fewer assumptions. As an example consider a sub-circuit φ that is set
to 1 by propagation of values on previous quantification levels. Further, there
are some sub-circuits of φ, also set to 1 by previous levels, let’s say ψ1, . . . , ψk.
To communicate to the current level that these are already set to true, QuAbS
invokes the SAT solver with the assumptions tφ, tψ1 , . . . , tψk

, where tγ is the
representing literal. Consequently, in QuAbS, any of these assumptions may
appear in the core. However, tφ is the more desirable core because it “covers”
its sub-circuits. In CQESTO, it is guaranteed to obtain such core because only
φ will be using the assumptions (thanks to the function proj).

3.5 Correctness and Termination

This section shows correctness and termination by showing specific properties of
the used operations. We begin by a lemma that intuitively shows that (αi ∧ σ)
is roughly the same as (αi ∧ proj(αi, σ)). This is relevant to the SAT call on
line 7.

Lemma 1. For σ =
⋃
j∈1..i−1 σj and I = proj(αi, σ) it holds that

1. σ ⇒ I
2. Models restricted to Xi of αi ∧ σ and αi ∧ I are the same.

Proof (sketch). (1) By induction on expression depth. If for a literal l, it holds
that σ `p l, then by Definition 2 also l ∈ σ and therefore σ ⇒ l. For composite
expressions, the implication holds by standard semantics of ∧ and ¬.

(2) The models restricted to Xi of αi ∧ σ are the same as of αi|σ. Hence,
instead of conjoining σ to αi we imagine we substitute it into αi and then apply
standard simplification, e.g. 0 ∧ φ = 0. This results into the same formula as if
we substituted directly 1 for φ ∈ I with and 0 for ¬φ ∈ I. E.g. for σ = {x, y}
and αi = (x ∨ z) ∧ (y ∨ q) ∧ o, we obtain σ `p (x ∨ z) and σ `p (y ∨ q), and αi|σ
gives o, which is equivalent replacing (x ∨ z) and (x ∨ z) with 1.

We continue by inspecting the operation forget(Xi, ψ), important in ab-
straction strengthening. We show that the operation is a weakening of ψ, i.e. it

2 This was also done similarly in Z3 when implementing [4].

does not rule out permissible moves. At the same time, however, we need to show
that the result is not too weak. In particular, that the performed strengthening
on lines 10–12 does not allow repeating a play that was once already lost.

Lemma 2. Let ψ be a formula, σ =
⋃
j∈1..i−1 σj and C ⊆ proj(αi, σ) s.t. αi∧C

is unsatisfiable.

1. ψ ⇒ forget(Xi, ψ)
2. σ ∧ forget(Xi,¬C) is unsatisfiable
3.
(
σ1 ∧ · · · ∧ σi−2 ∧ forget(Xi,¬C)

)
|σi−1

is unsatisfiable

Proof (sketch). (1) A positive occurrence of a formula with a weaker one, or
replacing a negative occurrence of a formula with a stronger one leads to a weaker
formula [19, The Polarity Proposition]. The operation forget is a special case of
this because a positive occurrence of a variable is replaced by 1 (trivially weaker)
and a negative occurrence by 0 (trivially stronger).
(2) Since the elements of the core C must have been obtained by proj (see ln. 7),
we have σ `p φ for φ ∈ C where all variables Xi are unassigned in σ. Hence,
replacing the Xi variables with arbitrary expressions preserves the `p relation,
e.g. {x} `p (x∨z) but also {x} `p (x∨0). Bullet (3) is a immediate consequence
of (2).

Lemma 3. Algorithm 1 preserves Invariants 1 and 2.

Proof (sketch). Invariant 1 is trivially satisfied upon initialization and is pre-
served by backtracking. Invariant 2 is trivially satisfied upon initialization.

Since C is a core, αi ∧ C is unsatisfiable and therefore αi ⇒ ¬C. This means
that player Qi must satisfy ¬C because he must satisfy αi. The operation
forget is a weakening (Lemma 2(1)) and therefore the player also must sat-
isfy forget(¬C). Since the opponent can always decide to play σi−1, player Qi
must also satisfy

(
σ1 ∧ · · · ∧ σi−2 ∧ forget(Xi,¬C)

)
|σi−1 at level i−2. Therefore

the backtracking operation preserves the invariant.

Theorem 1. The algorithm is correct, i.e. it returns the validity of the formula.

Proof (sketch). The algorithm terminates only if αi becomes unsatisfiable for
i ∈ 1..2. From Invariant 2, the opponent of Qi has a winning strategy for what-
ever move Qi plays. Since Qi has no previous moves to alter, there’s a winning
strategy for the opponent for the whole game. The algorithm returns true iff the
losing player is ∀, i.e. iff there is a winning strategy for ∃.

Theorem 2. The algorithm is terminating.

Proof (sketch). We show that if the solver backtracks upon an assignment σ =⋃
j∈1..i−1 σj , the same assignment will not appear again. For contradiction let us

assume that σ appears in a future run. This means that σi−2 was obtained from
SAT(I, αi−2) with I = proj(αi−2,

⋃
j∈1..i−3 σj). From Lemma 2(3) we have that⋃

j∈1..i−2 σj is not a model of αi−2. From Lemma 1(2) αi−2 ∧ I have the same
models as αi−2 ∧

⋃
j∈1..i−3 σj , which gives a contradiction.

Solver Solved (320)

QFUN 118

CQESTO 112

QuAbS 103

GQ 87

Qute 83

Table 1: Result summary.

0

100

200

300

400

500

600

0 20 40 60 80 100 120

C
P
U

ti
m
e
(s
)

number of instances

QFUN

CQESTO

QuAbS

GQ

Qute

Fig. 1: Cactus plot. A point at (x, y) means that the
solver solved x instances each within y sec.

4 Experimental Evaluation

The prototype CQESTO was implemented in C++ where logical gates are hash-
consed as to avoid redundant sub-circuits. SAT calls are delegated to min-
isat 2.2 [6]. It differs from the Algorithm 1 by starting with stronger αi: An
αi is initialized by φ where opponent’s moves are fixed to a constant value.

CQESTO is compared to the solvers QFUN [11], QuAbS [25], Qute [21], and
GhostQ [18] on the QBF Eval ’17 instances [22] on Intel Xeon E5-2630 2.60GHz
with 64GB memory; the limits were set to 32GB and 600s.

The results are summarized in Table 1 and Figure 1; detailed results can
be found online [5]. There’s a clear division between SAT-based solvers (QFUN,
CQESTO, QuAbS) and resolution-based solvers (GhostQ, Qute). QFUN is in the
lead closely followed by CQESTO. QuAbS is only 9 instances behind CQESTO
but the cactus plot shows a notable slow-down early on. I remark that detailed
inspection reveals that Qute fares much better on instances with high number
of quantification levels. It is a subject of future work to better understand if
the difference between QuAbS and CQESTO is due to implementation or the
different calculation of strengthening.

5 Summary and Future Work

This paper contributes to the understanding of QBF solving by studying the
algorithm CQESTO, which is characterized by maintaining propositional re-
strictions, in a circuit form, on the possible moves of the corresponding player at
each quantification level. Projection is used to propagate the current assignment
into the circuit. Once the SAT solver provides a contradiction at the current
level, this needs to be transferred to the level to which we backtrack. Upon
backtracking, CQESTO performs two operations: substitution of the opponent’s
move, forgetting of variables belonging to the player. Identifying these operations
helps us making a link to other solvers, such as RAReQS.

The presented operations open several avenues for future work. They may
enable connecting CNF-based learning [29] and the circuit-based approach by ex-

tending propagation (Definition 2). The discussed connection between CQESTO
and RAReQS also opens the possibility of combining the two methods, which
would in particularly be beneficial in formulas with high number of quantifiers,
where RAReQS may be too heavy-handed. The recently proposed use of ma-
chine learning for RAReQS implemented in QFUN [11] could also be used in
CQESTO as a look-ahead for future moves of the opponent.

Acknowledgments.

This work was supported by national funds through Fundação para a Ciência
e a Tecnologia (FCT) with reference UID/CEC/50021/2013. The author would
like to thank Nikolaj Bjørner and João Marques-Silva for the helpful discussions
on the topic.

References

1. Ansótegui, C., Gomes, C.P., Selman, B.: The Achilles’ heel of QBF. In: National
Conference on Artificial Intelligence and the Seventeenth Innovative Applications
of Artificial Intelligence Conference (AAAI). pp. 275–281 (2005)

2. Balabanov, V., Jiang, J.R., Scholl, C., Mishchenko, A., Brayton, R.K.: 2QBF:
Challenges and solutions. In: Theory and Applications of Satisfiability Testing
(SAT). pp. 453–469 (2016), https://doi.org/10.1007/978-3-319-40970-2_28

3. Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and
perspectives. Journal on Satisfiability, Boolean Modeling and Computation (JSAT)
5(1-4), 133–191 (2008)

4. Bjørner, N., Janota, M.: Playing with quantified satisfaction. In: International
Conferences on Logic for Programming LPAR-20, Short Presentations. vol. 35, pp.
15–27. EasyChair (2015)

5. CQESTO website, http://sat.inesc-id.pt/~mikolas/sw/cqesto/res.html

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Theory and Applications of
Satisfiability Testing (SAT) (2003)

7. Farzan, A., Kincaid, Z.: Strategy synthesis for linear arithmetic games. Proc. ACM
Program. Lang. 2(POPL), 61:1–61:30 (Dec 2017), http://doi.acm.org/10.1145/
3158149

8. Goultiaeva, A., Seidl, M., Biere, A.: Bridging the gap between dual propagation
and CNF-based QBF solving. In: Design, Automation & Test in Europe (DATE).
pp. 811–814 (2013)

9. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating
proofs and strategies for both true and false QBF formulas. In: International Joint
Conference on Artificial Intelligence (IJCAI). pp. 546–553 (2011)

10. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. In: Theory and Applications of Satisfiability Testing
(SAT). pp. 114–128 (2012)

11. Janota, M.: Towards generalization in QBF solving via machine learning. In: AAAI
Conference on Artificial Intelligence (2018)

12. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. Artificial Intelligence 234, 1–25 (2016)

https://doi.org/10.1007/978-3-319-40970-2_28
http://sat.inesc-id.pt/~mikolas/sw/cqesto/res.html
http://doi.acm.org/10.1145/3158149
http://doi.acm.org/10.1145/3158149

13. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah,
K.A., Simon, L. (eds.) SAT. pp. 230–244. Springer (2011)

14. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: International
Joint Conference on Artificial Intelligence (IJCAI) (2015)

15. Janota, M., Marques-Silva, J.: An Achilles’ heel of term-resolution. In: Conference
on Artificial Intelligence (EPIA). pp. 670–680 (2017)

16. Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: Pro-
ceedings of BNP (Workshop) (2016)

17. Kleine Büning, H., Bubeck, U.: Theory of quantified boolean formulas. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Fron-
tiers in Artificial Intelligence and Applications, vol. 185, pp. 735–760. IOS Press
(2009)

18. Klieber, W., Sapra, S., Gao, S., Clarke, E.M.: A non-prenex, non-clausal QBF
solver with game-state learning. In: SAT. pp. 128–142 (2010)

19. Manna, Z., Waldinger, R.: The Logical Basis for Computer Programming, Volume
2. Addison-Wesley (1985)

20. Marques Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999)

21. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Theory and
Applications of Satisfiability Testing (SAT). pp. 298–313 (2017), https://doi.

org/10.1007/978-3-319-66263-3_19

22. QBF Eval 2017, http://www.qbflib.org/event_page.php?year=2017
23. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Formal Methods in

Computer-Aided Design, FMCAD. pp. 136–143 (2015)
24. Reynolds, A., King, T., Kuncak, V.: Solving quantified linear arithmetic by

counterexample-guided instantiation. Formal Methods in System Design 51(3),
500–532 (2017), https://doi.org/10.1007/s10703-017-0290-y

25. Tentrup, L.: Non-prenex QBF solving using abstraction. In: Theory and Applica-
tions of Satisfiability Testing (SAT). pp. 393–401 (2016)

26. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Stud-
ies in Constructive Mathematics and Mathematical Logic Part II, ed. A.O. Slisenko
(1968)

27. Tu, K., Hsu, T., Jiang, J.R.: QELL: QBF reasoning with extended clause learning
and levelized SAT solving. In: Theory and Applications of Satisfiability Testing -
(SAT). pp. 343–359 (2015), https://doi.org/10.1007/978-3-319-24318-4_25

28. Zhang, L.: Solving QBF by combining conjunctive and disjunctive normal forms.
In: National Conference on Artificial Intelligence and the Eighteenth Innovative
Applications of Artificial Intelligence Conference (AAAI) (2006)

29. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: International Conference On Computer Aided Design (ICCAD). pp.
442–449 (2002)

https://doi.org/10.1007/978-3-319-66263-3_19
https://doi.org/10.1007/978-3-319-66263-3_19
http://www.qbflib.org/event_page.php?year=2017
https://doi.org/10.1007/s10703-017-0290-y
https://doi.org/10.1007/978-3-319-24318-4_25

