ON Q-RESOLUTION AND CDCL QBF SOLVING

Mikoláš Janota

Microsoft Research, Cambridge, UK

Q-resolution = *Q*-resolution rule + \forall -reduction

Q-resolution = *Q*-resolution rule + \forall -reduction

Resolution

$$\frac{l \lor C_1 \qquad \neg l \lor C_2}{C_1 \lor C_2}$$
 (*l* existentially quantified)

Q-resolution = *Q*-resolution rule + \forall -reduction

Resolution

$$\frac{l \lor C_1 \qquad \neg l \lor C_2}{C_1 \lor C_2}$$
 (*l* existentially quantified)

 $\forall \text{-reduction}$

 $\frac{C \lor k}{C}$ (k \in C is universal with highest quant. level in C)

Q-resolution = *Q*-resolution rule + \forall -reduction

Resolution

$$\frac{l \lor C_1 \qquad \neg l \lor C_2}{C_1 \lor C_2}$$
 (*l* existentially quantified)

 \forall -reduction

 $\frac{C \lor k}{C} \ (k \in C \text{ is universal with highest quant. level in } C)$

Tautologous resolvents are generally unsound and not allowed!

Q-resolution = *Q*-resolution rule + \forall -reduction

Resolution

$$\frac{l \lor C_1 \qquad \neg l \lor C_2}{C_1 \lor C_2}$$
 (*l* existentially quantified)

 \forall -reduction

 $\frac{C \lor k}{C} \ (k \in C \text{ is universal with highest quant. level in } C)$

Tautologous resolvents are generally unsound and not allowed!

long-distance Q-resolution [Balabanov and Jiang, 2012] enables tautologous resolvents in *some cases*.

M. Janota

On Q-Resolution and CDCL QBF Solving

$\forall u \exists e. \, (u \lor \neg e) \land (u \lor e)$

• Assign variables in the order of the prefix.

 $\exists x_1 \ldots x_n \forall u_1, \ldots, u_k \exists y_1 \ldots y_m \ldots \phi$

• Assign variables in the order of the prefix.

```
\exists x_1 \ldots x_n \forall u_1, \ldots, u_k \exists y_1 \ldots y_m \ldots \phi
```

• Propagation + UIP Learning via Q-Resolution

 $\exists x_1 \dots x_n \forall z \exists y_1, \dots, y_m. \phi_{hard}[X] \land \phi_{easy}[z, Y]$

```
\exists x_1 \dots x_n \forall z \exists y_1, \dots, y_m. \phi_{hard}[X] \land \phi_{easy}[z, Y]
```

• If $\phi_{hard}[X]$ is hard to refute (e.g. Pigeon-hole) but $\phi_{easy}[z, Y]$ is easy to refute, Q-Resolution defeats CDCL QBF Solving.

```
\exists x_1 \dots x_n \forall z \exists y_1, \dots, y_m. \phi_{hard}[X] \land \phi_{easy}[z, Y]
```

- If $\phi_{hard}[X]$ is hard to refute (e.g. Pigeon-hole) but $\phi_{easy}[z, Y]$ is easy to refute, Q-Resolution defeats CDCL QBF Solving.
- Formulas are independent.

```
\exists x_1 \dots x_n \forall z \exists y_1, \dots, y_m, \phi_{hard}[X] \land \phi_{easy}[z, Y]
```

- If $\phi_{hard}[X]$ is hard to refute (e.g. Pigeon-hole) but $\phi_{easy}[z, Y]$ is easy to refute, Q-Resolution defeats CDCL QBF Solving.
- Formulas are independent.
- The solver never assigns Y variables.

```
\exists x_1 \dots x_n \forall z \exists y_1, \dots, y_m. \phi_{hard}[X] \land \phi_{easy}[z, Y]
```

- If $\phi_{hard}[X]$ is hard to refute (e.g. Pigeon-hole) but $\phi_{easy}[z, Y]$ is easy to refute, Q-Resolution defeats CDCL QBF Solving.
- Formulas are independent.
- The solver never assigns Y variables.
- Several ways how to deal with this issue.

LOOKING FOR INTRINSICALLY HARD PROBLEMS: IDEA

• Consider a formula $\exists \mathcal{X} \forall z \exists \mathcal{L} . \phi[\mathcal{X}, z, \mathcal{L}]$ such that proofs are exponential if they start on \mathcal{L} first.

LOOKING FOR INTRINSICALLY HARD PROBLEMS: IDEA

- Consider a formula $\exists \mathcal{X} \forall z \exists \mathcal{L} . \phi[\mathcal{X}, z, \mathcal{L}]$ such that proofs are exponential if they start on \mathcal{L} first.
- \cdot Prove that a DPLL-based solver resolves on ${\cal L}$ first.

<i>a</i> ₁	• • •	<i>a</i> ₁	• • •	a _N	• • •	a _N
<i>b</i> ₁	• • •	b _N	• • •	<i>b</i> ₁	• • •	b _N

a ₁	• • •	<i>a</i> ₁	• • •	a _N	• • •	a _N
<i>b</i> ₁	• • •	b _N	• • •	<i>b</i> ₁	• • •	b _N

• $\mathcal{X} = x_{11} \dots x_{nn}$

a ₁	• • •	a ₁	• • •	a _N	• • •	a _N
<i>b</i> ₁	• • •	b _N	• • •	<i>b</i> ₁	• • •	b _N

- $\mathcal{X} = x_{11} \dots x_{nn}$
- $\mathcal{L} = a_1 \dots a_n, b_1 \dots b_n$

a ₁	• • •	a ₁	• • •	a _N	• • •	a _N
<i>b</i> ₁	• • •	b _N	• • •	<i>b</i> ₁	• • •	b _N

- $\mathcal{X} = x_{11} \dots x_{nn}$
- $\mathcal{L} = a_1 \dots a_n, b_1 \dots b_n$
- $\cdot \exists \mathcal{X} \forall z \exists \mathcal{L}$

$$x_{ij} \lor z \lor a_i, i, j \in 1..n$$
$$\neg x_{ij} \lor \neg z \lor b_j, i, j \in 1..n$$
$$\bigvee_{i \in 1..n} \neg a_i$$
$$\bigvee_{i \in 1..n} \neg b_i$$

On Q-Resolution and CDCL QBF Solving

• Completion Principle hard when resolving inside out [Janota and Marques-Silva, 2015].

- Completion Principle hard when resolving inside out [Janota and Marques-Silva, 2015].
- Even stronger: deriving a unit clause under such condition is already hard.

- Completion Principle hard when resolving inside out [Janota and Marques-Silva, 2015].
- Even stronger: deriving a unit clause under such condition is already hard.
- Before a unit clause is learned, there is no propagation across levels, i.e. *L* variables are given a value only after all *X* variables are given a value.

- Completion Principle hard when resolving inside out [Janota and Marques-Silva, 2015].
- Even stronger: deriving a unit clause under such condition is already hard.
- Before a unit clause is learned, there is no propagation across levels, i.e. *L* variables are given a value only after all *X* variables are given a value.
- Derivations of the first unit clause is always by resolving $\boldsymbol{\mathcal{L}}$ first.

• In the proof we did not consider solution learning (only clause learning).

- In the proof we did not consider solution learning (only clause learning).
- When the universal plays correctly each time, there's no solution learning and then the same results apply.

- In the proof we did not consider solution learning (only clause learning).
- When the universal plays correctly each time, there's no solution learning and then the same results apply.

n	CDCL	CDCL + SDCL	CDCL + SDCL – pure lits.
4	101	101	101
5	1081	1081	751
6	19611	19611	3531
7	370811	370811	36411
8	> 9995451	> 10000981	5464551
9	> 10612011	> 10619361	> 931211
10	> 10303551	> 10313901	> 8608251

SUMMARY AND CONCLUSIONS

• Studied a formula where CDCL is over-performed by Q-resolution.

- Studied a formula where CDCL is over-performed by Q-resolution.
- Comes down to order of resolution: we force the solver to resolve on the innermost variables first.

- Studied a formula where CDCL is over-performed by Q-resolution.
- Comes down to order of resolution: we force the solver to resolve on the innermost variables first.
- Breaking the order: unit clauses, solution learning, propagation across levels.

- Studied a formula where CDCL is over-performed by Q-resolution.
- Comes down to order of resolution: we force the solver to resolve on the innermost variables first.
- Breaking the order: unit clauses, solution learning, propagation across levels.
- Learning unit clauses does not help because deriving a unit clauses already hard.

- Studied a formula where CDCL is over-performed by Q-resolution.
- Comes down to order of resolution: we force the solver to resolve on the innermost variables first.
- Breaking the order: unit clauses, solution learning, propagation across levels.
- Learning unit clauses does not help because deriving a unit clauses already hard.
- Solution learning may only help if universal player makes a wrong decision.

- Studied a formula where CDCL is over-performed by Q-resolution.
- Comes down to order of resolution: we force the solver to resolve on the innermost variables first.
- Breaking the order: unit clauses, solution learning, propagation across levels.
- Learning unit clauses does not help because deriving a unit clauses already hard.
- Solution learning may only help if universal player makes a wrong decision.
- Pure literals worsen performance.

- Studied a formula where CDCL is over-performed by Q-resolution.
- Comes down to order of resolution: we force the solver to resolve on the innermost variables first.
- Breaking the order: unit clauses, solution learning, propagation across levels.
- Learning unit clauses does not help because deriving a unit clauses already hard.
- Solution learning may only help if universal player makes a wrong decision.
- Pure literals worsen performance.
- Is the formula really hard for solution + conflict learning?

- Studied a formula where CDCL is over-performed by Q-resolution.
- Comes down to order of resolution: we force the solver to resolve on the innermost variables first.
- Breaking the order: unit clauses, solution learning, propagation across levels.
- Learning unit clauses does not help because deriving a unit clauses already hard.
- Solution learning may only help if universal player makes a wrong decision.
- Pure literals worsen performance.
- Is the formula really hard for solution + conflict learning?
- Other methods in solving to break the order?

M. Janota

On Q-Resolution and CDCL QBF Solving

Thank You for Your Attention!

Questions?

Balabanov, V. and Jiang, J.-H. R. (2012). Unified QBF certification and its applications. Formal Methods in System Design, 41(1):45–65.

- Büning, H. K., Karpinski, M., and Flögel, A. (1995).
 Resolution for quantified Boolean formulas.
 Inf. Comput., 117(1).
- Janota, M. and Marques-Silva, J. (2015). **Expansion-based QBF solving versus Q-resolution.** Theoretical Computer Science, 577(0):25–42.
- Lonsing, F. (2012).

Dependency Schemes and Search-Based QBF Solving: Theory and Practice.

PhD thesis, Johannes Kepler Universität.